The Richness of Banach Spaces within a Rigged Hilbert Space resp.: Banach Gelfand Triple

> Hans G. Feichtinger hans.feichtinger@univie.ac.at www.nuhag.eu

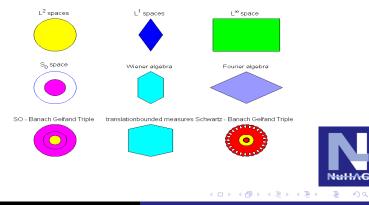
GFSE2010 Novi Sad, June 5-th 2010 Honoring Stevan Pilipovic 60th anniversary

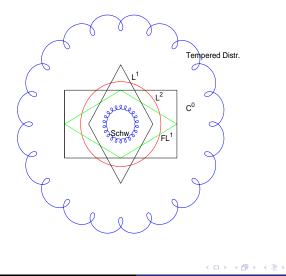
Hans G. Feichtinger hans.feichtinger@univie.ac.at www.m The Richness of Banach Spaces within a Rigged Hilbert Space

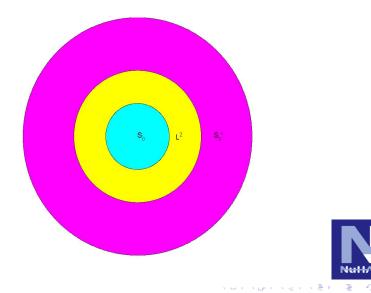
OVERVIEW over this lecture 28 MINUTES

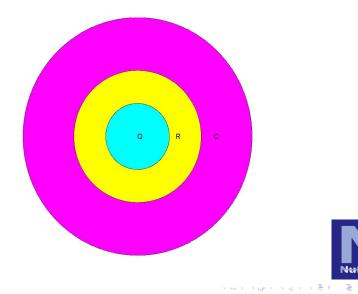
- The *classical view* on the **Fourier transform**, using $L^1(\mathbb{R}^d), L^2(\mathbb{R}^d), \mathcal{S}(\mathbb{R}^d), \mathcal{S}'(\mathbb{R}^d);$
- Present some reflections concerning the (generalized) Fourier transform;
- Offer some hints concerning the Banach Gelfand Triple based on the Segal algebar S₀(R^d);
- Define Standard Spaces and show their richness;
- Indicate a number of constructions within this family of space;
- Present a number of images of function spaces;

A variety of function spaces







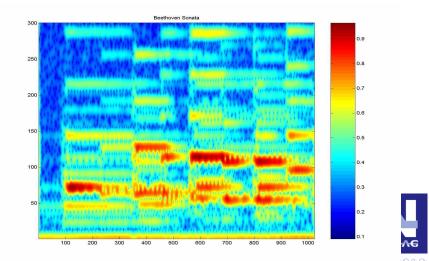


How and where do we our calculations

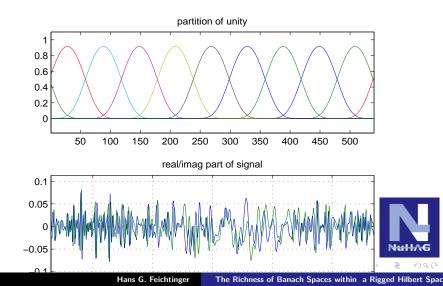
- All the actual computations are done in Q, e.g. using finite decimal expressions, think of multiplications of fractions!
- The real number ℝ have the advantage of being a complete metric spaces, this allows us to define numbers such as √2.
- Still we cannot solve quadratic equations, and by the miracle of adding the *imaginary unit* (i.e. introduce new objects: pairs of real numbers with a new multiplication!) one has an even more comprehensive field;
- IMPORTANT: each time one has a natural embedding of the smaller field within the larger object (e.g. convert fractions into periodic infinite decimal expressions);

(< ≥) < ≥)</p>

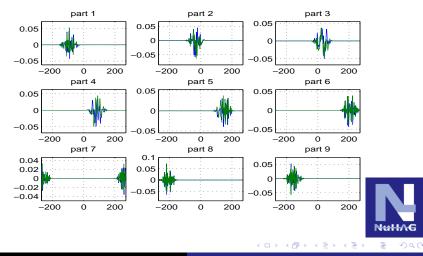
A Typical Musical STFT



The idea of a "localized Fourier Spectrum"



The localized Fourier transform (spectrogram)



Definition of the Segal algebra $(\mathbf{S}_0(\mathbb{R}^d), \|\cdot\|_{\mathbf{S}_0})$

A continuous, integrable function f on \mathbb{R}^d belongs to Feichtinger's algebra $\mathbf{S}_0(\mathbb{R}^d)$, if its short-time Fourier transform

$$V_g f(x,\omega) := \int_{\mathbb{R}^{2d}} f(t) \,\overline{g(t-x)} \, e^{-2\pi i \, \omega \, t} dt, \qquad x, \omega \in \mathbb{R}^d,$$

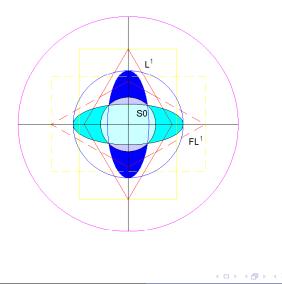
is integrable, where $g(t) := e^{-\pi |t|^2}$ is the Gaussian window. Here, |t| is the Euclidean norm. The **S**₀-norm is given by

$$\|f\|_{\mathbf{S}_0} := \int_{\mathbb{R}^{2d}} |V_g f(x,\omega)| \, dx \, d\omega.$$

For various useful characterizations of $\boldsymbol{S}_{\!0}$ and its significance in time-frequency analysis,

The Segal algebra $\mathbf{S}_0(\mathbb{R}^d)$ is also described as the Wiener amalgam space $\mathbf{W}(\mathcal{F}\mathbf{L}^1, \ell^1)$, where the local norm is the Fourier algebra norm. In particular, the compactly supported functions in $\mathcal{F}\mathbf{L}^1$ and in $\mathbf{S}_0(\mathbb{R}^d)$ are the same.

Intersection of Weighted L2-spaces with Sobolev



3

- At the level of (S₀(ℝ^d), || · ||_{S₀}) the Fourier transform and! it's inverse are well defined integral transformation, even Poisson's formula is strictly valid;
- At the level of (L²(ℝ^d), || · ||₂) one can express the fact that *F* is *unitary mapping*, preserving orthogonality and "energy";
- At the distributional level one can characterize the linear mapping which maps "pure frequencies" (in L[∞] ⊂ S₀'(ℝ^d)) to the corresponding Dirac measures;

The kernel theorem (despite lack of nuclearity!)

- $(S_0(\mathbb{R}^d), \|\cdot\|_{S_0})$ is a ptw. and convolutive algebra, invariant under the Fourier transform;
- The so-called tensor product property of $(\mathbf{S}_0(\mathbb{R}^d), \|\cdot\|_{\mathbf{S}_0})$ allows to prove a so-called kernel theorem: Every linear operator from $(\mathbf{S}_0(\mathbb{R}^d), \|\cdot\|_{\mathbf{S}_0})$ into *SORdPN* can be uniquely represented by a distributional kernel from $\mathbf{S}_0'(\mathbb{R}^{2d})$;
- The integral operator is *regularizing*, i.e. mapping w^* --convergent sequences in $(\mathbf{S}_0'(\mathbb{R}^d), \|\cdot\|_{\mathbf{S}_0'})$ into norm convergent sequences in $(\mathbf{S}_0(\mathbb{R}^d), \|\cdot\|_{\mathbf{S}_0})$ if and only if it is in $\mathbf{S}_0(\mathbb{R}^{2d})$.
- In between these two extremes one has: An operator is a Hilbert Schmidt operator on (L²(ℝ^d), || · ||₂) if and only if its kernel is in L²(ℝ^{2d}).

(4月) (1日) (日)

There are lots of regularizing operators:

- Any product-convolution operator (with a pointwise multiplier h ∈ SORd and a convolutive kernel g ∈ S₀(ℝ^d) is also regularizing in the above sense.
- For f ∈ SORdN the action of Dirac kernel (compression of some g ∈ (L¹(ℝ^d), || · ||₁) with (g) = 1 is approaching the identity operator;
- Dilation of a function h ∈ FL¹(ℝ^d) (with h(0) = 1) is giving a pointwise-approximate identity by (ordinary) dilation.
- Finite partial sums of Gabor expansions are another very useful class of regularizing operators tending to the identity operator (on S₀'(ℝ^d) only in the w^{*}−topology).

- 4 回 2 - 4 □ 2 - 4 □

Relative Completion and Minimal Space

- (S₀(ℝ^d), || · ||_{S₀}) is the *smallest* Banach space of functions which is isometrically invariant under time-frequency shifts (and containing at least on non-zero Schwartz function);
- (S₀'(ℝ^d), || · ||_{S₀}) is thus correspondingly the biggest space of (tempered) distributions which is isometrically invariant under time-frequency shifts
- We call *[restricted]* standard spaces Banach space $(\mathbf{B} \| \cdot \|_{\mathbf{B}})$ betwenn $\mathbf{S}_0(\mathbb{R}^d)$ and $\mathbf{S}_0'(\mathbb{R}^d)$, which are also pointwise modules over $(\mathcal{F}\mathbf{L}^1(\mathbb{R}^d), \| \cdot \|_{\mathcal{F}\mathbf{L}^1})$ and convolutive modules under $(\mathbf{L}^1(\mathbb{R}^d), \| \cdot \|_1)$.

通 ト イヨ ト イヨト

Relative Completion and Minimal Space

- For every standard space the closure of the test-function space $S_0(\mathbb{R}^d)$ in $\left(B \, \|\cdot\|_B\right)$ is again a standard space; If this is the B itself it is called "minimal"; It's dual space is in the same class as well;
- For every standard space $(\mathbf{B} \| \cdot \|_{\mathbf{B}})$ there is a *relative* completion of $(\mathbf{B} \| \cdot \|_{\mathbf{B}})$ within $\mathbf{S}_0'(\mathbb{R}^d)$: on denotes by $\widetilde{\mathbf{B}}$ the Banach space of all limits of w^* -convergent, bounded sequences from $(\mathbf{B} \| \cdot \|_{\mathbf{B}})$, with the infimum over all admissible norms of approximating sequences as natural norm. This is the largest space containing $(\mathbf{B} \| \cdot \|_{\mathbf{B}})$ as subspace with the same norm
- every such "'maximal" is the dual space of some minimal space.

Relative Completion and Minimal Space

- A standard Banach space $(\mathbf{B} \parallel \cdot \parallel_{\mathbf{B}})$ is reflexive if and only it is minimal as well as maximal, and its dual has the same property!
- Given a standard space its Fourier image is a standard space as well;
- For any two standard spaces the set of pointwise multipliers from one into the other is either trivial or a standard space as well; same for convolution kernels;
- for any standard space the Wiener amalgam space
 W(B, ℓ^p) is again a standard space;

通 と く ヨ と く ヨ と

The setting of Ultradistributions

the ultra-distributional setting L1 FЦ

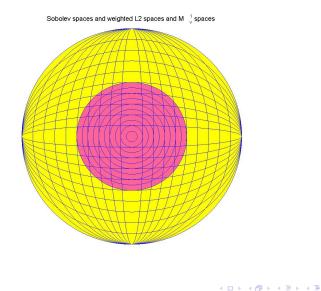
Hans G. Feichtinger The Richness of Banach Spaces within a Rigged Hilbert Space

< ≣ >

A ■

э

For pseudo-differential operators: Shubin Classes



BIBLIOGRAPHY

W. Braun and H. G. Feichtinger.
 Banach spaces of distributions having two module structures.
 J. Funct. Anal., 51:174-212, 1983.

📔 H. Feichtinger.

Banach Gelfand triples for applications in physics and engineering.

volume 1146 of *AIP Conf. Proc.*, pages 189–228. Amer. Inst. Phys., 2009.

H. G. Feichtinger.

On a new Segal algebra.

Monatsh. Math., 92:269-289, 1981.

H. G. Feichtinger and T. Strohmer.
 Gabor Analysis and Algorithms. Theory and Applications.
 Birkhäuser, Boston, 1998.

Hans G. Feichtinger

The Richness of Banach Spaces within a Rigged Hilbert Space

All the BEST to Stevan!! Thanks for going ahead. and Thank you for your attention

Material will become downloadable at **www.nuhag.eu: DB+tools** >> **talks** resp. the conference Web-page.

3 ×