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Introduction

Whereas ordinary functions on a locally compact group map the group elements into

the complex numbers, a stochastic process can be understood as a mapping into a

Hilbert space. The idea of a generalized function is to reduce the knowledge about the

function to that of certain averages. It leads to the concept of generalized functions as

continuous linear functionals on spaces of test functions. The combination of both ideas

is the basis for generalized stochastic processes on locally compact Abelian groups:

Hilbert space valued bounded linear operators on spaces of test functions on G. The

properties of the Schwartz space S(Rm), in particular its invariance under the Fourier

transform, make it a very suitable tool for the description of generalized functions, but

its generalization, the so-called Schwartz-Bruhat space is very complicated (cf. [19])

and structure theory of lca. groups is required to describe the space.
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We will work mostly with the elements of S′0(G) , which will be called distributions.

For convenience we shall write for σ ∈ S′0(G) and f ∈ S0(G) : 〈σ, f〉 := σ(f).

Let f, g be functions on G1 and G2 respectively:

The tensor product of f and g is the function f ⊗ g on G1 ×G2 given by

f ⊗ g(x, y) := f(x) · g(y); x ∈ G1, y ∈ G2

Let B1 and B2 be two Banach spaces, which are continuously embedded into Cb(G1)

and Cb(G2). The projective tensor product of B1 and B2 is defined as:

B1⊗̂B2 :=

{
f | f =

∞∑
n=1

fn ⊗ gn,
∞∑
n=1

‖fn‖B1
‖gn‖B2

<∞
}

B1⊗̂B2 is a Banach space continuously embedded in Cb(G1 ×G2):

‖f‖⊗̂ := inf

{ ∞∑
n=1

‖fn‖B1
‖gn‖B2

with f =

∞∑
n=1

fn ⊗ gn

}
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Let V0(G1×G2) := C0(G1)⊗̂C0(G2) be the projective tensor product. The dual of

V0(G1×G2) , which contains M(G1×G2) as a proper subspace, is called the space

of bimeasures BM(G1 ×G2). For the properties of bimeasures we refer to [10].

A Radon measure µ (i.e. an element of the dual of K(G)) is called translation
bounded if for any k ∈ K(G) the supx∈G |µ(Lx(k))| is finite.

A detailed discussion of the following concepts is given in [5]:

A bounded set S ⊆ M(G) is called tight if for every ε > 0 there exists some

k ∈ K(G) such that ‖k · µ− µ‖M ≤ ε for all µ ∈ S.

A bounded net (eγ)γ∈Γ in L1(G) is called a bounded approximate unit for L1(G) if

one has limγ ‖eγ ∗ f − f‖1 → 0 for any f ∈ L1(G) . The limit of eγ is Dirac’s

Delta distribution denoted by δ0.

A net (µγ)γ∈Γ is vaguely convergent with limit µ0 if one has

lim
γ
µγ(k) = µ0(k) ∀ k ∈ K.
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1. Definitions

Definition 1: Let H be an arbitrary Hilbert space:

A measurable mapping X : G 7→ H is called a stochastic process on G.

Definition 2: A bounded linear mapping ρ : S0(G) 7→ H is called a generalized
stochastic process (GSP).

We can think of H as a Hilbert space of C-valued random variables with zero

expectation on an arbitrary probability space (Ω,Σ, P ), that is L2
0(Ω,Σ, P ) , but we

will only use the Hilbert space properties and therefore we write H.

(.|.) will denote the (sesquilinear) inner product and ‖.‖H the norm in H.

The following properties of GSPs will be of importance in this paper. These definitions

are of course analogous to the corresponding concepts for classical stochastic processes

in the following sense: If a classical is interpreted as a generalized stochastic process

(via integration) then the classical terminology is compatible with the one given here.
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Definition 3:

a) A GSP is called (wide sense time-) stationary if

(ρ(f)|ρ(g)) = (ρ(Lxf)|ρ(Lxg)) ∀ x ∈ G, ∀ f, g ∈ S0(G)

b) A GSP is called (wide sense) frequency stationary if

(ρ(f)|ρ(g)) = (ρ(Mtf)|ρ(Mtg)) ∀ t ∈ Ĝ, ∀ f, g ∈ S0(G)

c) A time-stationary and frequency-stationary process is called white noise.

Definition 4:

a) A GSP ρ is called bounded if ρ is bounded with respect to ‖.‖∞:

∃ c > 0 such that ‖ρ(f)‖H ≤ c‖f‖∞ ∀ f ∈ S0(G);

b) A GSP ρ is called V-bounded (variation bounded) if:

∃ c > 0 such that ‖ρ(f)‖H ≤ c‖f̂‖∞ ∀ f ∈ S0(G).
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Definition 5: A GSP is called orthogonally scattered if

supp(f) ∩ supp(g) = ∅ implies ρ(f) ⊥ ρ(g) for f, g ∈ S0(G).

Due to the tensor product property of S0 : S0(G)⊗̂S0(G) = S0(G × G) (cf. [3]

Theorem 7 D) it is justified to hope that the following definition determines an element

of S0(G×G).

Definition 6: Let ρ be a GSP. The autocovariance (or auto-correlation) distribution

σρ is defined as: 〈σρ, f ⊗ g〉 := (ρ(f)|ρ(ḡ)) ∀ f, g ∈ S0(G).

A priori the σρ functional is only defined for functions of the form f⊗g, f, g ∈ S0(G),

but we want σρ to be a distribution of two variables, that is a linear functional on

S0(G)⊗̂S0(G) = S0(G × G). Therefore we must extend the definition of σρ to

functions h :=
∑∞

n=1 fn⊗gn . This can be done by first defining σρ in the obvious way

for finite sums; it is not difficult to show that this definition makes sense and that σρ is

bounded; then we can use the fact that the completion of the space of all finite sums is

equal to S0(G)⊗̂S0(G) to extend σρ (uniquely) to S0(G)⊗̂S0(G) = S0(G×G);

hence σρ is an element of S′0(G×G).

– Typeset by FoilTEX – 7



2. Relations between a GSP and its Covariance

As in the classical case the relations between the properties of a GSP ρ and the

covariance σρ associated with ρ are important. The following theorems will deal with

this aspect.

Theorem 1: For a GSP ρ the following properties are equivalent:

a) ρ stationary⇐⇒ σρ diagonally invariant, i.e. L(x,x)σρ = σρ ∀ x ∈ G;

b) ρ bounded⇐⇒ σρ extends in a unique way to a bimeasure on G×G ;

c) ρ orthogonally scattered

⇐⇒ σρ is supported by the diagonal, i.e. supp(σρ) ⊆ ∆G := {(x, x) | x ∈ G} ;

⇐⇒ there exists a positive and translation bounded measure τρ with:

〈σρ, f ⊗ g〉 = 〈τρ, fg〉 ∀ f, g ∈ S0(G).

Proof: a) Follows from the definitions.
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b) (⇒) By the continuity of σρ it follows from the definition of a bounded GSP that

the following holds:

|〈σρ,
∞∑
n=1

fn ⊗ gn〉| ≤
∞∑
n=1

|(ρ(fn)|ρ(ḡn))| ≤ c2
∞∑
n=1

‖fn‖∞‖gn‖∞

for all admissible representations
∑∞

n=1 fn ⊗ gn of h ∈ S0(G×G);

hence |〈σρ, h〉| ≤ c2‖h‖V o ∀h ∈ S0(G×G); the density of S0 in V0 now implies

that σρ extends to a uniquely determined bimeasure on G×G.

(⇐) Boundedness of ρ follows from the estimate

‖ρ(f)‖2
H = (ρ(f)|ρ(f)) = 〈σρ, f ⊗ f̄〉 ≤ c‖f ⊗ f̄‖V o ≤ c‖f‖2

∞

c) (first equivalence⇐) follows directly from the definitions;

(first equivalence⇒) Assume that 〈σρ, f⊗g〉 = 0 whenever
(

supp(f)×supp(g)
)
∩∆G

= ∅ . Applying the formula S0(G × G) = S0(G)⊗̂S0(G) and suitably refined

partitions of unity (in both factors) one derives therefrom that 〈σρ, h〉 = 0 for any

h ∈ S0(G×G) having compact support disjoint to ∆G. This implies supp(σρ) ⊆ ∆G.

(second equivalence⇒)∆G being a set of spectral synthesis (cf. [18] Ch. 7 Theorem 4.1
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and Ch. 6 Remark 1.5) a distribution σρ with support on ∆G satisfies σρ(F ) = σρ(H)

if only the two restriction to ∆G are equal, i.e. if Restr∆G(F ) = Restr∆G(H) (recall

that Restr∆G maps S0(G×G) onto S0(∆G) by [3], Theorem 7 C ). The representation

of σρ by τρ follows therefrom using the canonical identification jG of G and ∆G and

the formula

〈σρ, f ⊗ g〉 = 〈τρ, (Restr∆G(f ⊗ g)) ◦ jG〉 = 〈τρ, fg〉.

To show that τρ is positive we take a net fα ∈ S0(G) with |fα|2 → δ0 and define:

〈(τρ)α, g〉 = 〈τρ ∗ |fα|2, g〉 = 〈τρ, |fα|2ˇ∗ g〉

It is clear that 〈(τρ)α, g〉 → 〈τρ, g〉 ∀ g ∈ S0(G). In addition (τρ)α can be identified

with the bounded function hα(x) = 〈τρ, Lx|fα|2 〉̌ = 〈τρ, |Lxf̌α|2〉.

As 〈τρ, f f̄〉 = (ρ(f)|ρ(f)) ≥ 0 ∀ f ∈ S0 it is obvious that hα(x) ≥ 0 ∀ x ∈ G;

this implies 〈(τρ)α, g〉 ≥ 0 ∀ g ∈ S0, g ≥ 0 and thus τρ is positive.

The positive elements of S′0(G) are translation bounded measures (cf. [6] Lemma 3.6

or [11] Appendix: Theorem 2.3). Since the opposite direction is obvious the proof is

complete.
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Corollary 2: A GSP ρ is bounded and orthogonally scattered⇐⇒

∃ bounded measure µρ on G such that

〈σρ, f ⊗ g〉 = 〈µρ, fg〉 =

∫
G

f(x)g(x)dµρ(x) ∀ f, g ∈ S0(G)

Proof: (⇐) Follows by Theorem 1.c and 1.b.

(⇒) Theorem 1.c implies the first part of the formula for τρ ∈ S0(G). ρ being

bounded τρ is a bimeasure (which is supported by the diagonal). To prove that τρ is a

bounded measure we have to show that τρ is bounded with respect to ‖.‖∞.

It is possible to write f ∈ C0(G) as f = f1f2 with f1, f2 ∈ C0(G) and

‖f‖∞ = ‖f1‖∞‖f2‖∞(for example: f1(x) := arg(f(x))
√
|f(x)|, f2(x) :=√

|f(x)| ).

Now the following holds: |〈τρ, f〉| = |〈τρ, Restr∆G(f1⊗ f2)〉| = |〈σρ, f1⊗ f2〉| ≤

≤ ‖σρ‖BM‖f1‖∞‖f2‖∞ = c‖f‖∞
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3. The Spectral Process

The following definition is analogous to the definition of the Fourier transform for

distributions.

Definition 7: Given a GSP ρ on G we define a GSP ρ̂ on Ĝ:

ρ̂(f) := ρ(f̂) ∀ f ∈ S0(Ĝ); ρ̂ is called the spectral process to ρ.

Definition 8: f̌(x) := f(−x); ρ̌(f) := ρ(f̌)

Since the mappings f 7→ f̌ and f 7→ f̂ define isomorphisms of S0(G) respectively

between S0(G) and S0(Ĝ) it is clear that ρ̌ and ρ̂ are GSPs. The following lemma

contains some simple facts about these operators:

Lemma 3: For a GSP ρ the following properties are equivalent:

a) ρ resp. ρ̂ is bounded⇐⇒ ρ̂ resp. ρ is V-bounded ;

b) ρ resp. ρ̂ is stationary⇐⇒ ρ̂ resp. ρ is frequency-stationary;

c) ρ = τ̂ ⇐⇒ τ̌ = ρ̂ .
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Proof: This follows directly from the definitions.

From Lemma 3.c it is clear that ρ 7→ (ρ̌)̂ is the inverse mapping of ρ 7→ ρ̂ . This

shows that the Fourier transform is a bijective mapping between the GSPs over G and

these over Ĝ.

Theorem 4: Let ρ be a GSP:

a) 〈σ̂ρ, f ⊗ g〉 = 〈σρ̂, f ⊗ ǧ〉

b) ρ orthogonally scattered ⇐⇒ L(t,t)σρ̂ = σρ̂ ∀ t ∈ Ĝ

Proof: a) 〈σ̂ρ, f ⊗ g〉 = 〈σρ, f̂ ⊗ ĝ〉 = (ρ(f̂)|ρ(ĝ̄ )) = (ρ̂(f)|ρ̂(ĝ̄ ˆ̌ )) =

(ρ̂(f)|ρ̂(ḡ̌ )) = 〈σρ̂, f ⊗ ḡ̌ 〉̄ = 〈σρ̂, f ⊗ ǧ〉

b) Follows from Theorem 1.c, and the fact that σ is H-invariant ⇔ supp(σ̂) ⊆ H⊥

(cf. [6] Theorem 3.4 A) and part a.

Corollary 5: Let ρ be a GSP: ρ V-bounded⇐⇒ σ̂ρ extends to a bimeasure

Proof: Apply Lemma 3.a, Theorem 1.b and Theorem 4.a.
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4. Characterizations of stationary processes

Corollary 6: Let ρ be a GSP:

a) ρ frequency-stationary⇐⇒ ρ orthogonally scattered;

b) ρ stationary⇐⇒ ∃ a positive translation bounded measure τρ̂ on

G with 〈σρ̂, f ⊗ g〉 = 〈τρ̂, fg〉 ∀ f, g ∈ S0(G); τρ̂ is called the spectral measure
of ρ.

Proof: a) Follows from Lemma 3.b, Theorem 1.a and Theorem 4.b.

b) Follows from Lemma 3.b, part a and Theorem 1.c.

Remark: Because of Corollary 6.a it is clear that ρ is white noise if and only if ρ is

stationary and orthogonally scattered.

Remark: In the classical theory of stochastic processes Corollary 6.a is called the

”spectral representation of a stationary process” (cf. [2] p. 527 or [9] p. 244). The

spectral measure is called power spectrum or - if it has a continuous density - spectral

density of the process.
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The following theorem contains a characterization of the covariance of stationary GSPs.

The necessary part is a kind of ”existence theorem” for stationary GSPs.

Theorem 7: For σ ∈ S′0(G×G) the following two properties are equivalent:

σ is covariance of a stationary GSP⇐⇒ σ is diagonally invariant and positive definite.

Proof: (⇒) The invariance was already shown in Theorem 1.a. By Corollary 6.b it is

clear that the covariance distribution of ρ̂ is positive and this implies (by Theorem 4.a)

that σ̂ is positive, which is equivalent to the positive definiteness of σ.

(⇐)σ being diagonally invariant and positive definite it follows, that σ̂ is supported by

∇Ĝ =
{

(t| − t), t ∈ Ĝ
}

(cf.[6], Theorem 3.4 A), and that 〈σ̂, f ⊗ f̄ 〉̌ ≥ 0 ∀ f ∈
S0(Ĝ)(as f ⊗ f̄ˇ is non-negative on ∇Ĝ);

this implies 〈σ, f̂ ⊗ f̄ˇ̂ 〉 ≥ 0 ∀ f ∈ S0(Ĝ) and this is equivalent to

〈σ, f ⊗ f̄〉 ≥ 0 ∀ f ∈ S0(G) (f̄ˇ̂ being equal to f̂ )̄.

We have proved that the form Q(f, g) := 〈σ, f ⊗ ḡ〉 defines a positive semi-definite

sesquilinear form on S0(G) × S0(G). Since N =
{
f | 〈σ, f ⊗ f̄〉 = 0

}
is a linear
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subspace of S0(G) Q defines a canonical inner product on H1 := S0(G)/N . The

Hilbert space obtained by completion can be denoted by H. It is then clear that the

canonical projection, followed by the embedding ofH1 intoH defines a bounded, linear

mapping ρ from S0(G) into H, i.e. it is a GSP. Of course σ coincides with σρ. By the

diagonal invariance of σ the stationarity of ρ follows.

Corollary 8 : Let σ ∈ S′0(G×G) :

Then σ is covariance of an orthogonally scattered GSP ρ

⇐⇒ ∃τ positive and translation bounded with: 〈σ, f⊗g〉 =

∫
G

fgdτ ∀ f, g ∈ S0(G)

Proof: (⇒) has been shown in Theorem 1.c.

(⇐) Let ω ∈ S′0(Ĝ× Ĝ) be defined in the following way:

〈ω, f ⊗ g〉 := 〈σ̂, f ⊗ ǧ〉 = 〈σ, f̂ ⊗ ǧ̂ 〉 =

∫
G

f̂ ǧ̂ dτ ∀ f, g ∈ S0(Ĝ);

Then ω is diagonally invariant and positive definite. By Theorem 7 the existence of a

stationary GSPρ̂ over Ĝ with covariance ω follows. Hence by Theorem 4.a ρ is a GSP
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over G with covariance σ, which is orthogonally scattered in view of Lemma 3.b and

Corollary 6.a.

The following theorem characterizes white noise (cf. Definition 3.c)s:

Theorem 9: A GSP ρ is white noise if and only if one of the following conditions is

satisfied:

⇐⇒ a) ∃ c ≥ 0 that (ρ(f)|ρ(ḡ)) = c
∫
G
f(t)g(t)dt ∀ f, g ∈ S0(G)

⇐⇒ b) ‖ρ(f)‖H = c‖f‖2 for some c ≥ 0 and ∀ f ∈ S0(G)

(i.e. ρ is a scalar multiple of an isometry between L2(G) and H).

Proof: a) This follows from Theorem 1.a and c and Corollary 6.a together with the

uniqueness of the Haar measure as a positive translation invariant measure (cf. [18] Ch.

3,3.1).

(b ⇒ white noise ) By means of polar decomposition (ρ(f)|ρ(ḡ)) can be expressed

with the help of ‖ρ(f)‖H = c‖f‖2 and ‖ρ(ḡ)‖H = c‖g‖2. Thus it is clear, that

(ρ(f)|ρ(ḡ)) is not changed by modulation or translation.

(white noise⇒ b) Follows from part a.
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5. Relations between GSPs and other theories

It is clear that it is not possible to associate arbitrary GSPs with (ordinary) stochastic

processes, as there are GSPs with a covariance distribution which cannot be represented

by an ordinary function. But we shall prove that any GSP with a covariance distribution

induced by some continuous bounded function in Cb(G × G) can be identified with

a uniquely determined stochastic process in the classical sense. On the other hand any

mean square continuous stochastic process can be identified with a uniquely determined

GSP. The exact formulation of this fact is contained in the following theorem.

Theorem 10: Let ρ be a GSP with covariance σρ:

a) σρ ∈ S′0(G × G) is represented by some h ∈ Cb(G × G) =⇒ ρ(fα) is Cauchy

net in H whenever (fα)α∈I is a vaguely convergent, L1 - bounded and tight net in

S0(G).

b) In the above situation ρ extends to a bounded linear operator ρ̃ : M(G) 7→ H ,

which is σ - norm continuous on tight subsets of M(G). In particular limy→x ρ̃(δy) =

ρ̃(δx). If {ρ(f), f ∈ S0(G)} is dense in H the extension ρ̃ is uniquely determined.

c) The mapping ρG : ρG(x) := ρ̃(δx) is a bounded, continuous stochastic process on

G, and h(x, y) = (ρ̃(δx)|ρ̃(δy)) i.e. h is covariance function of ρG.
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d) For any continuous and bounded stochastic process ρ1 : G 7→ H the covariance

function of ρ1 given by h(x, y) := (ρ1(x)|ρ1(y)) is bounded and continuous on

G×G. By vector-valued integration ρ1 may be lifted to a bounded linear mapping

ρ̃1 : M(G) 7→ H, which is σ-norm continuous on bounded tight subsets. By way of

restriction to S0(G) ρ̃1 may be considered as a GSP, and h represents the covariance

distribution of this GSP.

Proof: a) To prove that the net (fα)α∈I is a Cauchy net we use:

‖ρ(fα)−ρ(fβ)‖2
H = (ρ(fα− fβ)|ρ(fα− fβ)) = 〈σρ, (fα− fβ)⊗ (f̄α− f̄β)〉 =

= 〈σρ · k⊗ k, (fα− fβ)⊗ (f̄α− f̄β)〉+ 〈σρ, k(fα− fβ)⊗ (1− k)(f̄α− f̄β)〉+
+〈σρ, (1− k)(fα − fβ)⊗ (f̄α − f̄β)〉

As fα is tight and L1 - bounded there exists k ∈ K(G) such that ‖(1 − k)(fα −
fβ)‖1 < ε ∀α ∈ I; thus the second of the three terms can be handled in the following

way:

|〈σρ, k(fα − fβ)⊗ (1− k)(f̄α − f̄β)〉| =∣∣∣∣∫
G

∫
G

hρ(x, y)k(x)(fα(x)− fβ(x))dx(1− k(y))(f̄α(y)− f̄β(y))dy

∣∣∣∣ ≤
≤
∫
G

∫
G

‖hρ‖∞|k(x)(fα(x)− fβ(x))|dx|(1− k(y))(f̄α(y)− f̄β(y))|dy ≤
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≤
∫
G

‖hρ‖∞C|(1− k(y))(f̄α(y)− f̄β(y))|dy

and the last integral can be made arbitrarily small by suitable choice of k above

independent of α and β. The third term can be treated in the same way as the

second. As the first term converges to 0 if fα is vaguely convergent it follows that

‖ρ(fα)− ρ(fβ)‖H tends to zero and this implies that (ρ(fα))α∈I is a Cauchy net in

the norm topology.

b) As any measure in M(G) can be represented as the w∗-limit of a bounded,

tight net of functions in S0, the density of {ρ(f), f ∈ S0(G)} in H implies the

existence of an uniquely determined element denoted by ρ̃(µ) ∈ H , such that

(ρ̃(µ)|ρ(g)) := limα(ρ(fα)|ρ(g)) ∀ g ∈ S0(G); the notation is justified because

it is independent from the choice of the net (fα) with limα fα = µ. This can be

seen using the proof of part a with two different L1-bounded, tight nets with the same

vague limit.

Now we show the continuity of ρ̃ : Let (µβ)β∈J be a bounded and tight net

in M(G),w∗-convergent with limit µ; ∀U := U(k1, k2, . . . , kn, ε) ∈ U, ki ∈
S0(G) ∃ f(U,β) ∈ S0(G) that the following holds:

|〈µβ, ki〉 − 〈f(U,β), ki〉| < ε/2 ∀ i = 1 . . . n, ∀ β
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and |〈µβ, ki〉 − 〈µ, ki〉| < ε/2 ∀ β > β0

it follows that |〈µ, ki〉 − 〈f(U,β), ki〉| < ε ∀ i = 1 . . . n ∀ β > β0

We have shown: (f(U,β)) is a w∗-convergent, L1 - bounded, tight net with limit µ and

f(U,β) ∈ S0(G) , for any U ∈ U ; part a implies that ρ(f(U,β)) converges in norm

and the limit is called ρ̃(µ) according to the above definition. Due to the construction

of f(U,β) it is easy to see that ρ̃(µβ) converges to ρ̃(µ) as well and this shows the

σ - norm continuity of ρ̃ on bounded, tight subsets. Furthermore, this implies the

norm-norm continuity and thus the boundedness of the mapping ρ̃ follows.

c) The continuity of ρG follows from the σ-norm continuity of ρ̃ on tight subsets.

The boundedness of ρG follows from the fact that ρ̃ is bounded with respect to ‖.‖M
together with ‖δx‖M = 1 ∀ x ∈ G.

Let (fα)α∈I be tight, L1 - bounded and vaguely convergent with limit δ0 (i.e. a

generalized ”Dirac sequence” ), then the following completes the proof of part c:

h(x, y) =

∫
G×G

h(t)(δx ⊗ δy)dt = lim
α
〈h, Lxfα ⊗ Lyfα〉 =

= lim
α
〈σρ, Lxfα ⊗ Lyfα〉 = (ρ̃(δx)|ρ̃(δ̄y)) = (ρ̃(δx)|ρ̃(δy))
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d) The estimate h(x, y) = (ρ1(x)|ρ1(y)) = ‖ρ1(x)‖H‖ρ1(y)‖H ≤ c2 proves that

h is bounded. The continuity of h results from the continuity of ρ1 and of the inner

product.

With the help of vector - valued integration we can define:

(
ρ̃1(µ)|l

)
:=

∫
G

(ρ1(x)|l)dµ for l ∈ H and µ ∈M(G);

In view of the Riesz representation theorem ρ̃1(µ) is a well defined element of H, as

|(ρ̃1(µ)|l)| ≤ c‖µ‖M‖l‖H. The last inequality implies ‖ρ̃1(µ)‖H ≤ c‖µ‖M and

thus the boundedness of ρ̃1 with respect to ‖.‖M .

To prove the σ-norm continuity we take a bounded, tight w∗-convergent net µα in

M(G) with limit µ. As the mapping x 7→ (ρ1(x)|l) is continuous and bounded for

any l ∈ H and µα is tight we get:

lim
α

(ρ̃1(µα)|l) = lim
α

∫
G

(ρ1(x)|l)dµα =

∫
G

(ρ1(x)|l)dµ = (ρ̃1(µ)|l)

which shows the σ − σ continuity of ρ̃1. The convergence of ‖ρ̃1(µα)‖ is shown by
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the following equality

lim
α

(ρ̃1(µα)|ρ̃1(µα)) = lim
α

∫
G

∫
G

(ρ1(x)|ρ1(y))dµαdµα =

=

∫
G

∫
G

(ρ1(x)|ρ1(y))dµdµ = ‖ρ̃1(µ)‖2

which is true as (ρ1(x)|ρ1(y)) is continuous and bounded and µα is w∗-convergent,

bounded and tight. The last result together with the σ-norm continuity of ρ̃1 imply the

σ-norm continuity we aimed at.

We get the required GSP by restriction to S0(G): ρ := ρ̃1|S0
.

It remains to be shown that h(x, y) = (ρ1(x)|ρ1(y)) represents the covariance

distribution σρ of ρ. This follows from the identity

〈σρ, f ⊗ g〉 =
(
ρ(f)|ρ(ḡ)

)
=

=

∫
G

(ρ1(x)|ρ(ḡ))f(x)dx =

∫
G

∫
G

g(y)(ρ1(x)|ρ1(y))dyf(x)dx

=

∫
G

∫
G

h(x, y)f(x)g(y)dxdy = 〈h, f ⊗ g〉 for f, g ∈ S0(G).
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Remark: As any measure in M(G) can be represented as the w∗-limit of a bounded

tight net of functions in S0 or of discrete measures the σ-norm continuity of the

mappings ρ̃ and ρ̃1 on tight, bounded subsets implies the uniqueness of these extensions

from S0(G) or G to M(G). Therefore Theorem 10 describes a bijective identification

between continuous bounded stochastic processes and GSPs with continuous bounded

covariance.

Corollary 11: Let ρ be a V-bounded GSP:

a) It follows that ρ can be identified with an uniquely determined stochastic process

b) It follows that ρ extends to M(G) and ρ̂ to F(M(G)); therefore

ρ(µ) = ρ̂(h) if µ̂ = ȟ, and in particular: ρ(δx) = ρ̂(χx)

Proof: Corollary 5 says: ρ V-bounded ⇔ σ̂ρ extends to a bimeasure; the Fourier

transform of a bimeasure being a bounded, continuous function (cf. [10] Theorem 2.4i

and Definition 2.1) the corollary follows from Theorem 10.

Remark: The formula ρ(δx) = ρ̂(χx) in Corollary 11.b can be seen as an alternative

formulation of the ”representation theorem of V-bounded stochastic processes as Fourier
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transforms of stochastic measures”. That it is actually equivalent to Niemi’s formulation

in [14], p. 35, will become clear by Proposition 12.

The two preceding theorems show the strong relations between GSPs and stochastic

processes. Together with the conditions stated above the concepts are even equivalent.

From this point of view it is possible to see aspects of the classical theory in a new

light and to apply mathematical methods to stochastic processes in a new way. This

new point of view leads of course to new and in many cases short and clear proofs of

classical theorems. The theorems stated in the previous chapter were proven for GSPs.

If we add the presupposition that the covariance distribution σρ is represented by a

bounded, continuous function all facts are proved for stochastic processes as well, as it

is obvious that the definitions of certain properties for GSPs and stochastic processes

are the same. We will use this considerations in the sequel to prove some results on

V-bounded and harmonizable stochastic processes in a new way.

The following proposition compares GSPs and vector measures as defined by Niemi (cf.

[14] p. 15), that are (with respect to the inductive limit topology) continuous and linear

mappings µ : K(G) 7→ H. Since K(G) and S0(G) are not related by inclusions no

general comparison is possible but the following holds:
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Proposition 12: Under the assumption of boundedness or V-boundedness the concepts

of vector measures and GSPs are equivalent.

Proof: Because of the definition of boundedness and V-boundedness it is obvious, that

a bounded GSP extends to a bounded linear mapping from C0(G). V-bounded ones

extend to bounded linear mappings on F(C0(Ĝ)). Since K(G) as well as S0(G) are

dense in these spaces the equivalence of both concepts follows.

Remark: The concept of stationary GSPs is more general than that of stationary vector

measures (cf. [11]).

6. Harmonizable Generalized Stochastic Processes

For GSPs it is also possible to define generalizations of the concept of stationarity. The

first of the two different concepts is the concept of V-boundedness (cf. Definition 4.b)

which was first introduced by Bochner (cf. [1] p. 18). Using Corollary 11.a it is obvious,

that any V-bounded GSP can be identified with a V-bounded stochastic process.

Remark: According to [17] p.315, Theorem 4.2 our definition of V-boundedness for

GSPs (with values in a Hilbert space) is equivalent to weak harmonizability as defined

for the first time in [20].
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The following definition corresponds to the definition given in [14] p. 35 for stochastic

processes:

Definition 9 : A GSP is called (strongly) harmonizable⇐⇒

σ̂ρ can be identified with a bounded measure.

Proposition 13: Let ρ be a GSP with covariance σρ:

a) ρ harmonizable ⇐⇒ σρ lies in the Fourier-Stieltjes algebra B(G × G) :=

F(M(Ĝ× Ĝ));

σρ = hρ(x, y) = 〈ν, χ̄x ⊗ χ̄y〉 ∀ x, y ∈ G and ν ∈M(Ĝ× Ĝ)

b) ρ harmonizable =⇒ ρ V-bounded;

c) For stationary GSP ρ:

ρ harmonizable⇐⇒ ρ V-bounded

Proof: a) hρ element of the Fourier-Stieltjes algebra⇔

σ̂ρ bounded measure on Ĝ× Ĝ⇔ ρ harmonizable .
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b) ρ harmonizable ⇒ σ̂ρ extends to a bounded measure (that is a bounded mapping

on C0(G × G)) ⇒ σ̂ρ defines a bimeasure which implies by Corollary 5 that ρ is

V-bounded.

c) (⇒) This has been shown already in part b.

(⇐) Let ρ be a stationary V-bounded GSP. It follows that ρ̂ is bounded and orthogonally

scattered. Corollary 2 shows that there exists a bounded measure µρ̂ on Ĝ with:

〈σρ̂, f ⊗ g〉 = 〈µρ̂, fg〉 . Therefore we can identify µρ̂ (as a measure on the diagonal

∆Ĝ) with σρ̂ which is therefore a bounded measure. Thus ρ is harmonizable.

Remark: As the Fourier-Stieltjes algebra is a subset of Cb Proposition 13.a together

with Theorem 10 show that any harmonizable GSP can be identified with a (strongly)

harmonizable stochastic process, the converse is trivial.

Since there are stationary GSPs having a covariance distribution which cannot be

identified with a continuous function it is obvious that a stationary GSP need not be

harmonizable or V-bounded. But if we add the continuity of σρ we get:
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Proposition 14: Let ρ be a GSP with covariance σρ:

ρ stationary, σρ ∈ Cb
(G×G) =⇒ ρ harmonizable .

Proof: ρ stationary and σρ ∈ Cb imply (cf. Theorem 7) that σρ can be identified with

a continuous positive definite function; it follows by Bochner’s theorem (cf. [21] p.19)

that σρ is in the Fourier-Stieltjes algebra B(G×G) := F(M(Ĝ× Ĝ)) .

Corollary 15: Let X be a continuous stochastic process:

X stationary =⇒ X harmonizable =⇒ X V-bounded.

Proof: This chain of implications follows from Proposition 13.b and Proposition 14,

remembering that any stationary continuous stochastic process can be identified with a

stationary GSP with σρ ∈ Cb(G×G).

The following theorem (for stochastic processes it was first proved in [14]) states, that

any V-bounded GSP can be approximated by harmonizable ones. This is of interest as

there are GSPs which are V-bounded but not harmonizable. For the proof we need linear

smoothing operators for GSPs which are defined in the same way as for distributions.

Definition 10: Let ρ be a GSP, f ∈ S0(G), k ∈ L1(G), h ∈ A(G) := F
(
L1(Ĝ)

)
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a) hρ(f) := ρ(hf)

b) k ∗ ρ(f) := ρ(ǩ ∗ f)

Remark: Since f 7→ hf and f 7→ k ∗ f define linear and bounded operaters on

S0(G) it follows that hρ and k ∗ ρ define GSPs.

Lemma 16:

Let ρ be a GSP, k ∈ L1(G), h ∈ A(G). Then the following equations hold true:

a) (k ∗ ρ)̂ = k̂ρ̂

b) σhρ = (h⊗ h̄)σρ

c) σk∗ρ = (k ⊗ k̄) ∗ σρ

Proof: The easy calculations are left to the reader.

Theorem 17: For any V-bounded GSP ρ there exists a net
(
ρη
)
η∈E of harmonizable

GSPs such that: σρη(x, y)→ σρ(x, y) for η →∞ uniformly on compact sets.
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Proof: Let (eα)α∈I be a net in S0(G) constituting a tight, L1-bounded approximate

unity for L1(G), and let (uβ)β∈J be a bounded approximate unity for the Fourier

algebra A(G) in S0(G). Then we set ρη := uβ(eα∗ρ), η := (α, β) ∈ E := I×J ;

according to Lemma 16.b and c

σρη = (uβ ⊗ ūβ)[(eα ⊗ ēα) ∗ σρ];

Furthermore dα := eα⊗ ēα is a tight, L1-bounded approximate unit for L1(G×G),

and uβ ⊗ ūβ := vβ is a bounded approximate unit in A(G×G).

Let K be a given subset of G × G . We want to show that σρη converges uniformly

on K. Writing ‖f‖K,∞ := supx∈K |f(x)| , we have to verify that for any ε > 0

∃ η0 such that ‖σρη − σρ‖K,∞ ≤ ε ∀ η ≥ η0;

We can use the following estimate:

‖σρη − σρ‖K,∞ = ‖vβ(dα ∗ σρ)− σρ‖K,∞ ≤

≤ ‖vβ(dα ∗ σρ)− dα ∗ σρ‖K,∞ + ‖dα ∗ σρ − σρ‖K,∞.
It is not difficult to see that the second term of this estimate tends to zero for

α → ∞ and that the first term converges to zero for β → ∞ for arbitrary fixed α
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, which proves the uniform convergence of σρη over K. On the other hand we have

σρη ∈ S0 ∗ S0(G×G) ⊆ S0(G×G) and this implies that σ̂ρη ∈ S0(Ĝ× Ĝ) ⊆
M(Ĝ× Ĝ), showing that ρη is harmonizable ∀ η ∈ E.

Corollary 18: Any continuous V-bounded stochastic process X can be approximated

by harmonizable processes uniformly over compact sets.

Proof: Any continuous V-bounded stochastic process can be identified with a

uniquely determined V-bounded GSP. Now we apply Theorem 17. The approximating

harmonizable GSPs can be identified with harmonizable stochastic processes. The

following holds (cf. the proof of Theorem 10): ρ̃η(δx) = ρ̃(uβ(eα ∗ δx)) =

ρ̃(uβ(Lxeα)→ ρ̃(δx)

uniformly on compact sets by the vague continuity of ρ̃

We conclude this paper with some remarks concerning the dilation theory for GSPs.

As will be shown our setting is also suitable to describe the dilation theorem for

stochastic processes. More precisely, we want to point out that any V-bounded GSP

is the projection of a stationary GSP (that means that there is a stationary dilation).

For stochastic processes this was first shown by H. Niemi in [15] using the main result

of [16]. We will use the invariance of GSPs under the Fourier transform to obtain this

– Typeset by FoilTEX – 32



theorem for GSPs as a direct corollary of the main result of [16]. Due to the theory

we have developed so far the dilation theorem for stationary stochastic processes is

obtained as a corollary as well.

Definition 11: Let H ⊂ H̃ be two Hilbert spaces, ρ a GSP with

{ρ(f) | f ∈ S0(G)}¯ = H

A GSP ρ̃ into H̃ is called a dilation of ρ if :

ρ(f) = P
(
ρ̃(f)

)
∀ f ∈ S0(G),

P denoting the orthogonal projection from H̃ into H.

Theorem 19: For any bounded GSP ρ there exists a dilation ρ̃ into H̃ which is

orthogonally scattered and bounded.

Proof: Due to the equivalence between bounded vector measures and bounded GSPs

(cf. Proposition 12) we may refer to the proof for vector measures which is given in

[16], Theorem 13.
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Corollary 20: Let ρ be a GSP:

ρ V-bounded⇐⇒ ∃ dilation ρ̃ which is V-bounded and stationary .

Proof: (⇒)ρ V-bounded⇒ ρ̂ bounded; Theorem 19 implies ∃ dilation (ρ̂)̃ of ρ̂ which

is bounded and orthogonally scattered; it is easy to see that this implies: ρ̃ := ((ρ̂)̃ )̂ ˇ

which is V-bounded and stationary is dilation of ρ.

(⇐) As ‖ρ(f)‖H ≤ ‖ρ̃(f)‖H̃ ∀ f ∈ S0(G) it is clear that a GSP with a V-bounded

dilation is V-bounded itself.

As any continuous V-bounded stochastic process can be identified with a V-bounded

GSP and vice versa the same result is proved for stochastic processes. Since stationarity

implies V-boundedness for stochastic processes (cf. Corollary 15) the assumption of

V-boundedness on the right hand side can be omitted.

Corollary 21: Let X be a continuous stochastic process, then

X is V-bounded⇐⇒ ∃ stationary dilation of X.
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