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OVERVIEW over this lecture 28 MINUTES

The classical view on the Fourier transform, using
L1(Rd),L2(Rd),S(Rd),S ′(Rd);

Present some reflections concerning the (generalized) Fourier
transform;

Offer some hints concerning the Banach Gelfand Triple
based on the Segal algebar S0(Rd);

Define Standard Spaces and show their richness;

Indicate a number of constructions within this family of space;

Present a number of images of function spaces;
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A variety of function spaces
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The classical view on the Fourier Transform
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The classical view on the Fourier Transform
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The classical view on the Fourier Transform
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How and where do we our calculations

All the actual computations are done in Q, e.g. using finite
decimal expressions, think of multiplications of fractions!

The real number R have the advantage of being a complete
metric spaces, this allows us to define numbers such as

√
2.

Still we cannot solve quadratic equations, and by the miracle
of adding the imaginary unit (i.e. introduce new objects: pairs
of real numbers with a new multiplication!) one has an even
more comprehensive field;

IMPORTANT: each time one has a natural embedding of the
smaller field within the larger object (e.g. convert fractions
into periodic infinite decimal expressions);
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A Typical Musical STFT
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The idea of a “localized Fourier Spectrum”
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The localized Fourier transform (spectrogram)
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Definition of the Segal algebra
(
S0(Rd ), ‖ · ‖S0

)
A continuous, integrable function f on Rd belongs to Feichtinger’s
algebra S0(Rd), if its short-time Fourier transform

Vg f (x , ω) :=

∫
R2d

f (t) g(t − x) e−2πi ω tdt, x , ω ∈ Rd ,

is integrable, where g(t) := e−π|t|
2

is the Gaussian window. Here,
|t| is the Euclidean norm. The S0-norm is given by

‖f ‖S0 :=

∫
R2d

|Vg f (x , ω)| dx dω.

For various useful characterizations of S0 and its significance in
time-frequency analysis,
The Segal algebra S0(Rd) is also described as the Wiener amalgam
space W(FL1, `1), where the local norm is the Fourier algebra
norm. In particular, the compactly supported functions in FL1 and
in S0(Rd) are the same.
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Intersection of Weighted L2-spaces with Sobolev
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Describing the Fourier Transform

At the level of
(
S0(Rd), ‖ · ‖S0

)
the Fourier transform and! it’s

inverse are well defined integral transformation, even Poisson’s
formula is strictly valid;

At the level of
(
L2(Rd), ‖ · ‖2

)
one can express the fact that

F is unitary mapping, preserving orthogonality and “energy”;

At the distributional level one can characterize the linear
mapping which maps “pure frequencies” (in L∞ ⊂ S0′(Rd)) to
the corresponding Dirac measures;
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The kernel theorem (despite lack of nuclearity!)

(
S0(Rd), ‖ · ‖S0

)
is a ptw. and convolutive algebra, invariant

under the Fourier transform;

The so-called tensor product property of
(
S0(Rd), ‖ · ‖S0

)
allows to prove a so-called kernel theorem: Every linear
operator from

(
S0(Rd), ‖ · ‖S0

)
into SORdPN can be uniquely

represented by a distributional kernel from S0′(R2d);

The integral operator is regularizing, i.e. mapping
w∗−-convergent sequences in (S0′(Rd), ‖ · ‖S0′) into norm
convergent sequences in

(
S0(Rd), ‖ · ‖S0

)
if and only if it is in

S0(R2d).

In between these two extremes one has: An operator is a
Hilbert Schmidt operator on

(
L2(Rd), ‖ · ‖2

)
if and only if its

kernel is in L2(R2d).
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Regularizing Operators

There are lots of regularizing operators:

Any product-convolution operator (with a pointwise multiplier
h ∈ SORd and a convolutive kernel g ∈ S0(Rd) is also
regularizing in the above sense.

For f ∈ SORdN the action of Dirac kernel (compression of

some g ∈
(
L1(Rd), ‖ · ‖1

)
with (̂g) = 1 is approaching the

identity operator;

Dilation of a function h ∈ FL1(Rd) (with h(0) = 1) is giving
a pointwise-approximate identity by (ordinary) dilation.

Finite partial sums of Gabor expansions are another very
useful class of regularizing operators tending to the identity
operator (on S0′(Rd) only in the w∗−topology).
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Relative Completion and Minimal Space

(
S0(Rd), ‖ · ‖S0

)
is the smallest Banach space of functions

which is isometrically invariant under time-frequency shifts
(and containing at least on non-zero Schwartz function);

(S0′(Rd), ‖ · ‖S0′) is thus correspondingly the biggest space of
(tempered) distributions which is isometrically invariant under
time-frequency shifts

We call [restricted] standard spaces Banach space
(
B ‖ · ‖B

)
betwenn S0(Rd) and S0′(Rd), which are also pointwise
modules over

(
FL1(Rd), ‖ · ‖FL1

)
and convolutive modules

under
(
L1(Rd), ‖ · ‖1

)
.
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Relative Completion and Minimal Space

For every standard space the closure of the test-function space
S0(Rd) in

(
B ‖ · ‖B

)
is again a standard space; If this is the B

itself it is called “minimal”; It’s dual space is in the same class
as well;

For every standard space
(
B ‖ · ‖B

)
there is a relative

completion of
(
B ‖ · ‖B

)
within S0′(Rd): on denotes by B̃ the

Banach space of all limits of w∗-convergent, bounded
sequences from

(
B ‖ · ‖B

)
, with the infimum over all

admissible norms of approximating sequences as natural norm.
This is the largest space containing

(
B ‖ · ‖B

)
as subspace

with the same norm

every such “‘maximal” is the dual space of some minimal
space.
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Relative Completion and Minimal Space

A standard Banach space
(
B ‖ · ‖B

)
is reflexive if and only it

is minimal as well as maximal, and its dual has the same
property!

Given a standard space its Fourier image is a standard space
as well;

for every pair of standard spaces the set of all operator kernels
mapping one into the other is again a standard space (on
R2d);

For any two standard spaces the set of pointwise multipliers
from one into the other is either trivial or a standard space as
well; same for convolution kernels;

for any standard space the Wiener amalgam space
W(B, `p) is again a standard space;
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The setting of Ultradistributions
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For pseudo-differential operators: Shubin Classes
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The END

All the BEST to Stevan!!
Thanks for going ahead.
and
Thank you for your attention

Material will become downloadable at www.nuhag.eu:

DB+tools >> talks resp. the conference Web-page.
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