The Richness of Banach Spaces within a Rigged Hilbert Space resp.: Banach Gelfand Triple

> Hans G. Feichtinger hans.feichtinger@univie.ac.at www.nuhag.eu

GFSE2010 Novi Sad, June 5-th 2010 Honoring Stevan Pilipovic 60th anniversary

OVERVIEW over this lecture 28 MINUTES

- The *classical view* on the **Fourier transform**, using $\mathsf{L}^1(\mathbb{R}^d),\mathsf{L}^2(\mathbb{R}^d),\mathcal{S}(\mathbb{R}^d),\mathcal{S}'(\mathbb{R}^d);$
- **•** Present some reflections concerning the (generalized) Fourier transform;
- Offer some hints concerning the **Banach Gelfand Triple** based on the Segal algebar $\mathsf{S}_0(\mathbb{R}^d)$;
- Define Standard Spaces and show their richness;
- Indicate a number of constructions within this family of space;
- Present a number of images of function spaces;

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

A variety of function spaces

Hans G. Feichtinger The Richness of Banach Spaces within a Rigged Hilbert Space

NuH_W

 290

 290

 290

How and where do we our calculations

- All the actual computations are done in Q, e.g. using finite decimal expressions, think of multiplications of fractions!
- \bullet The real number $\mathbb R$ have the advantage of being a complete The real number is have the advantage of being a *complete* metric spaces, this allows us to *define* numbers such as $\sqrt{2}$.
- Still we cannot solve quadratic equations, and by the miracle of adding the imaginary unit (i.e. introduce new objects: pairs of real numbers with a new multiplication!) one has an even more comprehensive field;
- IMPORTANT: each time one has a natural embedding of the smaller field within the larger object (e.g. convert fractions into periodic infinite decimal expressions);

④目的 ④目的

A Typical Musical STFT

The idea of a "localized Fourier Spectrum"

The localized Fourier transform (spectrogram)

Definition of the Segal algebra $\left(\mathsf{S}_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}_0}\right)$

A continuous, integrable function f on \mathbb{R}^d belongs to Feichtinger's algebra $\mathsf{S}_0(\mathbb{R}^d)$, if its short-time Fourier transform

$$
V_g f(x,\omega) := \int_{\mathbb{R}^{2d}} f(t) \, \overline{g(t-x)} \, e^{-2\pi i \, \omega \, t} dt, \qquad x,\omega \in \mathbb{R}^d,
$$

is integrable, where $g(t):=e^{-\pi |t|^2}$ is the Gaussian window. Here, $|t|$ is the Euclidean norm. The S_0 -norm is given by

$$
||f||_{\mathbf{S}_0} := \int_{\mathbb{R}^{2d}} |V_{g} f(x, \omega)| dx d\omega.
$$

For various useful characterizations of $S₀$ and its significance in time-frequency analysis,

The Segal algebra $\mathsf{S}_0(\mathbb{R}^d)$ is also described as the Wiener amal<mark>gam</mark> space $\mathsf{W}(\mathcal{F}\mathsf{L}^1,\ell^1)$, where the local norm is the Fourier algebra norm. In particular, the compactly supported functions in $\mathcal{F}\mathsf{L}^1$ a in $\mathsf{S}_{\!0}(\mathbb{R}^d)$ are the same.

Intersection of Weighted L2-spaces with Sobolev

- At the level of $(\mathsf{S}_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}_0})$ the Fourier transform and! it's inverse are well defined integral transformation, even Poisson's formula is strictly valid;
- At the level of $(\mathsf{L}^2(\mathbb{R}^d),\|\cdot\|_2)$ one can express the fact that $\mathcal F$ is unitary mapping, preserving orthogonality and "energy";
- At the distributional level one can characterize the linear mapping which maps "pure frequencies" (in $\mathsf{L}^\infty \subset \mathsf{S}^\prime_0(\mathbb{R}^d)$) to the corresponding Dirac measures;

 \rightarrow \equiv \rightarrow

The kernel theorem (despite lack of nuclearity!)

- $\left(\textbf{S}_0(\mathbb{R}^d),\|\cdot\|_{\textbf{S}_0}\right)$ is a ptw. and convolutive algebra, invariant under the Fourier transform;
- The so-called tensor product property of $(\mathsf{S}_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}_0})$ allows to prove a so-called kernel theorem: Every linear operator from $\big(\mathsf{S}\xspace_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}\xspace_0}\big)$ into SORdPN can be uniquely represented by a distributional kernel from $\mathsf{S}'_0(\mathbb{R}^{2d})$;
- The integral operator is *regularizing*, i.e. mapping w^* —-convergent sequences in $(\mathsf{S}'_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}'_0})$ into norm convergent sequences in $(\mathsf{S}_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}_0})$ if and only if it is in $\mathsf{S}_{0}(\mathbb{R}^{2d}).$
- In between these two extremes one has: An operator is a Hilbert Schmidt operator on $(\mathsf{L}^2(\mathbb{R}^d),\|\cdot\|_2)$ if and only if its kernel is in $\mathsf{L}^2(\mathbb{R}^{2d})$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

There are lots of regularizing operators:

- Any product-convolution operator (with a pointwise multiplier $h\in \mathit{SORd}$ and a convolutive kernel $g\in \mathsf{S}_0(\mathbb R^d)$ is also regularizing in the above sense.
- For $f \in \text{SORdN}$ the action of Dirac kernel (compression of some $g\in \left(\mathsf{L}^1(\mathbb{R}^d),\,\|\cdot\|_1\right)$ with $\hat(\mathcal{g})=1$ is approaching the identity operator;
- Dilation of a function $h \in \mathcal{F} \mathsf{L}^1(\mathbb{R}^d)$ (with $h(0) = 1$) is giving a pointwise-approximate identity by (ordinary) dilation.
- Finite partial sums of Gabor expansions are another very useful class of regularizing operators tending to the identit operator (on $\mathsf{S}'_0(\mathbb{R}^d)$ only in the $w^*{-}$ topology).

メロメ メ御 メメ ミメ メミメ

へのへ

Relative Completion and Minimal Space

- $\left(\textbf{S}_0(\mathbb{R}^d),\|\cdot\|_{\textbf{S}_0}\right)$ is the smallest Banach space of functions which is isometrically invariant under time-frequency shifts (and containing at least on non-zero Schwartz function);
- $(\mathsf{S}'_0(\mathbb{R}^d),\|\cdot\|_{\mathsf{S}_0'})$ is thus correspondingly the biggest space of (tempered) distributions which is isometrically invariant under time-frequency shifts
- We call *[restricted] standard spaces* Banach space $(\mathbf{B} \, \| \cdot \|_{\mathbf{B}})$ betwenn $\mathsf{S}_0(\mathbb R^d)$ and $\mathsf{S}'_0(\mathbb R^d)$, which are also pointwise modules over $\bigl(\mathcal{F} \mathsf{L}^1(\mathbb{R}^d),\, \|\cdot\|_{\mathcal{F}\mathsf{L}^1}\bigr)$ and convolutive modules under $(L^1(\mathbb{R}^d), \|\cdot\|_1)$.

A + + = + + = +

Relative Completion and Minimal Space

- For every standard space the closure of the test-function space $\mathsf{S}_{\!0}(\mathbb{R}^d)$ in $\big(\mathsf{B}\, \|\cdot\|_{\mathsf{B}}\big)$ is again a standard space; If this is the B itself it is called "minimal"; It's dual space is in the same class as well;
- For every standard space $\left(\mathbf{B} \, \| \cdot \|_{\mathbf{B}} \right)$ there is a *relative completion* of $(\mathbf{B} \|\cdot\|_{\mathbf{B}})$ within $\mathbf{S}'_0(\mathbb{R}^d)$: on denotes by $\widetilde{\mathbf{B}}$ the Banach space of all limits of w^* -convergent, bounded sequences from $(\mathsf{B} \, \| \cdot \|_{\mathsf{B}})$, with the infimum over all admissible norms of approximating sequences as natural norm. This is the largest space containing $(\mathbf{B} \, \| \cdot \|_{\mathbf{B}})$ as subspace with the same norm
- every such "'maximal" is the dual space of some minimal space.

Relative Completion and Minimal Space

- A standard Banach space $(\mathsf{B}\,\|\cdot\|_{\mathsf{B}})$ is reflexive if and only it is minimal as well as maximal, and its dual has the same property!
- Given a standard space its Fourier image is a standard space as well;
- **•** for every pair of standard spaces the set of all operator kernels mapping one into the other is again a standard space (on \mathbb{R}^{2d});
- For any two standard spaces the set of pointwise multipliers from one into the other is either trivial or a standard space as well; same for convolution kernels;
- **•** for any standard space the Wiener amalgam space $W(B, \ell^p)$ is again a standard space;

 \rightarrow \equiv \rightarrow

The setting of Ultradistributions

the ultra-distributional setting $L1$ Έ⊔i

Ξ

 \leftarrow \Box \rightarrow Hans G. Feichtinger The Richness of Banach Spaces within a Rigged Hilbert Space

×. A \sim ∍ × €

For pseudo-differential operators: Shubin Classes

Hans G. Feichtinger The Richness of Banach Spaces within a Rigged Hilbert Space

 $2Q$

BIBLIOGRAPHY

暈 W. Braun and H. G. Feichtinger. Banach spaces of distributions having two module structures. J. Funct. Anal., 51:174–212, 1983.

H. Feichtinger. 品

> Banach Gelfand triples for applications in physics and engineering.

volume 1146 of AIP Conf. Proc., pages 189–228. Amer. Inst. Phys., 2009.

- F
	- H. G. Feichtinger. On a new Segal algebra.

Monatsh. Math., 92:269–289, 1981.

H. G. Feichtinger and T. Strohmer. Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston, 1998. \rightarrow \pm \rightarrow ik Birth

 Ω

All the BEST to Stevan!! Thanks for going ahead. and Thank you for your attention

Material will become downloadable at www.nuhag.eu: $DB + tools$ \geq talks resp. the conference Web-page.

