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FoCM Context and Motivation

When reading papers in electric engineering (e.g. concerning
problem in communication theory) or in talking to engineers it
often taken for granted that signals have to be of finite energy (in
order to justify the work within L2(R) or

(
L

2(Rd), ‖ · ‖2

)
), or to

say: when we have to work with the computer all the information
comes in the form of sequences in `2(Z) resp. even finite
sequences, and hence e.g. the more complicated Fourier transform
(originally given as an integral transform, with a highly oscillator
kernel has to be replaced by the (fast) version of the DFT (discrete
Fourier transform), the well-known FFT!
There are also all kinds of heuristic transition from e.g. the case of
periodic functions expanded into Fourier series to the Fourier
transform, or from the Fourier coefficients defined by integrals
to the finite DFT.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Structure of the talk

1 Motivating QUESTIONS: Fourier transforms, time-variant
systems, spline-type spaces;

2 The TOOLS: The setting of Banach Gelfand Triples,
specifically (S0,L

2,S ′0);

3 How the properties of these spaces and their topologies can
be put to good use in the FoCM spirit;

4 What kind of results we can derive resp. work on at NuHAG
(www.nuhag.eu);

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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[original] ABSTRACT

In the last two decades Gabor Analysis and Time-Frequency
Analysis in general have made significant progress. Gabor Analysis
over LCA groups is in principle well understood, while
computational methods have been established which allow to
realize at least the most important aspects of Gabor analysis
(computation of dual windows, realization of Gabor multipliers,
best approximation of a given matrix by an operator of this type,
etc.). We also have a number of results indicating not only the
robustness of Gabor systems with respect to perturbations (change
of the atom, or small modification of the TF-lattice used), but also
that the continuous problem (over Euclidean spaces Rd) can be
approximated - at least in an asymptotic sense and for test
functions from the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
- by finite

models.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The talk is going to describe the setting of Banach Gelfand Triples
as the appropriate frame-work for the description of these
approximation processes, indicates existing results and methods
used in this field already now, and describes the demand for further
research in order to improve from qualitative asymptotic to
quantitative results, in the spirit of approximation theory. So
whatever should be computed (e.g. a dual Gabor atom, the action
of a pseudo-differential operator on an L2-function, etc.) one
should have tools to describe, how a realizable (by actual
computation, using finitely many matrices etc.) approximation can
be achieved by suitable, hopefully at least suboptimal, procedures,
which allow to compute the entity under consideration up to a
given ε > 0, or up to a given relative error in some appropriate
norm (such as a Sobolev norm or a Shubin norm). It will be
demonstrated that the interplay between functional analysis,
harmonic and numerical analysis and approximation theory
can provide such methods.
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What AHA is providing, and what not!

Coming from Abstract Harmonic Analysis I am used to work with
general LCA (locally compact Abelian) groups, in the spirit of
Andre Weil, who has correctly propagated the claim that this is the
appropriate setting for doing Fourier Analysis.
This view-point allows to use a unified language for the classical
theory of Fourier series with one and many variables, but also of
Fourier transforms over Euclidean spaces or the DFT (resp. FFT,
the Fast Fourier Transform, for periodic and discrete signals).
While this analogy allows to transfer statements concerning
functions or measures over such groups (resp. their duals) from
one setting into the other setting it is not immediately useful when
it comes to make problems in a continuous setting accessible
to computations (using vectors of finite length).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The classical view on the Fourier Transform

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Goals of this lecture

The goal of this lecture is - very much in the spirit of FoCM - to
initiate a more detailed discussion about the use of finite methods
in order to come up with valid approximation to the continuous
situation. Typically we want to compute the value of a linear
functional, or some linear operator on a function spaces, and in
order to do so we have to come up with a realizable way of finding
an approximate answer (in the given norm), with a prescribed
small error.
Note that the effectiveness required here is different from the
concept of constructive approximation, where a concrete
prescription of steps which might at the end of the day NOT
be realizable is good enough.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The Fourier transform as a prototypical example

We all know that the (classical) Fourier transform is well defined
on the space L1(Rd) of Lebesgue integrable functions via

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (1)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (2)

But what is an efficient way of calculating the Fourier (or its
inverse)? Is it really enough (at least for decent functions) to
sample the function f sufficiently fine and put the resulting vector
into the FFT-routine. Moreover, is it OK to assume that the
output is just a sampled sequence of f̂ ??

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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How to simulate slowly time-variant channels?

Another, more sophisticated problem is the question of simulating
and understanding the behaviour of slowly time variant channels.
This are more or less moving average operators, but not with a
constant, but rather a slowly changing profile, so to say a
time-dependent lowpass-filter. Obviously one expects that it
behaves locally like a convolution operator with constant profile,
but also they cannot be diagonalized by the strictly by the Fourier
transform. So how can we model them, describe them
matheamtically, simulate their behaviour (in order to find good
transmission schemes, ways for channel identification and channel
decoding, using pilote tones).
As I learned from an engineer (Werner Kozek) this has a lot to do
with the Kohn-Nirenberg representation of an operator resp. its
symplectic Fourier transform, the so-called spreading function.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Spline-type spaces with Gaussian kernel
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Spline-type functions: dual and interpolating atom
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Spline-type spaces: best approx. of smooth functions
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Spline-type functions: dual and interpolating atom
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Multi-Window-Spline-type spaces

Natural generalization (joint work with Darian Onchis, [?]): finitely
generated shift-invariant spaces, also called in our context
multi-window spline-type spaces.

There are closed formulas for the projection operator onto such a
spline-type space, and constructive descriptions of an iterative
algorithm allowing recovery of functions in such spaces from
irregular samples, but they are not realizable as they stand.

So let us describe the existing results in this direction shortly next.
However for this we will need a certain (generally useful)
Banach space of functions, called S0(Rd).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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What kind of approximation can we go for?

The question concerning the way in which the realizable
computations should approximate the continuous problem is by no
means a trivial one, and the answer depends very much on the
problem at hand.
Among the most typical methods to realizably approximate the
action of a linear functional or a given operator on some input
signal/function is of course to generate a sequence of operators
resp. functionals which converge in the strong operator topology to
the desired limit, just like (finite) Riemannian sums approximate
the integral.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The w ∗− topology: approximation strategies

How to approximate general distributions by test functions:
Regularization procedures via product convolution operators,
hα(gβ ∗ σ)→ σ or TF-localization operators: multiply the
STFT with a 2D-summability kernel before resynthesis (e.g.
partial sums for Hermite expansion);

how to approximate an L1-Fourier transform by test functions:
and classical summability

how to approximate a test function by a finite discrete
sequence using quasi-interpolation (N. Kaiblinger):

QΨf (x) =
∑
i

f (xi )ψi (x).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Goals of this lecture

that Hilbert spaces are themselves a too narrow concept and
should be replaced Banach Gelfand Triples, ideally isomorphic
to the canonical ones (`1, `2, `∞);

Demonstrate by examples (Fourier transform, kernel theorem)
that this viewpoint brings us very close to the
finite-dimensional setting!

We could go on and show that the usual generalizations of
linear algebra concepts to the Hilbert space case (namely
linear independence and totality) are inappropriate in many
cases and should be replaced by frame and Riesz basis, in fact
by commutative diagrams in the category of BGTRs.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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ANALYSIS: Spaces used to describe the Fourier Transform

S0
Schw

Tempered Distr.
Ultradistr.

SO’
L2

S0Schw
FL1

Tempered Distr.

SO’
L2

C0

L1
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Banach Gelfand Triples and Rigged Hilbert space

The next term to be introduced are Banach Gelfand Triples.
There exists already and established terminology concerning triples
of spaces, such as the Schwartz triple consisting of the spaces
(S,L2,S ′)(Rd), or triples of weighted Hilbert spaces, such as
(L2

w ,L
2,L2

1/w ), where w(t) = (1 + |t|2)s/2 for some s > 0, which is
- via the Fourier transform isomorphic to another (“Hilbertian”)
Gelfand Triple of the form (Hs ,L

2,Hs
′), with a Sobolev space and

its dual space being used e.g. in order to describe the behaviour of
elliptic partial differential operators.
The point to be made is that suitable Banach spaces, in fact
imitating the prototypical Banach Gelfand triple (`1, `2, `∞)
allows to obtain a surprisingly large number of results
resembling the finite dimensional situation.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Different Gelfand Triples
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A Classical Example related to Fourier Series

There is a well known and classical example related to the more
general setting I want to describe, which - as so many things - go
back to N. Wiener. He introduced (within L2(T)) the space(
A(T), ‖ · ‖A

)
of absolutely convergent Fourier series. Of course

this space sits inside of
(
L

2(T), ‖ · ‖2

)
as a dense subspace, with

the norm ‖f ‖A :=
∑

n∈Z |f̂ (n)|.
Later on the discussion about Fourier series and generalized
functions led (as I believe naturally) to the concept of
pseudo-measures, which are either the elements of the dual of(
A(T), ‖ · ‖A

)
, or the (generalized) inverse Fourier transforms of

bounded sequences, i.e. F−1(`∞(Z)).
In other words, this extended view on the Fourier analysis operator
C : f 7→ (f̂ (n)n∈Z) on the BGT (A,L2,PM) into (`1, `2, `∞)
is the prototype of what we will call a BGT-isomorphism.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The visualization of a Banach Gelfand Triple

 The S
0
 Gelfand triple

S0

S0’

L2
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Rethinking shortly the Fourier Transform

Since the Fourier transform is one of the central transforms, both
for abstract harmonic analysis, engineering applications and
pseudo-differential operators let us take a look at it first. People
(and books) approach it in different ways and flavours:

It is defined as integral transform (Lebesgue!?);

It is computed using the FFT (what is the connection);

Should engineers learn about tempered distributions?

How can we reconcile mathematical rigor and still stay in
touch with applied people (physics, engineering).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency
(FFT algorithms of signals of length N run in Nlog(N) time, for
N = 2k , due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (3)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (4)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd). One speaks of Fourier
analysis as the first step, and Fourier inversion as a method
to build f from the pure frequencies : Fourier synthesis.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd) we have f̂ ∈ C0(Rd) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd));

2 The Fourier transform f on L1(Rd) ∩ L2(Rd) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 L
p-spaces have traditionally a high reputation among

function spaces, but tell us little about f̂ .

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Effects of Sampling and Periodization: Poisson’s formula
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A schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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repeated: SOGELFTR

 The S
0
 Gelfand triple

S0

S0’

L2
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ANALYSIS: Calculating with all kind of numbers

We teach in our courses that there is a huge variety of NUMBERS,
but for our daily life rationals, reals and complex numbers suffice.
The most beautiful equation

e2πi = 1.

It uses the exponential function, with a (purely) imaginary
exponent to get a nice result, more appealing than (the equivalent)

cos(2π) + i ∗ sin(2π) = 1 in C.

But actual computation are done for rational numbers only!! Recall

Q ⊂ R ⊂ C

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The Banach space
(
S0(Rd), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd), ‖ · ‖S0

)
or (M1(Rd), ‖ · ‖

M
1)), which will serve our

purpose. Its dual space (S ′0(Rd), ‖ · ‖S ′0 ) is correspondingly the
largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd)), we
will restrict ourselves to Banach Gelfand Triples, mostly
related to (S0,L

2,S ′0)(Rd).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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A Typical Musical STFT
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
There are many other independent characterization of this space,
spread out in the literature since 1980, e.g. atomic decompo-
sitions using `1-coefficients, or as W (FL1, `1) = M

0
1,1(Rd).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Basic properties of M∞(Rd) = S
′
0(Rd)

The dual space of
(
S0(Rd), ‖ · ‖S0

)
, i.e. S ′0(Rd) is the largest

(reasonable) Banach space of distributions (resp. local
pseudo-measures) which is isometrically invariant under all
time-frequency shifts. As an amalgam space one has

S
′
0(Rd) = W (FL1, `1)

′
= W (FL∞, `∞)(Rd),

the space of translation bounded quasi-measures, however it is
much better to think of it as the modulation space M∞(Rd), i.e.
the space of all tempered distributions on Rd with bounded
Short-time Fourier transform (for an arbitrary 0 6= g ∈ S0(Rd)).
Consequently norm convergence in S ′0(Rd) is just uniform
convergence of the STFT, while certain atomic characterizations of(
S0(Rd), ‖ · ‖S0

)
imply that w∗-convergence is in fact equivalent to

locally uniform convergence of the STFT. – Hifi recordings!

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier series.
It is also not surprising in retrospect to see that the dual space
PM(T) = A(T)′ is space of pseudo-measures. One can extend the
classical Fourier transform to this space, and in fact interpret this
extended mapping, in conjunction with the classical Plancherel
theorem as the first unitary Banach Gelfand triple isomorphism,
between (A,L2,PM)(T) and (`1, `2, `∞)(Z).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The BGT (S0,L
2,S ′0) and Wilson Bases

Among the many different orthonormal bases the wavelet bases
turn out to be exactly the ones which are well suited to
characterize the distributions by their membership in the classical
Besov-Triebel-Lizorkin spaces.
For the analogue situation (using the modulation operator instead
of the dilation, resp. the Heisenberg group instead of the
“ax+b”-group) on finds that local Fourier bases resp. the so-called
Wilson-bases are the right tool. They are formed from tight Gabor
frames of redundancy 2 by a particular way of combining complex
exponential functions (using Euler’s formula) to cos and sin
functions in order to build a Wilson ONB for L2(Rd).
In this way another BGT-isomorphism between (S0,L

2,S ′0)
and (`1, `2, `∞) is given, for each concrete Wilson basis.

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (5)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S ′0)(Rd)

correspond to norm convergence in (L1,L2,L∞)(R2d).
The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
This is a typical case, where we can see, that the w∗-continuity
plays a role, and where the fact that δx ∈ S ′0(Rd) as well as
χs ∈ S ′0(Rd) are important.
In the STFT-domain the w∗-convergence has a particular meaning:
a sequence σn is w∗-convergent to σ0 if Vg (σn)(λ)→ Vg (σ0)(λ)
uniformly over compact subsets of the TF-plane (for one or any
g ∈ S0(Rd)).
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Kernel Theorem for general operators in L(S0,S
′
0)

Theorem

If K is a bounded operator from S0(Rd) to S ′0(Rd), then there
exists a unique kernel k ∈ S ′0(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉
for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S ′0(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .
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Kernel Theorem II: Hilbert Schmidt Operators

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L

2(R2d)-kernels. The complete picture can be best expressed by a
unitary Gelfand triple isomorphism. First the innermost shell:

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels. An operator T has a kernel in
K ∈ S0(R2d) if and only if the T maps S ′0(Rd) into S0(Rd),
boundedly, but continuously also from w∗−topology into the norm
topology of S0(Rd).
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Kernel Theorem III

Remark: Note that for such regularizing kernels in K ∈ S0(R2d)
the usual identification. Recall that the entry of a matrix an,k is
the coordinate number n of the image of the n−th unit vector
under that action of the matrix A = (an,k):

k(x , y) = T (δy )(x) = δx(T (δy )).

Note that δy ∈ S ′0(Rd) implies that K (δy ) ∈ S0(Rd) by the
regularizing properties of K , hence the pointwise evaluation makes
sense.
With this understanding the kernel theorem provides a (unitary)
isomorphism between the Gelfand triple (of kernels)
(S0,L

2,S ′0)(R2d) into the Gelfand triple of operator spaces

(L(S ′0,S0),HS,L(S0,S
′
0)).
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AN IMPORTANT TECHNICAL warning!!

How should we realize these various BGT-mappings?
Recall: How can we check numerically that e2πi = 1??
Note: we can only do our computations (e.g. multiplication,
division etc.) properly in the rational domain Q, we get to R by
approximation, and then to the complex numbers applying “the
correct rules” (for pairs of real numbers).
In the BGT context it means: All the (partial) Fourier transforms,
integrals etc. only have to be meaningful at the S0-level!!! (no
Lebesgue even!), typically isometric in the L2-sense, and extend by
duality considerations to S ′0 when necessary, using w∗-continuity!
The Fourier transform is a good example (think of Fourier
inversion and summability methods), similar arguments apply
to the transition from the integral kernel of a linear mapping
to its Kohn-Nirenberg symbol., e.g..
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The Spreading Representation

The kernel theorem corresponds of course to the fact that every
linear mapping T from Cn to Cn can be represented by a uniquely
determined matrix A, whose columns ak are the images T (~ek).
When we identify CN with `2(ZN) (as it is suitable when
interpreting the FFT as a unitary mapping on CN) there is another
way to represent every linear mapping: we have exactly N cyclic
shift operators and (via the FFT) the same number of frequency
shifts, so we have exactly N2 TF-shifts on `2(ZN). They even form
an orthonormal system with respect to the Frobenius scal.prod.:

〈A,B〉Frob :=
∑
k,j

ak,j b̄k,j = trace(A ∗ B ′)

This relationship is called the spreading representation of the
linear mapping T resp. of the matrix A. It is a
kind of operator version of the Fourier transform.
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The unitary spreading BGT-isomorphism

Theorem

There is a natural (unitary) Banach Gelfand triple isomorphism,
called the spreading mapping, which assigns to operators T from
(B,H,B ′) the function or distribution η(T ) ∈ (S0,L

2,S ′0)(R2d).
It is uniquely determined by the fact that T = π(λ) = MωTt

corresponds to δt,ω.

Via the symplectic Fourier transform, which is of course another
unitary BGT-automorphism of (S0,L

2,S ′0)(R2d) we arrive at the
Kohn-Nirenberg calculus for pseudo-differential operators. In other
words, the mapping T 7→ σT = Fsympη(T ) is another unitary
BGT isomorphism (onto (S0,L

2,S ′0)(R2d), again).
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Consequences of the Spreading Representation

The analogy between the ordinary Fourier transform for functions
(and distributions) with the spreading representation of operators
(from nice to most general within our context) has interesting
consequences.
We know that Λ-periodic distributions are exactly the ones having
a Fourier transform supported on the orthogonal lattice Λ⊥, and
periodizing an L1-function corresponds to sampling its FT.
For operators this means: an operator T commutes with all
operators π(Λ), for some Λ C Rd × R̂d , if and only if
supp(η(T )) ⊂ Λ◦, the adjoint lattice. The Gabor frame operator is
the Λ-periodization of Pg : f 7→ 〈f , g〉g , hence η(S) is obtained by
multiplying η(Pg ) = Vg (g) pointwise by tt Λ◦ =

∑
λ◦∈Λ◦ δλ◦ .
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Consequences of the Spreading Representation 2

This observation is essentially explaining the Janssen
representation of the Gabor frame operator (see [?]).
Another analogy is the understanding that there is a class of
so-called underspread operators, which are well suited to model
slowly varying communication channels (e.g. between the basis
station and your mobile phone, while you are sitting in the - fast
moving - train).
These operators have a known and very limited support of their
spreading distributions (maximal time- and Doppler shift on the
basis of physical considerations), which can be used to “sample”
the operator (pilot tones, channel identification) and subsequently
decode (invert) it (approximately).
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Summability of sequences and quality of operators

One can however also fix the Gabor system, with both analysis and
synthesis window in S0(Rd) (typically one will take g and g̃
respectively, or even more symmetrically a tight Gabor window).
Then one can take the multiplier sequence in different sequence
spaces, e.g. in (`1, `2, `∞)(Λ).

Lemma

Then the mapping from multiplier sequences to Gabor multipliers
is a Banach Gelfand triple homomorphism into Banach Gelfand
triple of operator ideals, consisting of the Schatten classe S1 =
trace class operators, H = HS, the Hilbert Schmidt operators, and
the class of all bounded operators (with the norm and strong
operator topology).
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Automatic continuity (> Balian-Low)

In contrast to the pure Hilbert space case (the box-function is an
ideal orthonormal system on the real line, but does NOT allow for
any deformation, without loosing the property of being even a
Riesz basis):

Theorem (Fei/Kaiblinger, TAMS)

Assume that a pair (g ,Λ), with g ∈ S0(Rd) defines a Gabor frame
or a Gabor Riesz basis respectively [note that by Wexler/Raz and
Ron/Shen these to situations are equivalent modulo taking adjoint
subgroups!], then the same is true for slightly perturbed atoms or
lattices, and the corresponding dual atoms (biorthogonal
generators) depend continuously in the

(
S0(Rd), ‖ · ‖S0

)
-sense on

both parameters.
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Quasi-Interpolation in the Fourier algebra I: BUPUs

For the definition of spline-quasi-interpolation we will need the
(very useful!) concept of BUPUs, something well known to
everybody (maybe not by this name): Bounded Uniform Partitions
of Unity (which can be made arbitrarily fine by dilation):
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A B−spline partition of unity
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Quasi-Interpolation in the Fourier algebra II

Result with Norbert Kaiblinger ([?]).

Theorem

Let ψ̂ ∈W (C0, `
1)(Rd) and suppose that ψ̂(k) = δk,0 for k ∈ Z.

Then for all f ∈ A we have ‖Qhf − f ‖A → 0 as h→ 0.

The Thm. 1 is a principle prerequisite for proving the second main
result, the quasi-interpolation in S0.

Theorem

Let ψ ∈ S0 and suppose that ψ̂(k) = δk,0 for k ∈ Z.
Then for all f ∈ S0 we have ‖Qhf − f ‖S0 → 0 as h→ 0.
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Quasi-Interpolation: Consequences

What makes the quasi-interpolation results so useful (aside from
the fact that more or less all the useful Banach spaces of functions
and distibutions which are isometrically TF-invariant are inside of
S
′
0(Rd), even if they do not consist of ordinary, locally Lebesgue

integrable functions!), is the fact that it allows a “constructive
way” of approximating an (abstract) linear functional σ ∈ S ′0(Rd)
by discrete measures, in fact finite discrete measures, in the
w∗-mode.
In fact, the adjoint of the quasi-interpolation operator is the
operator

DΨ(σ) :=
∑
i∈I

σ(ψi )δxi .

where we can say, it assigns the point mass at the center the
amplitude which describes the strength (effectiveness) of the
action of σ near xi , by applying σ to ψ (living near xi !).
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Multi-window spline-type spaces (with D. Onchis)

The results in this direction are a combination of the following
ingredients:

abstract harmonic analysis (operators commuting with
translation, FFT-based constructive descriptions of the
operator to be inverted);

the proper choice of function spaces in order to correctly
describe the problem and in order to carry out the error
analysis in the right way (simple and useful for applications);

then study to realizability aspect, with the idea of trying to
keep also an eye not only on asymptotic results but on
approximation theoretic features (computational costs versus
size of the error);

reduction to finite computations is demonstrated, with valid
error estimates in the S0-sense.
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Applications to Gabor multipliers

With the tools indicated we can find good, realizable
approximations of the action of Gabor multipliers for example.
Assume that a pair (g ,Λ), with some g ∈ S0(Rd) and some lattice
A(Z2d) we have to (approximately, in the S0-sense) fine a dual
atom, which can be used to synthesize/reconstruct a signal from
the sampled STFT (Vg (f )(λ))λ∈Λ. Of course one has to use the
control of the reconstruction error (in the operator norm on either
S0(Rd),L2(Rd) or S ′0(Rd) by the S0-error of the approximate dual
atom).
Since it is known that general STFT-multipliers (arising also in the
so-called Anti-Wick calculus) can be approximated well by Gabor
multipliers we are thus also able to calculate the action of those,
typically localization operators.
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Best approximation of Hilbert Schmidt operators

The question of best approximation of a Hilbert Schmidt operator
by a Gabor multipliers can make use of the same framework. In
fact, we can never completely describe the operator, but we can
find the most important of its Gabor frame matrix coefficients, i.e.
(good approximate values for)

〈Tgλ, gλ′〉, λ, λ′ ∈ Λ.

From these information we can compute the coefficient required in
order to do a best approximation of this operator by Gabor
multipliers (typical application: try to approximately invert a Gabor
multiplier by another Gabor multiplier).
In this context it is interesting to note that the Kohn-Nirenberg
mapping allows to equivalently reformulate this problem with a
spline-type approximation problem over phase-space. The
spline-generator is then the KNS-symbol of the rank one operator
f 7→ 〈f , g〉g , which is in S0(R2d), of g ∈ S0(Rd)!
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What are the properties needed?

One can pin down the possibility of making use of the specific
space S0(Rd) and its dual, also for numerical applications,
essentially to a relatively small number of rather important and
useful properties of the BGTR based on S0(Rd).

The space S0(Rd) is invariant under many operations,
including the Fourier transform, TF-shifts, as well as
convolution by L1(Rd)-functions g and multiplications by
functions from FL1(Rd) (Fourier algebra);

For every lattice Λ in Rd the Λ-periodization of the functions
in S0(Rd) are continuous, in fact they even belong to
Wiener’s Algebra

(
A(T), ‖ · ‖A

)
.

the restriction of f ∈ S0(Rd) to a discrete subgroup Λ belongs
to `1(Λ).
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In which way are the properties used?

It is clear that the decay of functions can be used to sample
only over sufficiently large compact domains and recover (in
the S0-norm!) the function using quasi-interpolation methods.
In fact, the Wiener amalgam characterization of S0(Rd)
implies that any function is the absolutely convergent sum
over the pieces living over the blocks of uniform size near the
lattice points k ∈ Zd ;

x

x
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What kind of results, by the S0-norm?

Let us discuss the case of spline-type spaces. Why should we be
interested in a good recovery of the projection operator onto the
spline-type space by providing a good approximation in the
S0(Rd)-norm?
The answer is based on the observation, that the projection
operator is motivated by the Hilbert space case, but not restricted
to the case of the L2-norm. In fact, nobody(!) is doing the best
approximation in the Lp-sense, for some fixed(!) p > 1, despite the
well known fact that the unit balls of such spaces are uniformly
convex.
On is rather happy to see that the orthogonal projection (which can
be well desribed and computed, using PINV) is also stable in the
L
p-setting. But when we do recovery of functions from irregular

samples the membership of spline function f in some Lp(Rd) is a
useful additional fact, but cannot be part of the algorithm.
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THANK YOU!

Thank you for your attention!

Most of the referred papers of NuHAG can be downloaded from
http://www.univie.ac.at/nuhag-php/bibtex/

The work of the author is partially supported by the EU network
UnlocX (Uncertainty and Localization) as well as the NFN SISE
(FWF, 2009-2014).

Furthermore there are various talks given in the last few years on
related topics (e.g. Gelfand triples), that can be found by
searching by title or by name in
http://www.univie.ac.at/nuhag-php/nuhag talks/

Hans G. Feichtinger Foundations of Computational Time-Frequency Analysis



Background, Motivation Banach Gelfand Triple for TF-analysis Results in this setting

Type of Questions that can be treated

1 Realization of the Fourier transform using FFT methods;

2 Computing best approximation of decent functions from
spline-type spaces;

3 Iterative reconstruction of functions in spline-type spaces from
irregular samples;

4 Realizing the action of operators (e.g. slowly time-variant
channels) using their Kohn-Nirenberg or spreading
representations;

5 (future) Solving linear pseudo-differential equations;

6 Realizing Gabor multipliers or STFT-multipliers;

7 Computing the inverse of an invertible, slowly time-variant
channel (patent!);

8 Calculating the best approximation of a given
HS-operator by Gabor multipliers of a given type;
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The BASIC ingredients of the approach

The S0-Banach-Gelfand-Triple setting allows as to approximate
general objects of interest (distributions having bounded STFT) in
the w∗-sense by any kind of nice objects, such as

test functions, or compactly supported, continuous functions;

finite discrete measures, but also

discrete and periodic measures

Recall, that the S ′0-norm of σ ∈ S ′0 is equivalent to

sup
λ∈Rd×R̂d

|Vg (σ)(λ)|

while w∗-convergence of a sequence (or net) (σn)n≥1 towards σ0 is
equivalent to the compact/open convergence of Vg (σn) towards
the limit Vg (σ).
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Selection of bibliographic items, see www.nuhag.eu

THERE will be a workshop in Marburg (MACHA11), August
22-26th! for those who want to learn more about Gabor Analysis
carried out using MATLAB.
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