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OVERVIEW over this lecture 40 MINUTES

This is a talk about Banach Gelfand Triples

explaining some background in time-frequency analysis

showing some applications in Fourier Analysis

indicating its relevance for numerical applications

and for teaching purposes

OVERALL:

perhaps changing your view on Fourier Analysis
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Calculating with all kind of numbers

The most beautiful equation

e2πi = 1.

It uses the exponential function, with a (purely) imaginary
exponent to get a nice result, more appealing than (the equivalent)

cos(2π) + i ∗ sin(2π) = 0 in C.

But actual computation are done for rational numbers only!! Recall

Q ⊂ R ⊂ C
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency (FFT
algorithms of signals of length N run in Nlog(N) time, for N = 2k ,
due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (1)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (2)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd).
One often speaks of Fourier analysis being the first step, and the
Fourier inversion as a method to build f from the pure frequencies
(we talk of Fourier synthesis).
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd) we have f̂ ∈ C0(Rd) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd));

2 The Fourier transform f on L1(Rd) ∩ L2(Rd) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 Lp-spaces have traditionally a high reputation among
function spaces, but tell us little about f̂ .
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A schematic description of the situation

L1

L2

C0

FL1

the classical Fourier situation
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The situation using Schwartz spaces

Schw L1

Tempered Distr.

L2

C0

FL1
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Complex-valued Functions on the Torus
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projects

Time-Frequency Analysis and Music



projects

The Short-Time Fourier Transform of this Song



Another (Standard) representation of a Musical STFT
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The idea of a “localized Fourier Spectrum”
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The localized Fourier transform (spectrogram)
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Spectral decomposition: variable bandwidth
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STFT of a function of “variable band-width”
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.
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The SO-Banach Gelfand Triple (Rigged Hilbert Space)
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L2([0, 1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S0
′(Rd) onto S0

′(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (3)

is valid for (f , g) ∈ S0(Rd)× S0
′(Rd), and therefore on each level

of the Gelfand triple (S0,L
2,S0

′)(Rd).
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd)
correspond to norm convergence in (L1,L2,L∞)(R2d).
Therefore it is interesting to check what the w∗-convergence looks
like:

Lemma

For any g ∈ S0(Rd) a sequence σn is w∗-convergent to σ0 if and
only the spectrograms Vg (σn) converge uniformly over compact
sets to the spectrogram Vg (σ0).

The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
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A Typical Musical STFT
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The w ∗− topology: dense subfamilies

From the practical point of view this means, that one has to look
at the spectrograms of the sequence σn and verify whether they
look closer and closer the spectrogram of the limit distribution
Vg (σ0) over compact sets.
The approximation of elements from S0

′(Rd) takes place by a
bounded sequence.
Since any Banach-Gelfand triple homomorphism preserves this
property (by definition) one can reduce many problems to
w∗-dense subsets of

(
S0(Rd), ‖ · ‖S0

)
.

Let us look at some concrete examples: Test-functions, finite
discrete measures µ =

∑
i ciδti , trigonometric polynomials

q(t) =
∑

i aie
2πiωi t , or discrete AND periodic measures

(this class is invariant under the generalized Fourier transform
and can be realized computationally using the FFT).
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The w ∗− topology: approximation strategies

How to approximate general distributions by test functions:
Regularization procedures via product convolution operators,
hα(gβ ∗ σ)→ σ or TF-localization operators: multiply the
STFT with a 2D-summability kernel before resynthesis (e.g.
partial sums for Hermite expansion);

how to approximate an L1-Fourier transform by test functions:
and classical summability

how to approximate a test function by a finite disrete
sequence using quasi-interpolation (N. Kaiblinger):
QΨf (x) =

∑
i f (xi )ψi (x).
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Sampling and Periodization
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Adjoint Action on Distributions: Discretization of Mass
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Interesting Consequence for Operators: Kernel Theorem

The Banach Gelfand Triple also appears to be appropriate for a
natural generalization of things we are used to have in the context
of finite dimensional vector spaces.
For example: the analogue of the matrix representation of a linear
mapping from Rn to Rm using a uniquely determined (once the
bases are fixed) m × n-matrix A: Every linear operator from(
S0(Rd), ‖ · ‖S0

)
into (S0

′(Rd), ‖ · ‖S0
′) has a (distributional) kernel

σ ∈ S0
′(R2d).

This is very much in the spirit of Dirac’s calculus!
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The new view on the Fourier Transform
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Ultradistributions and the Fourier Transform
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OUTLOOK on further application areas

teaching of Fourier Analysis to engineers;

treatment of generalized stochastic processes: they are
interpreted as bounded linear mappings from S0(Rd) to some
abstract Hilbert space (of random variables, with expectation
zero);

replacing S(G ) over LCA groups (Schwartz-Bruhat), in a
convenient way;

description of pseudo-differential operators (Kohn-Nirenberg,
Weyl calculus, spreading representation);

numerical approximation of all that, . . .
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more information are found ...

at the NuHAG Web-Page

www.nuhag.eu

see DB+tools >> Talks (for example)
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Afterthoughts

What is the future of Harmonic Analysis?

Is there a place for Abstract Harmonic Analysis?

What is the role of Computational Harmonic Analysis?

Constructive versus realizable methods!
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The classical view of Abstract Harmonic Analysis
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A more INTEGRATED viewpoint
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Application Areas: Mobile Communication
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Mobile Communication 2
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Audio Processing and Gabor Multipliers 1
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Audio Processing and Gabor Multipliers 2
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A generic, high redundancy frame in the plane

a frame of redundancy 18 in the plane
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The action of a corresponding frame multiplier

The effect of a frame multiplier in the plane:
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2D-Gabor Transform
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2D-Gabor Analysis: Test Images
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2D-Gabor Transform: Test-Images 2
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2D-Gabor Transform: Plane Waves

a plane wave
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Image Compression: a Test Image
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