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OVERVIEW

The GOAL of this presentation is to convey the
concepts of modulation spaces, Banach frames and
Banach Gelfand Triples by describing them and show
their usefulness in the context of mathematical
analysis, in particular time-frequency analysis

Recall some concepts from linear algebra, especially that of a
generating system, a linear independent set of vectors, and
that of the dual vector space;

already in the context of Hilbert spaces the question arises:
what is a correct generalization of these concepts?

Banach Gelfand Triple (comparable to rigged Hilbert
spaces) are one way out;
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... there is an implicit message:

Aside from the various technical terms coming up I hope to convey
implicitly a few other messages:

staying with Banach spaces and their duals one can do
amazing things (without touching the full theory of
topological vector spaces, Lebesgue integration, or usual
distribution theory);

alongside with the norm topology just the very natural
w∗-topology, just in the form of pointwise convergence of
functionals, for the dual space has to be kept in mind
(allowing thus among other to handle non-reflexive Banach
spaces);

diagrams and operator descriptions allow to naturally
generalize concepts from finite dimensional theory up to the
category of Banach Gelfand triples.
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:

Hans G. Feichtinger A BANACH GELFAND TRIPLE Prototypical for Modulation Spaces and their use in time-frequency analysis



compared to musical score ...
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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The Schrödinger Representation

For people in representation theory I could explain the spectrogram
is just displaying to you a typical representation coefficient of the
(projective) Schrödinger Representation of the (reduced)
Heisenberg Group Hd (for d = 1).
According to Roger Howe this group has the phantastic “hinduistic
multiplicity in one” property of allowing a variety of different
looking but in fact mathematically equivalent representations (due
to the von-Neumann uniqueness theorem), which indicates the
connection to quantum mechanics, the theory of coherent states,
and related topics (where e.g. rigged Hilbert spaces, the bras and
kets appear already), where concepts as described below are in fact
also helpful (to put expressions such as continuous integral
representations on a firm mathematical ground); but we will start
from known grounds...
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
@@R

T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Matrices of maximal rank

We will be mostly interested (as models for Banach Frames and
Riesz projection bases) in the situation of matrices of maximal
ranks, i.e. in the situation where r = rank(A) = max(m, n), where
A = (a1, · · · , ak).
Then either the synthesis mapping x 7→ A ∗ x =

∑
k xkak has

trivial kernel (i.e. the column vectors of A are a
linear independent set, spanning the column-space of which is of
dimension r = n), or the analysis mapping y 7→ A′ ∗ y = (〈y , ak〉)
has trivial kernel, hence the column spaces equals the target space
(or r = m), or the column vectors are a spanning set for Rm.
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............... continued

For Riesz basic sequences we have the following diagram:

X

X0 Y-C
�

R

P

?

@
@
@
@@R

C

Definition

A sequence (hk) in a separable Hilbert space H is a Riesz basis for
its closed linear span (sometimes also called a Riesz basic
sequence) if for two constants 0 < D1 ≤ D2 <∞,

D1‖c‖2
`2 ≤

∥∥∥∑
k

ckhk

∥∥∥2

H
≤ D2‖c‖2

`2 , ∀c ∈ `2 (1)

A detail description of the concept of Riesz basis can be found in
([?]) where the more general concept of Riesz projection bases is
explained.
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Reflect also for a moment about daily actions:

We are calculating with all kind of numbers in our daily life. But
just recall the most beautiful equation

e2πi = 1.

It uses the exponential function, with a (purely) imaginary
exponent to get a nice result, more appealing than (the equivalent)

cos(2π) + i ∗ sin(2π) = 1 in C.

But actual computation are done for rational numbers only!! Recall

Q ⊂ R ⊂ C
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Existing examples of Gelfand Triples

So-called Gelfand Triples are already widely used in various fields of
analysis. The prototypical example in the theory of PDE is
certainly the Schwartz Gelfand triple, consisting of the space of
test functions S(Rd) of rapidly decreasing functions, densely
sitting inside of

(
L2(Rd), ‖ · ‖2

)
, which in turn is embedded into

the space of tempered distributions S ′(Rd).

S(Rd) ↪→ L2(Rd) ↪→ S ′(Rd). (2)

Alternatively (e.g. for elliptic PDE) one used

Hs(Rd) ↪→ L2(Rd) ↪→ H′s(Rd). (3)

It is obtained via the Fourier transform form

L2
w (Rd) ↪→ L2(Rd) ↪→ L2

w (Rd)
′
. (4)
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What is a generating set in a Hilbert space

We teach in our linear algebra courses that the following properties
are equivalent for a set of vectors (fi )i∈I in V:

1 The only vector perpendicular to a set of vectors is ∅;
2 Every v ∈ V is a linear combination of these vectors.

An attempt to transfer these ideas to the setting of Hilbert spaces
one comes up with several different generalizations:

a family is total if its linear combinations are dense;

a family is a frame if there is a bounded linear mapping from
H into `2(I ) f 7→ c = c(f ) = (ci )i∈I such that

f =
∑
i∈I

ci fi ∀f ∈ H. (5)

Hans G. Feichtinger A BANACH GELFAND TRIPLE Prototypical for Modulation Spaces and their use in time-frequency analysis



The usual definition of frames

There is another, equivalent characterization of frames. First, it is
an obvious consequence of the characterization given above, that

f =
∑
i∈I

ci fi ∀f ∈ H. (6)

implies that there exists C ,D > 0 such that

C‖f ‖2 ≤
∑
i∈I
|〈f , fi 〉|2 ≤ D‖f ‖2 ∀f ∈ H. (7)

For the converse observe that Sf :=
∑

i∈I 〈f , fi 〉fi is a strictly

positive definite operator and the dual frame (f̃i ) satisfies

f =
∑
i∈I
〈f , f̃i 〉fi =

∑
i∈I
〈f , fi 〉f̃i
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Dennis Gabor’s suggestion of 1946

There is one very interesting example (the prototypical problem
going back to D. Gabor, 1946): Consider the family of all
time-frequency shifted copies of a standard Gauss function
g0(t) = e−π|t|

2
(which is invariant under the Fourier transform),

and shifted along Z (Tnf (z) = f (z − n)) and shifted also in time
along Z (the modulation operator is given by
Mkh(z) = χk(z) · h(z), where χk(z) = e2πikz).
Although D. Gabor gave some heuristic arguments suggesting to
expand every signal from L2(R) in a unique way into a (double)
series of such “Gabor atoms”, a deeper mathematical analysis
shows that we have the following problems (the basic analysis
has been undertaken e.g. by A.J.E.M. Janssen in the early 80s):
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TF-shifted Gaussians: Gabor families
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Problems with the original suggestion

Even if one allows to replace the time shifts from along Z by
time-shifts along aZ and accordingly frequency shifts along bZ one
faces the following problems:

1 for a · b = 1 (in particular a = 1 = b) one finds a total subset,
which is not a frame nor Riesz-basis for L2(R), which is
redundant in the sense: after removing one element it is still
total in L2(R), while it is not total anymore after removal of
more than one such element;

2 for a · b > 1 one does not have anymore totalness, but a Riesz
basic sequence for its closed linear span ( $ L2(R));

3 for a · b < 1 one finds that the corresponding Gabor
family is a Gabor frame: it is a redundant family
allowing to expand f ∈ L2(R) using `2-coefficients (but
one can remove infinitely many elements and still have
this property!);
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Rethinking shortly the Fourier Transform

Since the Fourier transform is one of the central transforms, both
for abstract harmonic analysis, engineering applications and
pseudo-differential operators let us take a look at it first. People
(and books) approach it in different ways and flavours:

It is defined as integral transform (Lebesgue!?);

It is computed using the FFT (what is the connection);

Should engineers learn about tempered distributions?

How can we reconcile mathematical rigor and still stay in
touch with applied people (physics, engineering).
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency
(FFT algorithms of signals of length N run in Nlog(N) time, for
N = 2k , due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (8)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (9)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd). One often speaks of
Fourier analysis followed by Fourier inversion as a method to
build f from the pure frequencies ( Fourier synthesis).
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd) we have f̂ ∈ C0(Rd) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd));

2 The Fourier transform f on L1(Rd) ∩ L2(Rd) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 Lp-spaces have traditionally a high reputation among
function spaces, but tell us little about f̂ .
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A schematic description of the situation

L1

L2

C0

FL1

the classical Fourier situation

Hans G. Feichtinger A BANACH GELFAND TRIPLE Prototypical for Modulation Spaces and their use in time-frequency analysis



A schematic description of the situation

S0
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The way out: Test Functions and Generalized Functions

The usual way out of this problem zone is to introduce generalized
functions. In order to do so one has to introduce test functions,
and give them a reasonable topology (family of seminorms), so
that it makes sense to separate the continuous linear functionals
from the pathological ones. The “good ones” are admitted and
called generalized functions, since most reasonable ordinary
functions can be identified (uniquely) with a generalized function
(much as 5/7 is a complex number!).
If one wants to have Fourier invariance of the space of
distributions, one must Fourier invariance of the space of test
functions (such as S(Rd)). If one wants to have - in addition -
also closedness with respect to differentiation one has to take more
or less S(Rd). BUT THERE IS MORE!
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A schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Banach space
(
S0(Rd ), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd), ‖ · ‖S0

)
or (M1(Rd), ‖ · ‖M1)), which will serve our

purpose. Its dual space (S0
′(Rd), ‖ · ‖S0

′) is correspondingly the
largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd)), we
will restrict ourselves to the situation of Banach Gelfand Triples,
mostly related to (S0,L

2,S0
′)(Rd).
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The S0-Banach Gelfand Triple

 The S
0
 Gelfand triple

S0

S0’

L2
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd )

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L2([0, 1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S0
′(Rd) onto S0

′(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (10)

is valid for (f , g) ∈ S0(Rd)× S0
′(Rd), and therefore on each level

of the Gelfand triple (S0,L
2,S0

′)(Rd).
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FACTS

Gröchenig and Leinert have shown (J. Amer. Math. Soc., 2004):

Theorem

Assume that for g ∈ S0(Rd) the Gabor frame operator

S : f 7→
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd), then it is also invertible on
S0(Rd) and in fact on S0

′(Rd).
In other words: Invertibility at the level of the Hilbert space
automatically !! implies that S is (resp. extends to ) an
isomorphism of the Gelfand triple automorphism for
(S0,L

2,S0
′)(Rd).
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd)
correspond to norm convergence in (L1,L2,L∞)(R2d).
The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
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Fames and Riesz Bases: the Diagram

P = C ◦R is a projection in Y onto the range Y0 of C, thus we
have the following commutative diagram.

Y

X Y0-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces:

`2(I )

H C(H)-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces (S0,L
2,S0

′):

(`1, `2, `∞)

(S0,L
2,S0

′) C((S0,L
2,S0

′))-
C

� R ?

P

�
�

�
��	

R

Hans G. Feichtinger A BANACH GELFAND TRIPLE Prototypical for Modulation Spaces and their use in time-frequency analysis



Verbal Description of the Situation

Assume that g ∈ S0(Rd) is given and some lattice Λ. Then (g ,Λ)
generates a Gabor frame for H = L2(Rd) if and only if the
coefficient mapping C from (S0,L

2,S0
′)(Rd) into (`1, `2, `∞)(Λ) as

a left inverse R (i.e. R ◦ C = IdH ), which is also a
GTR-homomorphism back from (`1, `2, `∞) to (S0,L

2,S0
′).

In practice it means, that the dual Gabor atom g̃ is also in S0(Rd),
and also the canonical tight atom S−1/2, and therefore the whole
procedure of taking coefficients, perhaps multiplying them with
some sequence (to obtain a Gabor multiplier) and resynthesis is
well defined and a BGT-morphism for any such pair.
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Summability of sequences and quality of operators

One can however also fix the Gabor system, with both analysis and
synthesis window in S0(Rd) (typically one will take g and g̃
respectively, or even more symmetrically a tight Gabor window).
Then one can take the multiplier sequence in different sequence
spaces, e.g. in (`1, `2, `∞)(Λ).

Lemma

Then the mapping from multiplier sequences to Gabor multipliers
is a Banach Gelfand triple homomorphism into Banach Gelfand
triple of operator ideals, consisting of the Schatten classe S1 =
trace class operators, H = HS, the Hilbert Schmidt operators, and
the class of all bounded operators (with the norm and strong
operator topology).
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Automatic continuity (> Balian-Low)

In contrast to the pure Hilbert space case (the box-function is an
ideal orthonormal system on the real line, but does NOT allow for
any deformation, without loosing the property of being even a
Riesz basis):

Theorem (Fei/Kaiblinger, TAMS)

Assume that a pair (g ,Λ), with g ∈ S0(Rd) defines a Gabor frame
or a Gabor Riesz basis respectively [note that by Wexler/Raz and
Ron/Shen these to situations are equivalent modulo taking adjoint
subgroups!], then the same is true for slightly perturbed atoms or
lattices, and the corresponding dual atoms (biorthogonal
generators) depend continuously in the

(
S0(Rd), ‖ · ‖S0

)
-sense on

both parameters.
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Invertibility, Surjectivity and Injectivity

In another, very recent paper, Charly Groechenig has discovered
that there is another analogy to the finite dimensional case: There
one has: A square matrix is invertible if and only if it is surjective
or injective (the other property then follows automatically).
We have a similar situation here (systematically describe in
Charly’s paper):
K.Grchenig: Gabor frames without inequalities, Int.

Math. Res. Not. IMRN, No.23, (2007).
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Matrix-representation and kernels

We know also from linear algebra, that any linear mapping can be
expressed by a matrix (once two bases are fixed). We have a
similar situation through the so-called kernel theorem. It uses
B = L(S0

′,S0).

Theorem

There is a natural BGT-isomorphism between (B,H,B′) and
(S0,L

2,S0
′)(R2d). This in turn is isomorphic via the spreading and

the Kohn-Nirenberg symbol to (S0,L
2,S0

′)(Rd × R̂d). Moreover,
the spreading mapping is uniquely determined as the
BGT-isomorphism, which established a correspondence between
TF-shift operators π(λ) and the corresponding point masses δλ.
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd)
correspond to norm convergence in (L1,L2,L∞)(R2d).
Therefore it is interesting to check what the w∗-convergence looks
like:

Lemma

For any g ∈ S0(Rd) a sequence σn is w∗-convergent to σ0 if and
only the spectrograms Vg (σn) converge uniformly over compact
sets to the spectrogram Vg (σ0).

The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
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The w ∗− topology: dense subfamilies

From the practical point of view this means, that one has to look
at the spectrograms of the sequence σn and verify whether they
look closer and closer the spectrogram of the limit distribution
Vg (σ0) over compact sets.
The approximation of elements from S0

′(Rd) takes place by a
bounded sequence.
Since any Banach-Gelfand triple homomorphism preserves this
property (by definition) one can reduce many problems to
w∗-dense subsets of

(
S0(Rd), ‖ · ‖S0

)
.

Let us look at some concrete examples: Test-functions, finite
discrete measures µ =

∑
i ciδti , trigonometric polynomials

q(t) =
∑

i aie
2πiωi t , or discrete AND periodic measures

(this class is invariant under the generalized Fourier transform
and can be realized computationally using the FFT).
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The w ∗− topology: approximation strategies

How to approximate general distributions by test functions:
Regularization procedures via product convolution operators,
hα(gβ ∗ σ)→ σ or TF-localization operators: multiply the
STFT with a 2D-summability kernel before resynthesis (e.g.
partial sums for Hermite expansion);

how to approximate an L1-Fourier transform by test functions:
and classical summability

how to approximate a test function by a finite disrete
sequence using quasi-interpolation (N. Kaiblinger):
QΨf (x) =

∑
i f (xi )ψi (x).
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