
Modulation Spaces
A quantitative view on the Riemann-Lebesgue Theorem

It is the motivation of this to describe the family of so-called modulation
spaces, introduced by the speaker around 1983. As results from the last 10
years show very clearly these spaces are very well suited for a description of
many problems in the area of time-frequency analysis. By TF-analysis we
understand the analysis of functions and distributions by means of their local
Fourier expansions (Short-Time Fourier Transform with respect to a given
“window”-function, typically a Gaussian kernel).

The original the original definition was modeled in analogy to the char-
acterization of Besov spaces, by replacing the dyadic partitions of unity by
uniform partitions (e.g. integer translates of a given B-spline). The by now
classical family of modulation spaces M s

p,q(R
d) show very similar behaviour

compared to the family of Besov spaces Bs
p,q(R

d), with respect to duality,
interpolation, trace theorem, and the like. Later on an enlarged family of
modulation spaces (sometimes called ultra-modulation spaces) was defined
(in the spirit of coorbit spaces, jointly developed with Gröchenig), simply de-
fined by the membership of the short-time FT in some translation invariant
function space over the so-called time-frequency plane (or phase space).

It will be shown, that modulation spaces are exactly those Banach spaces
of distributions which can be characterized by the Gabor coefficients of their
elements (e.g. belonging to some weighted mixed-norm Lp-spaces). Among
the modulation spaces the Segal algebra S0(R

d) (corresponding to Gabor
coefficients in `1) and its dual (exactly the space of tempered distibutions with
bounded coefficients) appear to be particularly useful, e.g. as a replacement
for the Schwartz space and the space of tempered distributions respectively.
Both spaces are invariant with respect to the Fourier transform, and all the
Lp-spaces contain S0(R

d) and are embedded into S ′
0(R

d). Moreover there is
a kernel theorem, i.e. bounded linear mappings from S0(R

d) to S ′
0(R

d) can
be characterized by a distributional kernel in S ′

0(R
2d).

As time permits also a few consequences for classical questions, such as
the characterization of Fourier multipliers, or the use of summability kernels
will be given. The basic reference is: Feichtinger, H.G.; (M. Krishna, R.
Radha; S. Thangavelu; ed.) Modulation spaces of locally compact Abelian
groups, in Proc. Internat. Conf. on Wavelets and Applications, Allied
Publishers, New Delhi (2003) [Chennai, January 2002] p.1-56.
LINK: http://www.univie.ac.at/NuHAG/NuHAGread/modspa03.pdf
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Riemann-Lebesgue Lemma for functions on the torus:

The Fourier coefficients of an L1-function decay at in-

finity.

Hausdorff-Young is connecting this result with the “ideal”

case, concerning L2-functions: Pareseval’s relationsship

tells us, that the FT is isometric between L2(T) and

`2(Z). Problems with the inversion theorem suggest to

distinguish the elements which have an absolutely conver-

gent Fourier series A(T). Of course one can talk about

the dual space of PM (T) := A(T)′ and call it the space

of pseudo-measures, in order to come up with the follow-

ing observation: The preimage of the triple of Banach

spaces (`1, `2, `∞)(Z) is the triple (A, L2, PM )(T).

The Fourier transform is also well compatible with

duality of spaces so that we can also transfer the fact

that `1(Z) is the dual space of c0(Z) (the null-sequences

over Z) into this picture: by calling F−1(c0) the space of

pseudo-functions, we can claim, that the pseudo-functions,

which are the closure of A(T) within PM (T), whose

dual space is just A(T).

So the Riemann-Lebesgue Lemma is a statement that

L1(T) is contained in the pseudo-functions (as a proper

subspace). Since Lp(T) ⊆ L1(T) for any p ≥ 1 this is

true for general Lp-functions.
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When it comes to general LCA groups, including the

Euclidean case of G = Rd the situation becomes more

involved. In particular, there are no inclusion relations

between the Lp-spaces, and the standard definition of the

Fourier algebra FL1 = F(L1(Rd)) does not help very

much in order to prove the inversion theorem (e.g. in a

pointwise sense), leave alone the validity of Poisson’s for-

mula, for which a number of additional assumptions are

required (i.e. a good combination of decay/smoothness).

The only theorem which is valid is Plancherel’s Theo-

rem, describing the Fourier transform as a unitary map-

ping from L2(Rd) onto itself. The Riemann-Lebesgue

Theorem can be described as Banach algebra homomor-

phism from
(
L1(Rd), ‖ · ‖1

)
into

(
C0(Rd), ‖ · ‖∞

)
, where

the first is of course understood as Banach algbra with

respect to convolution.

Aside from L2(Rd) there is only one other “nice” space

of functions which is invariant under the Fourier trans-

form, namely S(Rd), the Schwartz space of rapidly de-

creasing functions, which gives rise to an extended Fourier

transform for the space S ′(Rd) of tempered distributions.

Obviously this is a highly useful tool in the theory of par-

tial differential equations. Unfortunately is generalization

to LCA groups, to Schwartz-Bruhat space S(G) is not

at all easy to handle or even define.
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I want to explain next that time-frequency analysis

methods, in particular the theory of Gabor expansions,

allows to establish of Banach spaces of functions resp.

tempered distributions which exhibit properties similar

to those for the triple (A, L2, PM )(T).

Since the global Fourier transform is not able to de-

scribe well the local properties of a function one it is

nowadays (“post wavelet area”) natural to make use of

a localized version of the Fourier transform. Indeed, en-

gineers have used the Short-time Fourier Transform ,

also called the Sliding Window Fourier Transform long

before wavelet theory had been discovered, i.e. by 1977.

Although all the results described below can be prop-

erly formulated in the context of locally compact Abelian

groups, especially for Rd, we restrict our attention to R.

Txf (z) := f (z − x)

Msf (z) := e2πis·z · f (z)

π(λ) = π(t, s) := MsTz

The short-time Fourier transform of f ∈ L2(R) with

respect to some window g ∈ L2(R) is defined as the

following correlation function of λ ∈ R× R̂:

Vgf (λ) = 〈f, π(λg)〉
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It would be natural to make use - similar to the basis

or “pure frequencies” in the case of T which has tow pa-

rameters, one for the time, the other for the frequency.

Although there is a simple way of creating such an or-

thonormal basis for L2(R) by restricting f ∈ L2(R) to

the sequence of intervals. This corresponds to an ortho-

normal system of the form π(n,m)b, where b is the box

function or indicator function for [0, 1], and (n, m) runs

through the Neumann lattice Z× Z.

Unfortunately not even a test function will have - in

general - well decaying coefficients with respect to such an

orthonormal system, because jumps between the left and

the right end of the interval prohibit that the restriction

of the test function belongs to A(T).

According to the Balian-Low theorem it is not possible

at all to find a function which would at the same time al-

low to characterize the usual test functions by well decay-

ing coefficients and at the same time forming a complete

ONB for L2(R). The wish (following D. Gabor, 1946) of

having an ONB of the form π(n,m)g and the request of

completeness in L2(R) are not compatible!

It has turned out in the last 20 years that one can have

a very good understanding of so-called Gabor (Banach)

frames, which are redundant, i.e. do not lead to unique

coefficients for functions to be represented.
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Let us discuss these Banach frames by way of a par-

ticular example: We fix a pair of lattice constants (a, b)

with ab < 1, and consider Gabor systems arising from

the specific Gabor atom g = g0, the Gaussian function,

given by g0(t) = e−πt2. It is invariant with respect to

the Fourier transform and has the extra advantage of be-

ing optimally concentrated in a TF-sense, expressed by

achieving equality in the Heisenberg uncertainty relation.

The Gaussian Gabor family generated by the

triple (g0, a, b) is then given as

gn,m := π(an, bm)g0, n, m ∈ Z.

It is well known by know that for any such family (in-

dependent of the particular choice of (a, b)), is a frame

for the Hilbert space L2(R), in particular there exists

C = C(a, b, ) and a linear mapping from L2(R) into(
`2(Z2), ‖ · ‖2

)
, f 7→ c = c(f ) such ‖c‖2 ≤ C‖f‖2 and

f =
∑
Z×Z

cn,mgn,m.

c is the minimal norm solution to the problem. Given

this situation it is natural to ask what the functions are

for which this series is absolutely convergent. Obviously

these functions belong to any Banach space containing g0

and for which the opertors π(λ) are all isometric, such as

all the Lp-spaces.
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Let us give the following definition:

S0(R) = {f ∈ L2(R), c ∈ `1(Z× Z)},
endowed with the norm ‖f‖S0(R) := ‖c‖`1(Z×Z).

Then it is already clear that S0(R) is a Banach space,

continuously embedded into Lp(R) for any p ≥ 1. More-

over, it is easy to verify that F(S0(R)) = S0(R), if we

have a = b.

From this definition it is not clear why the space should

not depend on the lattice constants (a, b), and why the

space should have an equivalent norm for which it is iso-

metrically invariant under the operators π(λ), λ ∈ R× Rd.

This follows from an early result in the area which

expresses the norm on S0(R) using the STFT:

THEOREM: f ∈ S0(R) if and only if Vg0f ∈ L1(R× Rd).

Moreover, for any (a, b) with ab < 1 the discrete norm

as defined above is equivalent to the “continuous” norm

‖f‖S0(R) := ‖Vg0f‖L1(R×Rd).

The minimality and the various invariance properties

of this space (described as the “minimal TF-invariant Se-

gal algebra” by the author in 1979) makes this Banach

space an ideal substitute for the Schwartz space S(R).

Since the coefficient mapping extends to S ′(R) the fol-

lowing characterization is of interest: σ ∈ S′
0(R) if and

only if it has a representation with c ∈ `∞(Z× Z).
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It is helpful to introduce the notion of a Gelfand Triple:

A Banach space (B, ‖ · ‖B) which is continuously and

densely embedded into some Hilbert space H gives raise

to the Gelfand triple (B,H, B′). Note that one has w∗-

density of H in B′.

A homomorphism of Banach Gelfand triples is a

bounded linear mapping, which maps the dual spaces

into each other, but also the intermediate Hilbert space

and the underlying Banach spaces, and if it is continuous

with respect to the corresponding norm topologies as well

as w∗ − w∗-continuous on the dual spaces. It is called

a unitary homomorphism if it is unitary at the Hilbert

space level.

In this sense there is a larger picture to the situa-

tion described above: The mapping f 7→ c is a right

inverse to the synthesis mapping c 7→
∑

Z×Z cn,mgn,m,

but it extends from the Hilbert space setting to a retract

between the Gelfand triples (S0(R), L2(R), S′
0(R)) and

(`1, `2, `∞)(Z× Z).

Another statement describes the Fourier transform:

THEOREM: F defines a unitary Gelfand triple auto-

morphism on the Gelfand triple (S0(R), L2(R), S′
0(R)).

It is the unique GT-isomorphism mapping the “pure fre-

quecies” x 7→ exp(2πisx) into the Dirac measures δs.
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The triple (S0(R), L2(R), S′
0(R)) is also a suitable tool

to establish the so-called kernel theorem. Before doing so

let us recall that the standard Hilbert space theory allows

to identify L2(R2d) with the Hilbert Schmidt operators

on L2(Rd) in a standard way. In the S0-setting this uni-

tary mapping extends to a (L(S′
0, S0),HS,L(S0, S

′
0)).

Hence we have:

THEOREM: The kernel theorem establishes a unitary

Gelfand triple isomorphism between (S0, L
2, S′

0)(R) and

(L(S′
0, S0),HS,L(S0, S

′
0)).

For the case of a kernel in S0 one can find the “kernel”

exactly as one finds the entries of a matrix (by applying

the matrix to a unit vector): K(x, y) = T (δy)(x) (which

is well defined because δy ∈ S′
0(R) and its image un-

der T belongs to S0(R) (which is a space of continuous

functions).

Another principe is the Kohn-Nirenberg representation

of (pseudo-) differntial operators, or the spreading repre-

sentation: in the finite case one can write every n × n

matrix as a linear combination of matrices representing

(cyclic) TF-shifts.

THEOREM: The spreading mapping is a unitary Gelfand

triple isomorphism of (S0, L
2, S′

0)(R) into itself which is

uniquely determined by the fact that it maps the kernel

of the TF-shift operators π(λ) onto δλ for any λ ∈ R×R.
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There are various types of more general modulation

spaces, which can all be characterized by the behavior

of the STFT (with respect to some Schwartz window g)

of their elements (so they provide an alternative descrip-

tion for the standard Sobolev spaces in terms of Gabor

expansions).

The classes M s
p,q(R) (introduced around 1983) are mod-

elled after the corresponding family of Besov (and Triebel-

Lizorkin) spaces. They show similar properties, but they

coincide with their Besov counterparts only for the case

p = q = 2.

One can show duality and interpolation results for this

family of spaces, and even a trace theorem is true, with

the same loss of smoothness as in the case of Besov spaces.

There is an interesting alternative approach using ra-

dial symmetric weights of polynomial type. Especially

interesting are the spaces characterized b a weighted Lp-

condition on their STFTs. These spaces. These spaces

are invariant with respect to the Fourier transform but

also under the whole metaplectic group (e.g. fractional

Fourier transforms as well). For the case p = 2 these

spaces can be completely characterized via weighted `2-

conditions on their coefficients with respect to the classi-

cal Hermite orthonormal basis.
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