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Abstract

The purpose of this talk is to give a historical perspective on some
aspects of the theory of function spaces, i.e. Banach spaces of
functions (or distributions, when one looks at the dual spaces).
The first approach to smoothness resulting in the definition of
Sobolev spaces and Besov spaces (Besov, Taibleson, Stein) came
from the idea of generalized smoothness, expressed by (higher
order) difference expression and the corresponding moduli of
continuity, e.g. describing smoothness by the decay of the modulus
of continuity (via the membership in certain weighted Lq-spaces on
(0,1]). Alternatively there is the line described in the book of
S.Nikolksii characterizing smoothness (equivalently) by the degree
of approximation using band-limited functions (S. M. Nikol’skij
[7]). Fractional order Sobolev spaces can be
expressed in terms of weighted Fourier transforms.
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The second and third age

The second age is characterized by the Paley-Littlewood
characterizations of Besov or Triebel-Lizorkin spaces using dyadic
decompositions on the Fourier transform side, as used in the work
of J.Peetre ([8]) and H.Triebel ([15, 16, 14, 10, 17]) , the masters
of interpolation theory. Their contribution was to show that these
families of function spaces are stable under (real and complex)
interpolation methods.
The third age is - from our point of view - the characterization of
function spaces in the context of coorbit spaces, using irreducible
integrable group representations of locally compact groups.
Let us also remind that the concept of retracts plays an important
role in the context of interpolation theory (see the book of
Bergh-Loefstroem), and can be used to characterize Banach
frames and Riesz projection bases.
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Modulus of continuity

Definition

Assume that
(
B ‖ · ‖B

)
is an isometrically translation invariant

Banach space of locally integrable functions (i.e.(
B ‖ · ‖B

)
↪→ L1loc(Rd)) with

‖Tx f ‖B = ‖f ‖B ∀f ∈ B.

In this situation we can define for every f ∈ B its modulus of
continuity with respect to ‖ · ‖B via

ωδ(f ) = sup|x |≤δ {‖Tx f − f ‖B}.

In most cases ω is considered a function of δ for fixed f ∈ B,
but the notation is following the traditional one.
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Modulus of continuity 2

For each such space it is easy to show that the elements with
limδ→0 ωδ(f ) = 0 are those for which x → Tx f is (uniformly)
continuous from Rd into

(
B ‖ · ‖B

)
. They form a closed subspace

of
(
B ‖ · ‖B

)
, which we denote by Bcs

1.
Within this class we can identify functions which have a higher
degree of “smoothness”, i.e. which are not just uniformly
continuous, but behave better than the general function in
Cub(Rd), because ωδ tends to zero for δ → 0 at a given rate.
The so-called Lipschitz spaces Lip (α) are characterized by the
property that there exists some constant C > 0 such that

sup
δ>0

δ−αωδ(f ) = C <∞. (1)

There are also so-called “small Lipschitz spaces” characterized by

lim
δ→0

δ−αωδ(f ) = 0. (2)

1“cs” standing for “continuous shift”. for the case
(
L∞(Rd), ‖ · ‖∞

)
we

find that L∞
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Classical Lipschitz spaces

It is an easy exercise to show that Lip (α) is a Banach space with
the norm

‖f ‖Lip (α) := ‖f ‖∞ + sup
δ>0

δ−αωδ(f ), (3)

and that (lipa, ‖ · ‖Lip (α)) is a closed subspace of Lip (α), in fact
Lip (α)cs = lipa.
This construction makes only sense for α ∈ (0, 1], because the
class becomes trivial for α > 12.
There are two ways out, which turn out to be equivalent: Either
one assumes that f is continuously differentiable and f ′ satisfies a
Lipschitz condition, or one makes use of higher order difference
operators e.g. for k = 2 one expects decay of the sup-norm of the
function f (x − h)− 2f (x) + f (x + h) as h→ 0, with some
order of h, up to order < 2 (also higher order differences).

2Only constant functions: because the assumption implies that the function
is differentiable everywhere and that f ′(x) ≡ 0.
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Generalized Lipschitz spaces Lip(p, α)

Replacing in this traditional the sup-norm by an Lp-norms and the
corresponding modulus of continuity one arrives at the concept of
the Lipschitz spaces Lip(p, α) arise.
The next step towards a general theory of smoothness spaces was
taken by Besov. Instead of considering just decay of a given order
for the modulus of continuity (as a function on (0, 1] or R+) he
was making use of weighted Lq-spaces with respect to the (natural
= Haar) measure dt/t on R+?
The corresponding norms (on R+ or (0, 1]) are of the form[∫ 1

0
(|H(t)|t−s)qdt/t

]1/q
. (4)
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Besov spaces

Note that the natural (say exponential function) isomorphism of
(R,+) with (R+, ·) via the exponential function transports
functions H on R+ back into functions h(t) := H(exp(t)), so that
the condition (4) is equivalent to the membership of h in the usual
(polynomial) weighted Lq-space,

Lqws
(R) := {f | fws ∈ Lq(Rd)}, with ws(t) := (1 + |t|)s . (5)

which is a Banach space with its natural norm ‖f ‖q,ws := ‖fws‖q.
The resulting family of spaces is then just the family of Besov
spaces Bs

p,q(Rd).
In the work of S. Nikolskij (still alive!? at age of 102?) the Besov
spaces have been characterized by their approximation behaviour
with respect to band-limited functions (in his work: entire
functions of exponential type, [7]).
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Sobolev spaces, fractional derivatives

On the other hand there was the idea of describing smoothness in
the sense of differentiability in terms of the Fourier transform. The
classical Sobolev spaces Wk(Rd) or (Hs(Rd), ‖ · ‖Hs

)
or L2s are

defined as the function having a derivative up to order k in L2(Rd).
Of course it requires some care to explain in which sense this
existence is to be interpreted. There are various natural options:

assuming the existence of the classical (partial) derivatives
a.e. and assuming that they define L2-functions;

taking the derivative in the distributional sense and assume
that those derivatives are regular distributions, i.e. can be
represented by L2-functions;

use Plancherel’s theorem and make use of the fact that the
differentiation corresponds to pointwise multiplication with
polynomials on the Fourier transform side;

Fortunately these conditions are all equivalent!!
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The Fourier and Littlewood-Paley age

To my knowledge it have been mostly the two pioneers in
interpolation theory, namely Jaak Peetre and Hans Triebel.
The most important alternative description of Besov (and also
Bessel potential spaces (Hs(Rd), ‖ · ‖Hs

)
, which are special cases

of the more general Triebel-Lizorkin spaces) is through dyadic
partitions of unity, typically in the form of dilation of a fixed
function ψ which is assumed to be such that one can control all of
its derivatives.
The classical description of Besov spaces in the books of Triebel
makes use of terms such as

‖F−1[f̂ · ψ(2k ·)]‖p (6)

Since we are working with Banach spaces (such as Lp(Rd) etc.)
within the tempered distributions S ′(Rd) anyway, I prefer to rather
take the Lp-norm over to the Fourier transform side, rather than
jumping between time- and frequency side all the time.
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The Fourier age

This means, that I prefer to use dilation operators

[Dρh](z) = h(ρz), ρ > 0 (7)

and define for h = f̂ , with f ∈ Lp(Rd):

‖h‖FLp := ‖f ‖p. (8)

Dilation on the Fourier transform side using Dρ corresponds to
L1-norm preserving dilation on the time side using:

Stρf (z) = ρ−d f (z/ρ), forρ 6= 0, (9)

we find that ‖Dρf ‖FL1 = ‖f ‖FL1 for ρ 6= 0.
Consequently (6) is equivalent to

‖f̂ · D2kψ‖FLp (10)

with the side condition that
∑

k∈Z D2kψ(x) ≡ 1 on Rd \ {0}. This
is what we call a dyadic decomposition of unity.
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NEXT

In fact, the smoothness assumptions on ψ can easily be translated
into an uniform boundedness condition of the family
(ψk) := (D2kψ)k∈Z in

(
FL1(Rd), ‖ · ‖FL1

)
.

There is a deep result from analysis which helps to also
characterize the Triebel-Lizorkin spaces (recall, you have among
them the Lp-potential spaces, obtained by applying the Fourier
multiplier w−s(ξ) = (1 + |ξ|2)−s/2 to FLp, are among them) using
also the sequence of functions (F−1f̂ · D2kψ)k∈Z, using the
so-called Paley-Littlewood decomposition. It allows to express the
Lp-norm equivalently by the Lp-norm of the function

h(t) =

(∑
k∈Z
| F−1(f̂ · ψk)(t)|2

)−1/2
(11)
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continued ..

Putting weights into the sum, i.e. using the functions

hs(t) =

(∑
k∈Z
|ws(2−k) · F−1(f · ψk)(t)|2

)−1/2
(12)

we find (cf. work of E.Stein, Triebel etc.) that the p-Bessel
potential norm or order s of f is equivalent to ‖hs‖p.
At first sight it looks that the difference between the two types
(Sobolev or Besov spaces) consists in the order in which the
continuous Lp-norm resp. the discrete `q-norm are applied.
However, there are also other mixtures, e.g. a completely
continuous characterization, where finally only the order in which
the summation is realized is relevant. For p = 2 = q we just
have the classical L2 Sobolev spaces.
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The method of Frazier-Jawerth: atomic decompositions

The approach taken by Frazier and Jawerth (certainly heavily
influenced by the work of Jaak Peetre) established a connection
between the characterization of the different function spaces (to
use Triebel’s terminology) with dyadic decompositions in order to
arrive at atomic decomposition of these spaces resp.
characterizations of function spaces by the coefficients.
In a nutshell the dyadic decompositions allow to decompose a
function (or tempered distribution) into contributions sitting in
dyadic frequency bands which in turn can expanded into series of
shifted atoms (suitably chosen) making use of (dilated versions) of
Shannon’s sampling theorem (for each of the blocks).

Hans G. Feichtinger Three ages of function spaces: Generalized smoothness, Fourier characterization and Coorbit Spaces



Comments on those early atomic decompositions

The atomic decompositions proposed in the work of
Frazier-Jawerth claim that there are function spaces (in fact pairs
of functions, matching well to each other, but different from each
other) such that one could be used for analysis, i.e. in order to
generate a set of coefficients, while the other is used for synthesis.
An important point is the fact that these atoms (used for analysis
and synthesis) are transformed jointly (using dyadic dilations and
essentially integer translations), and make sure that for each of the
classical function spaces there is an appropriate (solid) Banach
space of sequences, allowing to characterize the distributions by
the coefficients arising in the decomposition.
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Connection to Wavelet Theory

With the advent of wavelet theory it was found, that all those
function spaces (Besov-Triebel-Lizorkin spaces) have a
characterization in terms of the CWT (continuous wavelet
transform), which is defined over the upper half-plan
(parameterized by the parameters a > 0, b ∈ R), better viewed as
the “ax+b”-group G , which is a locally compact group with left
(and different from it) right Haar measure.
The correct characterization of function spaces is in terms of mixed
norm spaces (mixed Lp − Lq-norms over G ), with a weight
depending only on the scale variable a > 0 in a natural way.
Anisotropic and weighted spaces can be characterized by
alternative weight functions depending on a and b as well.
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Calderon’s reproducing formula

Reinterpretation of older results in the light of wavelet theory
shows that the characterization of function spaces by higher order
differences is more or less using a wavelet transform with respect
to some very “rough” wavelet, namely a weighted sum of
Dirac-measures (e.g. δ−1 − 2δ0 + δ1 or its convolution powers),
which are however satisfying the admissibility by having the correct
behaviour of their Fourier transform near the origin.
The role of the partition of unity property (only valid for specific
Schwartz functions) for dyadic partitions on the FT-side is taken
by the more flexible continuous analogue, the so-called Calderon
Reproducing formula, which can be seen as a direct consequence of
the fact that the CWT is isometric from H = L2(Rd) into L2(G ).
Hence the inverse operator on the range of the CWT is
just its adjoint. This allows to characterize all those function
spaces using arbitrary admissible wavelets in S(Rd).
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Orthonormal Wavelet Bases

One of the important developments in wavelet theory has been the
construction of orthonormal wavelet basis due to Yves Meyer,
Lemarie, and above all Ingrid Daubechies, who was the first to
construct orthonormal wavelet bases with compact support and a
given degree of smoothness. They cannot be used to characterize
all the function spaces, but e.g. Besov spaces Bs

p,q(Rd) up to some
order |s| ≤ s0.
It was certainly an important property of wavelets (aside from the
fact that they came early on together with efficient algorithms)
that they could be used to characterize most of the important
function spaces known at that time, using the wavelet coefficients.
Again, the quality of the atoms g (typically a combination of decay
and smoothness conditions) are relevant for the range of
parameters they could handle.
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Coorbit Theory: the third age

Coorbit theory gives a group theoretical framework to all those
statements, using a group theoretical point of view.
It started out as an attempt to understand the similarities between
known results in the theory of function spaces, wavelet transforms,
including orthonormal expansions.
The analogy between Besov spaces and modulation spaces
(introduced in the early 80s, imitating the definition of Bs

p,q by
replacing the dyadic BAPUs by uniform partitions of unity
(BUPUs) in order to get to the Ms

p,q-family) was quite obvious and
motivated the search for their common properties and analogies.
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Coorbit Theory, group representation theory

The insight was, that one only needs an integrable group
representation of some locally compact group (such as the “ax+b”
or the reduced Heisenberg group), say π(x) on some Hilbert space
H, in order to come up with a continuous voice transform

Vg f (x) = 〈f , π(x)g〉H, x ∈ G . (13)

Then one can use Moyal’s formula (a kind of Plancherel theorem
for non-commutative groups) in order to come up with (the weak
form) of a reproducing formula, allowing to write any element
f ∈ H as a “continuous” superposition of elements of the form
π(x)g , for suitable (admissible) atoms g ∈ H. There is an
abundance of such situations, shearlet theory being the most
recent one. Margit Pap is studying the Moebius group.
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Function spaces from the Coorbit point of view

Already a first step towards a continuous characterization is the
reinterpretation of the Calderon reproducing formula which - in a
modern interpretation - shows that the family π(x)g , x ∈ G defines
a continuous frame (at least for admissible atoms g ∈ H).
Coorbit theory unifies various aspects and exhibits analogies
between different families of spaces, such as modulation spaces
(linked to the Schrödinger representation of the (reduced)
Heisenberg group) or Besov-Triebel-Lizorkin spaces, linked to the
affine group (“ax+b”-group).
While it is possible to have wavelet orthonormal bases (i.e.
orthonormal bases of the form (π(λi )g)i∈I , where (λi ) is a
discrete set in ′′ax + b′′ nothing similar is possible in the case of
modulation spaces (despite D. Gabor’s original hope and
suggestion).
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expansions
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and the Study of Function Spaces.
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END OF THE PRESENTATION in Marburg

Question (A) from the audience: Where did the name modulation
space come from:
Answer: While Besov spaces and other function spaces can be
characterized by the rate of convergence by which the solution of
the heat equation approaches the initial value f , i.e. by

‖(Stρh) ∗ f − f ‖Lp = ‖[Stρ(h − δ0)] ∗ f ‖Lp

(where h is the Gauss function, with
∫
Rd h(x)dx = 1), we can

reformulate the growth conditions of Vg (f ) over Rd × R̂d

equivalently by looking at the decay of ‖Mtg ∗ f ‖Lp for t →∞
(which can be seen as a kind of quantitative variant of the
Riemann-Lebesgue Lemma, according to which f̂ ∈ C0(Rd) for
f ∈ L1(Rd)). The name is based on the fact that Mtg is a
modulated version of g .

Hans G. Feichtinger Three ages of function spaces: Generalized smoothness, Fourier characterization and Coorbit Spaces



END OF THE PRESENTATION in Marburg

Question B from the audience: Where does the name coorbit
space come from.
Answer: This is related to terminology already used in a more
general setting by Jaak Peetre in his paper [9]:
Jaak Peetre [pe85] Paracommutators and minimal spaces. In
“Operators and Function Theory”, Proc. NATO Adv Study Inst,
Lancaster/Engl 1984, NATO ASI Ser, Ser C 153, 163-224, (1985)
There are certainly motivations coming from the two equivalent
descriptions of the real interpolation method, namely the K - and
the J-method, which are also kind of dual to each other.
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END OF THE PRESENTATION in Marburg

THANK you very much for your
attention!
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Banach spaces related to integrable group representations and
their atomic decompositions, I.
J. Funct. Anal., 86(2):307–340, 1989.

H. G. Feichtinger and K. Gröchenig.
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Birkhäuser, Basel, 2001.

H. Triebel.

Hans G. Feichtinger Three ages of function spaces: Generalized smoothness, Fourier characterization and Coorbit Spaces



Theory of Function Spaces III, volume 100 of Monographs in
Mathematics.
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