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OVERVIEW over this lecture 28 MINUTES

@ The classical view on the Fourier transform, using
Ll(Rd)v LZ(Rd)a S(Rd)7 S/(Rd);

@ Present some reflections concerning the (generalized) Fourier
transform:

@ Offer some hints concerning the Banach Gelfand Triple
based on the Segal algebar So(RY);

@ Define Standard Spaces and show their richness;
@ Indicate a number of constructions within this family of space;

@ Present a number of images of function spaces;
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A variety of function spaces

L? spaces L" spaces L™ space
Sy space Wiener algebra Fourier algebra
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The classical view on the Fourier Transform
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The classical view on the Fourier Transform
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The classical view on the Fourier Transform
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The classical view on the Fourier Transform
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How and where do we our calculations

@ All the actual computations are done in Q, e.g. using finite
decimal expressions, think of multiplications of fractions!

@ The real number R have the advantage of being a complete
metric spaces, this allows us to define numbers such as v/2.

@ Still we cannot solve quadratic equations, and by the miracle
of adding the imaginary unit (i.e. introduce new objects: pairs
of real numbers with a new multiplication!) one has an even
more comprehensive field;

@ IMPORTANT: each time one has a natural embedding of the
smaller field within the larger object (e.g. convert fraction
into periodic infinite decimal expressions);
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A Typical Musical STFT

Beethoven Sonata
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The idea of a “localized Fourier Spectrum”

partition of unity
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The localized Fourier transform (spectrogram)
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Definition of the Segal algebra (So(R9), || - [|s, )

A continuous, integrable function f on R? belongs to Feichtinger’s
algebra So(RY), if its short-time Fourier transform

Vef(x,w) = f(t)g(t — x) e 2™ wtdt, x,w € RY,
R2d
is integrable, where g(t) := e It is the Gaussian window. Here,
|t] is the Euclidean norm. The Sy-norm is given by

I flls ::/ |Vgf(x,w)| dx dw.
R2d

For various useful characterizations of § and its significance in
time-frequency analysis,

The Segal algebra So(R9) is also described as the Wiener amalf
space W(]-'Ll,fl), where the local norm is the Fourier algebra
norm. In particular, the compactly supported functions in FL*
in So(RY) are the same.
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Intersection of Weighted L2-spaces with Sobolev
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Describing the Fourier Transform

o At the level of (So(R9), || -||s,) the Fourier transform and! it's
inverse are well defined integral transformation, even Poisson’s
formula is strictly valid;

@ At the level of (L2(]Rd), || - [l2) one can express the fact that
Fis unitary mapping, preserving orthogonality and “energy”;

@ At the distributional level one can characterize the linear
mapping which maps “pure frequencies” (in L= C SJ(RY)) to
the corresponding Dirac measures;
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The kernel theorem (despite lack of nuclearity!)

o (So(RY), || |ls,) is a ptw. and convolutive algebra, invariant
under the Fourier transform;

The so-called tensor product property of (So(R9), || ||s)
allows to prove a so-called kernel theorem: Every linear
operator from (So(R9), || - [|s,) into SORdPN can be uniquely
represented by a distributional kernel from Sq(R2“);

The integral operator is regularizing, i.e. mapping
w*—-convergent sequences in (S§(R?), || -||sy) into norm
convergent sequences in (So(R9), || - ||s,) if and only if it is in
So(de).

In between these two extremes one has: An operator is a
Hilbert Schmidt operator on (L*(R9), || - ||2) if and only i
kernel is in L?(IR9).
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Regularizing Operators

There are lots of regularizing operators:

@ Any product-convolution operator (with a pointwise multiplier
h € SORd and a convolutive kernel g € S(R?) is also
regularizing in the above sense.

e For f € SORdN the action of Dirac kernel (compression of
some g € (LY(RY), || -|]1) with Zg) = 1 is approaching the
identity operator;

o Dilation of a function h € FLY}(RY) (with h(0) = 1) is giving
a pointwise-approximate identity by (ordinary) dilation.

@ Finite partial sums of Gabor expansions are another very
useful class of regularizing operators tending to the identi
operator (on S¢(R9) only in the w*—topology).
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Relative Completion and Minimal Space

° (So(Rd), |- |ls,) is the smallest Banach space of functions
which is isometrically invariant under time-frequency shifts
(and containing at least on non-zero Schwartz function);

o (SJ(RY), | - |lsy) is thus correspondingly the biggest space of
(tempered) distributions which is isometrically invariant under
time-frequency shifts

o We call [restricted] standard spaces Banach space (B -|g)
betwenn So(R9) and S¢(RY), which are also pointwise

modules over (FL'(R9), ||+ ||z.1) and convolutive modules
under (Ll(Rd), - 11)-
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Relative Completion and Minimal Space

@ For every standard space the closure of the test-function space
So(R) in (B -||g) is again a standard space; If this is the B
itself it is called “minimal”; It's dual space is in the same class
as well;

o For every standard space (B ||-||g) there is a relative
completion of (B ||-||g) within SJ(R?): on denotes by B the
Banach space of all limits of w*-convergent, bounded
sequences from (B |- [ig), with the infimum over all
admissible norms of approximating sequences as natural norm.
This is the largest space containing (B |- ||B) as subspace
with the same norm

@ every such “‘maximal” is the dual space of some minimal
space.
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Relative Completion and Minimal Space

e A standard Banach space (B||-||g) is reflexive if and only it
is minimal as well as maximal, and its dual has the same
property!

@ Given a standard space its Fourier image is a standard space
as well;

@ for every pair of standard spaces the set of all operator kernels
mapping one into the other is again a standard space (on
R2d)'

@ For any two standard spaces the set of pointwise multipliers
from one into the other is either trivial or a standard space as
well; same for convolution kernels;

for any standard space the Wiener amalgam space
W(B, ¢P) is again a standard space;
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The setting of Ultradistributions

the ultra-distributional setting

Hans G. Feichtinger The Richness of Banach Spaces within a Rigged Hilbert Spac



For pseudo-differential operators: Shubin Classes

Sobolev spaces and weighted L2 spaces and M J spaces

(@)
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The END

All the BEST to Stevan!!

Thanks for going ahead.
and
Thank you for your attention

Material will become downloadable at www.nuhag.eu:
DB+tools >> talks resp. the conference Web-page.
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