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My Personal Background (from AHA to CHA)

• Trained as an abstract harmonic analyst (Advisor Hans Reiter) at the
Univ. of Vienna

• working on function spaces on locally compact groups, distribution theory

• turning to applications (signal processing, image processing), wavelets

• doing numerical work on scattered data approximation, Gabor analysis

• having a keen interest in connecting theory with applications through
efficient numerical algorithms underpinned by theoretical foundations
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OUTLINE of the TALK:

1. Recall the USE and the CONCEPTS of Fourier Analysis

(locally compact Abelian groups OR tempered distributions);

2. Propose the use of a particular BANACH GELFAND TRIPLE;

3. Concepts from time-frequency analysis and in particular from

GABOR ANALYSIS;

4. The numerical challenges of Gabor analysis;

5. The transition from continuous to the finite setting.
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Motivation: Where and How do we need Fourier Analysis?

• At which level of generality (using Riemannian integrals, Lebesgue
integrals, generalized functions)? Which tools?

• We may need it in order to define Sobolev or Bessel potential spaces;

• In which setting should it be explained and in which order? (classical
books start from Fourier series, go then to FT on L1(Rd), FFT, maybe
tempered distributions);

• What is the natural setting: of course LCA groups? (according to
A. Weil); but or practical purposes often “elementary LCA groups”;

• What kind of Fourier Analysis is needed to teach engineers and our
students (impulse response, transfer function, filter, . . . );

Hans G. Feichtinger Conceptual Harmonic Analysis: THE BRIDGE



5

What do we have (?) to teach our students?

The typical VIEW that well trained mathematicians working in the field may
have, is that ideally a STUDENT have to

• learn about Lebesgue integration (to understand Fourier integrals);

• learn about Hilbert spaces and unitary operators;

• learn perhaps about Lp-spaces as Banach spaces;

• learn about topological (nuclear Frechet) spaces like S(Rd);

• learn about tempered distributions;

• learn quasi-measures, to identify TLIS as convolution operators;
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Classical Approach to Fourier Analysis

• Fourier Series (periodic functions), summability methods;

• Fourier Transform on Rd, using Lebesgue integration;

• sometimes: Theory of Almost Periodic Functions;

• Generalized functions, tempered distributions;

• Discrete Fourier transform, FFT (Fast Fourier Transform), e.g. FFTW;

• Abstract (>> Conceptional !)Harmonic Analysis over LCA groups;

• . . . but what are the connections?? What is needed for computations?
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What are our goals when doing Fourier analysis?

• find relevant “harmonic components” in [almost] periodic functions;

• define the Fourier transform (first L1(Rd), then L2(Rd), etc.);

• describe time-invariant linear systems as convolution operators;

• describe such system as Fourier multipliers (via transfer functions);

• deal with (slowly) time-variant channels (communications) ;

• describe changing frequency content (“musical transcription”);

• define operators acting on the spectrogram (e.g. for denoising) or perhaps
pseudo-differential operators using the Wigner distribution;
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CLAIM: What is really needed!

In contrast to all this the CLAIM is that just a bare-bone version of functional
analytic terminology is needed (including basic concepts from Banach space
theory, up to w∗-convergence of sequences and basic operator theory), and
that the concept of Banach Gelfand triples is maybe quite useful for this
purpose. So STUDENTS SHOULD LEARN ABOUT:

• refresh their linear algebra knowledge (ONB, SVD!!!, linear
independence, generating set of vectors), and matrix representations
of linear mappings between finite dimensional vector spaces;

• Banach spaces, bd. operators, dual spaces norm and w∗-convergence;

• about Hilbert spaces, orthonormal bases and unitary operators;

• about frames and Riesz basis (resp. matrices of maximal rank);
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BRANCH 1: A. Weil: LCA groups G is the natural setting!

First of all one has plenty of continuous functions k in Cc(G), i.e. with
compact support on such a “locally compact” group G, and the space
C0(G), the closure of those test functions in

(
Cb(G), ‖ · ‖∞

)
is non-trivial.

It is also clear what Ĝ, namely the group of all continuous (group)
homomorphism from G into the standard group T ( dual group).

Consequently we have (keeping the Riesz-representation theorem in mind)
Mb(G) is well defined as the space of bounded linear functionals on(
C0(G), ‖ · ‖∞

)
. As a dual Banach space it carries two topologies, the

norm topology (usually called the total variation norm on measures) and the
w∗-topology (vague convergence, e.g. used in the central limit theorem).

Among the most simply functionals in Mb(G) the Dirac measures δx, x ∈ G
which send f ∈ C0(G) into f(x). Note that δx → δ0 for x→ 0 only in the
w∗− topology. They are w∗-total in all of Mb(G).

Hans G. Feichtinger Conceptual Harmonic Analysis: THE BRIDGE



10

Now one could start talking about the existence of the (invariant) Haar
measure, L1(G) and L2(G) and the Fourier transform on those spaces.
However I prefer to introduce first convolution and the Fourier-Stieltjes
transform. Obviously we can define translation already now on C0(G) as
well as on Mb(G) (in the usual way, by adjoint action), let us call them Tz.
First of all one has to show (which is not difficult) that there is a
natural identification between the bounded linear operators on C0(G)
which commute with translations, the so-called translation invariant linear
systems and the elements of Mb(G), where we have exact correspondence
between δz ∈Mb(G) and the operator Tz.
Since these operators clearly form a (closed) subalgebra of the operator
algebra on C0(G) it is clear that we can transfer the multiplication of
operators to some natural “multiplication of bounded measures”, which we
call convolution and write ∗. Obviously we have

δx ∗ δy = δx+y.
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Unifying aspect of this view-point

• Basic concepts, like the Haar measure (Lebesgue measure on Rd, the
counting measure on a discrete group) find a common interpretation;

• For any LCA groups there are characters (for mathematicians) or pure
frequencies. They may look differently (e.g. plane waves vs. a pure
sinusoidal tone), but share equal properties;

• Translation invariant operators can be written as convolution operators
(although formulas have a different appearance);

• There is exactly one “Fourier transform”, which is just an orthogonal
change of bases for finite Abelian groups (nicely realized using the FFT!),
but appears to be much more complicated otherwise (by Plancherel’s
theorem it is at least unitary on L2(G)!).
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BRANCH 2: The “usual program”: FT on L1(G),L2(G) etc.

We define
(
L1(G), ‖ · ‖1

)
, the Fourier transform on it (using Lebesgue

integrals), and show - e.g. using classical summability arguments - that the
inversion can be done “somehow”.
Then one goes on to Plancherel’s theorem (by showing the the Fourier
transform is isometric on L1 ∩L2 and applying an approximation argument
for general elements f ∈ L2(G)).
Still the picture is quite a bit “imcomplete” an distorted if you look at it
from the modern time-frequency point of view (the roles of L1(Rd) on the
one side, naturally associated with convolution, has nothing comparable on
the “other” side).
Of course the theory by L. Schwartz, using the space S(Rd) of rapidly
decreasing functions and its dual, S(Rd) (the tempered distributions) give
a more beautiful picture. But if you have seen the complications of the
Schwartz-Bruhat space for LCA groups you will not propagate this approach.
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The classical view on the Fourier Transform

Schw L1

Tempered Distr.

L2

C0

FL1
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From tempered distributions to Banach Gelfand Triples

• Typical questions of (classical and modern) Fourier analysis

• Fourier transforms, convolution, impulse response, transfer function

• The Gelfand triple (S,L2,S ′)(Rd), of Schwartz functions and tempered
distributions; maybe rigged Hilbert spaces;

• The Banach Gelfand Triples (S0,L
2,S0

′)(Rd) and its use;

• various (unitary) Gelfand triple isomorphisms involving (S0,L
2,S0

′)
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Definition 1. A triple (B,H,B′), consisting of a Banach space B, which
is dense in some Hilbert space H, which in turn is contained in B′ is
called a Banach Gelfand triple.

Definition 2. If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then

a linear operator T is called a [unitary] Gelfand triple isomorphism if

1. A is an isomorphism between B1 and B2.

2. A is a [unitary operator resp.] isomorphism between H1 and H2.

3. A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.

The prototype is (`1, `2, `∞). w∗-convergence corresponds to coordinate
convergence in `∞. It can be transferred to “abstract Hilbert spaces” H.
Given any orthonormal basis (hn) one can relate `1 to the set of all elements
f ∈ H which have an absolutely convergent series expansions with respect
to this basis. In fact, in the classical case of H = L2(T), with the usual
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Fourier basis the corresponding spaces are known as Wiener’s A(T). The
dual space is then PM , the space of pseudo-measures = F−1[`∞(Z)].
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Realization of a GT-homomorphism

Very often a Gelfand-Triple homomorphism T can be realized with the help
of some kind of “summability methods”. In the abstract setting this is a
sequence (or more generally a net) An, having the following property:

• each of the operators maps B′1 into B1;

• they are a uniformly bounded family of Gelfand-triple homomorphism on
(B1,H1,B

′
1);

• Anf → f in B1 for any f ∈ B1;

It then follows that the limit T (Anf) exists in H2 respectively in B′2 (in
the w∗-sense) for f ∈ H1 resp. f ∈ B′1 and thus describes concretely the
prolongation to the full Gelfand triple. This continuation is unique due to
the w∗-properties assumed for T (and the w∗-density of B1 in B′1).
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Typical Philosophy

One may think of B1 as a (Banach) space of test functions, consisting of
“decent functions” (continuous and integrable), hence B1

′ is a space of
“generalized functions, containing at least all the Lp-spaces as well as all
the bounded measures, hence in particular finite discrete measures (linear
combinations of Dirac measures).

At the INNER = test function level every “transformation” can be carried
out very much as if one was in the situation of a finite Abelian group, where
sums are convergent, integration order can be interchanged, etc.. At the
INTERMEDIATE level of the Hilbert space one has very often a unitary
mapping, while only the OUTER LAYER allows to really describe what is
going on in the ideal limit case, because instead of unit vectors for the
finite case one has to deal with Dirac measures, which are only found in the
big dual spaces (but not in the Hilbert space!).
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Using the BGTR-approach one can achieve . . .

• a relative simple minded approach to Fourier analysis
(can be motivated by linear algebra);

• results based on standard functional analysis only;

• provide clear rules, based on basic Banach space theory;

• comparison with extensions Q >> R resp. R >> C;

• provide confidence that “generalized functions” really exist;

• provide simple descriptions to the above list of questions!
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Key Players for Time-Frequency Analysis

Time-shifts and Frequency shifts

Txf(t) = f(t− x)
and x, ω, t ∈ Rd

Mωf(t) = e2πiω·tf(t) .
Behavior under Fourier transform

(Txf )̂ = M−xf̂ (Mωf )̂ = Tωf̂

The Short-Time Fourier Transform

Vgf(λ) = Vgf(t, ω) = 〈f,MωTtg〉 = 〈f, π(λ)g〉 = 〈f, gλ〉, λ = (t, ω);
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A Typical Musical STFT
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Some algebra in the background: The Heisenberg group

Weyl commutation relation

TxMω = e−2πix·ωMωTx, (x, ω) ∈ Rd × R̂d.

{MωTx : (x, ω) ∈ Rd × R̂d} is a projective representation of Rd × R̂d on

L2(Rd). Heisenberg group H := {τMωTx : τ ∈ T, (x, ω) ∈ Rd × R̂d}

Schrödinger representation {τMωTx : (x, ω, τ) ∈ H} is a square-
integrable (irreducible) group representation of H on the Hilbert space
L2(Rd). Then the STFT Vgf is a representation coefficient.
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Moyal’s formula or orthogonality relations for STFTs:
Let f1, f2, g1, g2 be in L2(Rd). Then〈

Vg1f1, Vg2f2

〉
L2(R2d)

= 〈f1, f2〉L2(Rd)〈g2, g1〉L2(Rd).

Reconstruction formula
Let g, γ ∈ L2(Rd) with 〈g, γ〉 6= 0. Then for f ∈ L2(Rd) we have

f =
1
〈g, γ〉

∫∫
Rd×R̂d

Vgf(x, ω)π(x, ω)γdxdω.

So typically one chooses γ = g with ‖g‖2 = 1.
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Primer on Gabor analysis: Atomic Viewpoint

D.GABOR’s suggested to replace the continuous integral representation by
a discrete series and still claim that one should have a representation of
arbitrary elements of L2(R)!

Let g ∈ L2(Rd) and Λ a lattice in time-frequency plane Rd × R̂d.

f =
∑
λ∈Λ

a(λ)π(λ)g, for some a = (a(λ))λ∈Λ

is a so-called Gabor expansion of f ∈ L2(Rd) for the Gabor atom g.

1946 - D. Gabor: Λ = Z2 and Gabor atom g(t) = e−πt
2
.
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Examples of finite Gabor families
Signal length n = 240, lattice Λ with 320 = 4/3∗n [ 180 = 3/4∗n] points.
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Gabor analysis over finite Abelian groups

In order to find out, if a given family (π(λ)g) = (gλ)λ∈Λ generates the
space of all signals over the group G, which is either `2(G) or Cn, with
n = #(G). For a long time (for large n, and due to the non-orthogonality
of the family (gλ) this was considered a computationally intensive task.
However again group theoretical considerations can help out. One better
considers the so called frame operator Sg,Λ : x →

∑
Λ〈x, gλ〉gλ, which is

(in the case of a spanning family (gλ) an invertible and positive definite
matrix, but beyond that the commuation relations imply that

π(λ) ◦ S = S ◦ π(λ), λ ∈ Λ.

This implies that the whole problem of inverting S is reduced to the (much
easier) task of finding the dual atom g̃ := S−1(g), or solve the positive
definite system S(h) = g for h, e.g. by the use of conjugate gradients.
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The benefit of having a dual Gabor atom (and duality is a symmetric
relationship because the frame operator induced by t g̃ is just the inverse of
the frame operator!) is that one can use one for analysis and the other for
synthesis as follows:

Seen as a sampling problem, one reconstructs the signal f from the samples
of Vg(f) over Λ by the formula f = S−1S(f) =

∑
λ Vgf(λ)π(λ)g̃.

On the other hand, if one takes the atomic point of view, i.e. if one want to
fulfill Gabor’s wishes by providing in a most efficient ways coefficients for a
given function f in order to write it as an (unconditionally convergent) Gabor
sum, then one will prefer the formula f = S−1S(f) =

∑
λ Vg̃f(λ)π(λ)g.

There is also a symmetric way, of modifying both the analysis and synthesis
operator in order to (by choosing h = S−1/2g)

f =
∑
λ Vhf(λ)π(λ)h =

∑
λ〈f, hλ〉hλ.

This looks very much like an orthonormal expansion (although it is not),
and h is called a tight Gabor atom.
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Gabor atom, with canonical tight and dual Gabor atoms

−200 0 200
0

0.1

0.2

signals

−200 0 200
0

2

4

spectra

−200 0 200
0

0.05
0.1

0.15

−200 0 200

0

2

4

−200 0 200
0

0.05

0.1

0.15

−200 0 200

0
1
2
3

Hans G. Feichtinger Conceptual Harmonic Analysis: THE BRIDGE



30

Introducing S0(Rd) = M1(Rd) := M0
1,1(Rd) (Fei, 1979)

A function in f ∈ L2(Rd) is (by definition) in the subspace S0(Rd) if for
some non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0 := ‖Vgf‖L1 =
∫∫

Rd×R̂d
|Vgf(x, ω)|dxdω <∞.

The space (S0(Rd), ‖ · ‖S0) is a Banach space, for any fixed, non-zero
g ∈ S0(Rd), and different windows g define the same space and equivalent
norms. Since S0(Rd) contains the Schwartz space S(Rd), any Schwartz
function is suitable, but also compactly supported functions having an
integrable Fourier transform (such as a trapezoidal or triangular function)
are suitable windows. Often the Gaussian is used as a window. Note that

Vgf(x, ω) = ̂(f · Txg)(ω), i.e., g localizes f nearx.
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Lemma 1. Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0 = ‖f‖S0.

(2) f̂ ∈ S0(Rd), and ‖f̂‖S0 = ‖f‖S0.

Remark 2. Moreover one can show that S0(Rd) is the smallest non-
trivial Banach spaces with this property, i.e., it is continuously embedded
into any such Banach space. As a formal argument one can use the
continuous inversion formula for the STFT:

f =
∫

Rd× R̂d
Vgf(λ)π(λ)gdλ

which implies

‖f‖B ≤
∫

Rd× R̂d
|Vgf(λ)|‖π(λ)g‖B dλ = ‖g‖B‖f‖S0.
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Basic properties of S0(Rd) resp. S0(G)

THEOREM:

• For any automorphism α of G the mapping f 7→ α∗(f) is an isomorphism
on S0(G); [with (α∗f)(x) = f(α(x))], x ∈ G.

• FS0(G) = S0(Ĝ); (Invariance under the Fourier Transform);

• THS0(G) = S0(G/H); (Integration along subgroups);

• RHS0(G) = S0(H); (Restriction to subgroups);

• S0(G1)⊗̂S0(G2) = S0(G1 ×G2); (tensor product stability).
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Basic properties of S0
′(Rd) resp. S0

′(G)

THEOREM: (Consequences for the dual space S0
′(Rd))

• σ ∈ S ′(Rd) is in S0
′(Rd) if and only if Vgσ is bounded;

• w∗-convergence in S0
′(Rd) ≈ pointwise convergence of Vgσ(λ);

•
(
S0
′(G), ‖ · ‖S0

′
)

is a Banach space with a translation invariant norm;

• S0
′(G) ⊆ S ′(G), i.e. S0

′(G) consists of tempered distributions;

• P (G) ⊆ S0
′(G) ⊆ Q(G); (sits between pseudo- and quasimeasures)

• T (G) = W (G)′ ⊆ S0
′(G); (contains translation bounded measures).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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Basic properties of S0
′(Rd) continued

THEOREM: 〈σ̂, f〉 = 〈σ, f̂〉, for f ∈ S0(Ĝ), σ ∈ S0
′(G)

• defines a Generalized Fourier Transforms, with F(S0
′(G)) = S0

′(Ĝ).

• σ ∈ S0
′(G) is H-periodic, i.e. σ(f) = σ(Thf) for all h ∈ H, iff there

exists σ̇ ∈ S0
′(G/H) such that 〈σ, f〉 = 〈σ, THf〉 .

• S0
′(H) can be identified with a subspace of S0

′(G), the injection iH
being given by

〈iHσ, f〉 := 〈σ,RHf〉.
For σ ∈ S0

′(G) one has σ ∈ iH(S0
′(H)) iff supp(σ) ⊆ H.
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The usefulness of S0(Rd): maximal domain for Poisson

Theorem 1. (Poisson’s formula) For f ∈ S0(Rd) and any discrete
subgroup H of Rd with compact quotient the following holds true: There
is a constant CH > 0 such that∑

h∈H

f(h) = CH
∑
l∈H⊥

f̂(l) (1)

with absolute convergence of the series on both sides.

By duality one can express this situation as the fact that the Comb-
distribution µZd =

∑
k∈Zd δk, as an element of S0

′(Rd) is invariant under
the (generalized) Fourier transform. Sampling corresponds to the mapping
f 7→ f · µZd =

∑
k∈Zd f(k)δk, while it corresponds to convolution with µZd

on the Fourier transform side = periodization along (Zd)⊥ = Zd of the
Fourier transform f̂ . For f ∈ S0(Rd) all this makes perfect sense.
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Regularizing sequences for (S0,L
2,S0

′)

Wiener amalgam convolution and pointwise multiplier results imply that

S0(Rd) · (S0
′(Rd) ∗ S0(Rd)) ⊆ S0(Rd), S0(Rd) ∗ (S0

′(Rd) · S0(Rd)) ⊆ S0(Rd)

e.g. S0(Rd) ∗ S0
′(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊆W (FL1, `∞).

Let now h ∈ FL1(Rd) be given with h(0) = 1. Then the dilated
version hn(t) = h(t/n) are a uniformly bounded family of multipliers
on (S0,L

2,S0
′), tending to the identity operator in a suitable way. Similarly,

the usual Dirac sequences, obtained by compressing a function g ∈ L1(Rd)
with

∫
Rd g(x)dx = 1 are showing a similar behavior: gn(t) = n · g(nt)

Following the above rules the combination of the two procedures, i.e.
product-convolution or convolution-product operators of the form provide
suitable regularizers: Anf = gn ∗ (hn · f) or Bnf = hn · (gn ∗ f).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

The Fourier transform is a prototype of a Gelfand triple isomorphism.
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EX1: The Fourier transform as Gelfand Triple Automorphism

Theorem 2. Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),

(2) F is a unitary map between L2(Rd) and L2(R̂d),

(3) F is a weak∗-weak∗ (and norm-to-norm) continuous isomorphism
between S0

′(Rd) and S0
′(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (2)

is valid for (f, g) ∈ S0(Rd) × S0
′(Rd), or (f, g) ∈ L2(Rd) × L2(Rd) or

other pairings from the Gelfand triple (S0,L
2,S0

′)(Rd).
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The properties of Fourier transform can be expressed by a Gelfand bracket

〈f, g〉(S0,L
2,S0
′) = 〈f̂ , ĝ〉(S0,L

2,S0
′) (3)

which combines the functional brackets of dual pairs of Banach spaces and
of the inner-product for the Hilbert space.

One can characterize the Fourier transform as the uniquely
determined unitary Gelfand triple automorphism of (S0,L

2,S0
′)

which maps pure frequencies into the corresponding Dirac
measures (and vice versa). 1

One could equally require that TF-shifted Gaussians are mapped into FT-
shifted Gaussians, relying on F(MωTxf) = T−ωMx(Ff) and the fact that

Fg0 = g0, with g0(t) = e−π|t|
2
.

1as one would expect in the case of a finite Abelian group.
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EX.2: The Kernel Theorem for general operators in L(S0,S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then

there exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉

for f, g ∈ S0(Rd), where g ⊗ f(x, y) = g(x)f(y).
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EX.2: The Kernel Theorem for general operators in L(S0,S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then

there exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉

for f, g ∈ S0(Rd), where g ⊗ f(x, y) = g(x)f(y).
Formally sometimes one writes by “abuse of language”

Kf(x) =
∫

Rd
k(x, y)f(y)dy

with the understanding that one can define the action of the functional
Kf ∈ S0

′(Rd) as

Kf(g) =
∫

Rd

∫
Rd
k(x, y)f(y)dyg(x)dx =

∫
Rd

∫
Rd
k(x, y)g(x)f(y)dxdy.
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This result is the ”outer shell of the Gelfand triple isomorphism. The
“middle = Hilbert” shell which corresponds to the well-known result that
Hilbert Schmidt operators on L2(Rd) are just those compact operators

which arise as integral operators with L2(R2d)-kernels.

Again the complete picture can again be best expressed by a unitary Gelfand
triple isomorphism. We first describe the innermost shell:

Theorem 4. The classical kernel theorem for Hilbert Schmidt operators
is unitary at the Hilbert spaces level, with 〈T, S〉HS = trace(T ∗ S′) as
scalar product on HS and the usual Hilbert space structure on L2(R2d)
on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if the
corresponding operator K maps S0

′(Rd) into S0(Rd), but not only in
a bounded way, but also continuously from w∗−topology into the norm
topology of S0(Rd).
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Remark: Note that for ”regularizing” kernels in S0(R2d) the usual
identification (recall that the entry of a matrix an,k is the coordinate
number n of the image of the n−th unit vector under that action of the
matrix A = (an,k):

k(x, y) = K(δy)(x) = δx(K(δy).

Note that δy ∈ S0
′(Rd) implies that K(δy) ∈ S0(Rd) by the regularizing

properties of K, hence the pointwise evaluation makes sense.

With this understanding our claim is that the kernel theorem provides
a (unitary) isomorphism between the Gelfand triple (of kernels)
(S0,L

2,S0
′)(R2d) into the Gelfand triple of operator spaces

(L(S0
′,S0),HS,L(S0,S0

′)).
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The Kohn Nirenberg Symbol and Spreading Function

In the setting of a finite group (such as G = Zn) it is easy to show that
the collection of all matrices which are composed of time-frequency shifts
(there are n = #(G) of each sort, so altogether n2 such operators, span
the whole n2-dimensional space Mn of all n × n-matrices. In fact, it is
easy to show that they form an orthonormal basis with respect to the scalar

product introduced by transferring the Euclidean structure of Rn2
back to

these matrices (where it becomes the Frobenius or Hilbert Schmidt scalar
product).

If Kf(x) =
∫

Rd k(x, y)f(y)dy then σ(K) =
∫

Rd k(x, x − y)e−2πiy·ωdy. In
signal analysis σ(K) was introduced by Zadeh and is called the time-varying
transfer function of a system modelled by K.
The nice invariance properties of S0(Rd) and hence of S0

′(Rd) allow for
simple arguments within the context of Banach Gelfand Triples over Rd.
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The spreading symbol as Gelfand Triple mapping

The Kohn-Nirenberg symbol σ(T ) of an operator T (respectively its
symplectic Fourier transform, the spreading distribution η(T ) of T ) can
be obtained from the kernel using some automorphism and a partial Fourier
transform, which again provide unitary Gelfand isomorphisms. In fact, the
symplectic Fourier transform is another unitary Gelfand Triple (involutive)

automorphism of (S0,L
2,S0

′)(Rd × R̂d).
Theorem 5. The correspondence between an operator T with
kernel K from the Banach Gelfand triple (L(S0

′,S0),HS,L(S0,S0
′))

and the corresponding spreading distribution η(T ) = η(K) in
S0
′(R2d) is the uniquely defined Gelfand triple isomorphism between

(L(S0
′,S0),HS,L(S0,S0

′)) and (S0,L
2,S0

′)(Rd × R̂d) mapping the time-
frequency shift My ◦ Tx to δ(x,y), the Dirac at (x, y).
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Kohn-Nirenberg and Spreading Symbols of Operators

· Symmetric coordinate transform: TsF (x, y) = F (x+ y
2, x−

y
2)

· Anti-symmetric coordinate transform: TaF (x, y) = F (x, y − x)

· Reflection: I2F (x, y) = F (x,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

Kohn-Nirenberg correspondence
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1. Let σ be a tempered distribution on Rd then the operator with symbol σ

Kσf(x) =
∫

Rd
σ(x, ω)f̂(ω)e2πix·ωdω

is the pseudodifferential operator with Kohn-Nirenberg symbol σ.

Kσf(x) =
∫

Rd

(∫
Rd
σ(x, ω)e−2πi(y−x)·ωdω

)
f(y)dy

=
∫

Rd
k(x, y)f(y)dy.

2. Formulas for the (integral) kernel k: k = TaF2σ

k(x, y) = F2σ(η, y − x) = F−1
1 σ̂(x, y − x)

= σ̂(η, y − x)e2πiη·xdη.
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3. The spreading representation of the same operator arises from the
identity

Kσf(x) =
∫∫

R2d
σ̂(η, u)MηT−uf(x)dudη.

σ̂ is called the spreading function of the operator Kσ.

If f, g ∈ S(Rd), then the so-called Rihaczek distribution is defined by

R(f, g)(x, ω) = e−2πix·ωf̂(ω)g(x).

and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,R(f, g)〉 = 〈Kσf, g〉

is well-defined and describes a uniquely defined operator from the Schwartz
space S(Rd) into the tempered distributions S ′(Rd).
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Weyl correspondence

1. Let σ be a tempered distribution on Rd then the operator

Lσf(x) =
∫∫

R2d
σ̂(ξ, u)e−πiξ·uf(x)dudξ

is called the pseudodifferential operator with symbol σ. The map
σ 7→ Lσ is called the Weyl transform and σ the Weyl symbol of the
operator Lσ.

Lσf(x) =
∫∫

R2d
σ̂e−πiu·ξT−uMξf(x)dudξ

=
∫

Rd

(∫
Rd
σ̂(ξ, y − x)e−2πiξx+y

2

)
f(y)dy.
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2. Formulas for the kernel k from the KN-symbol: k = T −1
s F−1

2 σ

k(x, y) = F−1
1 σ̂

(x+ y

2
, y − x

)
= F2σ

(x+ y

2
, y − x

)
= F−1

2 σ
(x+ y

2
, y − x

)
= T −1

s F−1
2 σ.

3. 〈Lσf, g〉 = 〈k, g ⊗ f〉. (Weyl operator vs. kernel)

If f, g ∈ S(Rd), then the cross Wigner distribution of f, g is defined by

W (f, g)(x, y) =
∫

Rd
f(x+ t/2)g(x− t/2)e−2πiω·tdt = F2Ts(f ⊗ g)(x, ω).
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and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,W (f, g)〉 = 〈Lσf, g〉

is well-defined and describes a uniquely defined operator Lσ from the
Schwartz space S(Rd) into the tempered distributions S ′(Rd).

(Uσ)(ξ, u) = F−1(eπiu·ξσ̂(ξ, u)).

KUσ = Lσ

describes the connection between the Weyl symbol and the operator kernel.

In all these considerations the Schwartz space S(Rd) can be correctly
replaced by S0(Rd) and the tempered distributions by S0

′(Rd).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

Fourier transform is a prototype of a unitary Gelfand triple isomorphism.
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Examples of Gelfand Triple Isomorphisms

1. The standard Gelfand triple (`1, `2, `∞).

2. The family of orthonormal Wilson bases (obtained from Gabor families
by suitable pairwise linear-combinations of terms with the same absolute
frequency) extends the natural unitary identification of L2(Rd) with `1(I)
to a unitary Banach Gelfand Triple isomorphism between (S0,L

2,S0
′)

and (`1, `2, `∞)(I).

This isomorphism leeds to the observation that essentially the
identification of L(S0,S0

′) boils down to the identification of the bounded
linear mappings from `1(I) to `∞(I), which are of course easily recognized
as `∞(I × I) (the bounded matrices). The fact that tensor products of
1D-Wilson bases gives a characterization of (S0,L

2,S0
′) over R2d then

gives the kernel theorem.
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Automatic Gelfand-triple invertibility

Gröchenig and Leinert have shown (J. Amer. Math. Soc., 2004):
Theorem 6. Assume that for g ∈ S0(Rd) the Gabor frame operator

S : f 7→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd), then it is also invertible on S0(Rd)
and in fact on S0

′(Rd).
In other words: Invertibility at the level of the Hilbert space
automatically !! implies that S is (resp. extends to ) an isomorphism of
the Gelfand triple automorphism for (S0,L

2,S0
′)(Rd).

In a recent paper K. Gröchenig shows among others, that invertibility of S
follows already from a dense range of S(S0(Rd)) in S0(Rd).
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Robustness resulting from those three layers:

In the present situation one has also (in contrast to the “pure Hilbert space
case”) various robustness effects:

1) One has robustness against jitter error. Depending (only) on Λ and
g ∈ S0(Rd) one can find some δ0 > 0 such that the frame property is
preserved (with uniform bounds on the new families) if any point λ ∈ Λ is
not moved more than by a distance of δ0.

2) One even can replace the lattice generated by some non-invertible matrix
Å (applied to Z2d) by some “sufficiently similar matrix B and also preserve
the Gabor frame property (with continuous dependence of the dual Gabor
atom g̃ on the matrix B) (joint work with N. Kaiblinger, Trans. Amer.
Math. Soc.).
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Stability of Gabor Frames with respect to Dilation (F/Kaibl.)

For a subspace X ⊆ L2(Rd) define the set

Fg =
{

(g, L) ∈ X ×GL(R2d) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

}
.

(4)

The set FL2 need not be open (even for good ONBs!). But we have:
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Stability of Gabor Frames with respect to Dilation (F/Kaibl.)

For a subspace X ⊆ L2(Rd) define the set

Fg =
{

(g, L) ∈ X ×GL(R2d) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

}
.

(4)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 7. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).
(ii) (g, L) 7→ g̃ is continuous mapping from FS0(Rd) into S0(Rd).
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Stability of Gabor Frames with respect to Dilation (F/Kaibl.)

For a subspace X ⊆ L2(Rd) define the set

Fg =
{

(g, L) ∈ X ×GL(R2d) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

}
.

(4)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 7. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).
(ii) (g, L) 7→ g̃ is continuous mapping from FS0(Rd) into S0(Rd).

There is an analogous result for the Schwartz space S(Rd).

Corollary 3. (i) The set FS is open in S(Rd)×GL(R2d).
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(ii) The mapping (g, L) 7→ g̃ is continuous from FS into S(Rd).
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On the continuous dependence of dual atoms on the TF-lattice
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Bounded Uniform Partitions of Unity

Definition 3. A bounded family Ψ = (ψn)n∈Zd in a Banach algebra
(A, ‖·‖A) is a regular A-Bounded Uniform Partition of Unity if∑

n∈Zd
ψ(x− n) = 1 for all x ∈ Rd
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BUPUs and Quasi-interpolation

Having such a partition of unity Ψ = (ψn)n∈Zd one can of course apply
dilations (by some factor h > 0) in order to obtain arbitrary fine partitions
of unit, upon replacing each of the functions ψn by ψn,h(x) = ψn(x/h), let
us call this system Ψh. It is easy to check that the so-called spline operators
f 7→ SpΨ, defined by

SpΨ(f)(x) =
∑
n

f(n)ψn(x)

is bounded on S0(Rd), and that Sph := SpΨh
converges uniformly to f for

any f ∈ C0(Rd). But in fact we have

Lemma 4. For any f ∈ S0(Rd) one has: ‖Sphf − f‖S0 → 0 as h→ 0.
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BUPUs and approximation of σ ∈ S0
′(Rd) by discrete measures

We have just seen that the (uniformly bounded) family of operators f → Sph
converges in the strong operator topology to IdS0, therefore its adjoint will
provide a weak-∗ approximation to the identity in S0

′(Rd):
We call these operators DΨ resp. Dh, because they are discretization
operators. It is easy to check that DΨσ(f) := σ(SpΨf) is of the form

DΨ(σ) =
∑
n

σ(ψn)δn.

In this sense we will find that for each σ ∈ S0
′(Rd): σ = limw∗Dhσ. Since

it is also possible to approximate test functions f ∈ S0(Rd) by compactly
supported test functions one finds that the set of finite linear combinations
of Dirac measures µ =

∑
j∈F cjδxj, where F is an arbitrary finite sense, are

w∗−dense in S0
′(Rd).
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Quasi-interpolation and discretization

HGFei/Kaiblinger have shown (J. Approx. Th.) that piecewise linear
interpolation resp. quasi-interpolation (using for example cubic splines), i.e.
operators of the form satisfy

Qhf =
∑
k∈Zd

f(hk)Thkψh

are norm convergent to f ∈ S0(Rd) in the S0-norm.
This is an important step for his work on the approximation of ”continuous
Gabor problems by finite ones” (handled computationally using MATLAB,
for example), a subject which has been driven further to the context of
Gabor Analysis (using code for the determination of dual Gabor atoms over
finite Abelian groups in order to determine approximately solutions to the
continuous question).
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Some idea about frames and frame multipliers

a frame of redundancy 18 in the plane
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F.Weisz

Theorem 1. Suppose that γ ∈ W (L∞, L1)(Rd) and Fx(t) = F (x, t) is
a measurable function. If 1 ≤ p, q ≤ ∞ and (

∫
Rd ‖Fx‖

q
p dx)1/q < ∞

then F (x, t)Txγ(t) is integrable in x over Rd for a.e. t ∈ Rd and∫
Rd FxTxγ dx ∈W (Lp, Lq)(Rd) with∥∥∥∫

Rd
FxTxγ dx

∥∥∥
W (Lp,Lq)

≤ ‖γ‖W (L∞,L1)

(∫
Rd
‖Fx‖qp dx

)1/q

. (5)

Moreover, if 1 ≤ q <∞, then

lim
S→∞

∫
{|x|≤S}

FxTxγ dx =
∫

Rd
FxTxγ dx (6)

in W (Lp, Lq)(Rd) norm.
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Multi-Window Spline-type spaces

Theorem 8. Assume that the set of all Λ−translates of a set of atoms
is a Riesz basis for its closed linear span VΦ,Λ within L2(Rd). If in
addition the family Φ = (ϕ1, ..., ϕk) is in W (C0, `

1), then the family
of dual atoms Φ̂ generating the biorthogonal Riesz basis (TλΦ̃)λ∈Λ also
belongs to W (C0, `

1)∩VΦ,Λ. As a consequence the orthogonal projection
operator in L2(Rd) extends to the full range of Lp-spaces for 1 ≤ p ≤ ∞:

P : f 7→
∑
k∈Λ

〈f, TλΦ̃〉L2TλΦ =: (f ∗ Φ̂∗)(λ)TλΦ. (7)

and defines a bounded projection from Lp onto V p
Φ,Λ,
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Constructive approximation of dual system

Theorem 9. Given the situation of Thm. 8 we have: For every ε > 0
there exists a computable method of finding an approximate version ϕ̃ja
with ‖ϕ̃j − ϕ̃ja‖W < ε, 1 ≤ j ≤ n. Consequently, we can approximate, in
the operator norm, the projection operator as described in (Theorem 8)
by using ϕ̃ja instead of ϕ̃j, in fact uniformly with respect to p ∈ [1,∞].
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THE END!

THANK you for your attention! HGFei

http://www.nuhag.eu
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