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Beethoven’s piano sonata

Let us also listen to some (other) music and start STXTM (ARI,
Vienna) or simple the Wavplayer! (Visualization via fire or water!).



Gabor Analysis in our kid’s daily live (MP3)
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It all began with the unit circle

We all know about the unit circle

U := {z | z ∈ C, |z | = 1}
which can be parameterized by the complex exponential function

t → exp(2πit) = e2πjt .

It is a (compact) group under pointwise multiplication, with the
unit-roots of order N being its (closed) subgroups (N = 2k !)
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... and the trigonometric functions

As we know due to Euler we have

e ix = cos(x) + i · sin(x), x ∈ R,

cos(x) =
1

2
(e ix + e−ix), sin(x) =

1

2i
(e ix − e−ix)

classical Fourier series describing a periodic function

f (t) = a0 +
∞∑
n=1

akcos(2πkt) + bksin(2πkt)

is thus fully equivalent to the orthonormal series expansions

f (t) =
∑
k∈Z

cke2πikt =
∑
k∈Z

f̂ (k)χk(t) =
∑
k∈Z
〈f , χk〉χk(t),

where engineers call χk a pure frequency.
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The continuous Fourier transform

f̂ (s) =

∫
R

f (t)χs(t)dt =

∫
R

f (t)e−2πistdt

and an inversion of the form

f (t) =

∫
R

f̂ (s)χs(t)ds =

∫
R

f̂ (s)e2πistds.

Like the FFT it is isometric with respect to the energy-norm

‖f ‖2 :=
√∫

R |f (t)|2dt, and satisfies 〈f , g〉 = 〈F f ,Fg〉.

Theorem (Theorem of Plancherel)

The Fourier transform is unitary on L2(R) onto itself. It is unitary,
i.e. the kernel of the inverse mapping is just the conjugate of the
forward Fourier transform, or equivalently, FF f (t) = f (−t).
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Why is it so important and useful?

1 Probability: the Fourier transform turns convolution

f ∗ g(x) :=

∫
Rd

g(x − y)f (y)dy

into pointwise multiplication f̂ ∗ g = f̂ · ĝ , the so-called
convolution theorem.

2 The pure frequencies (or characters) are the only bounded
eigenvectors to shift operators due to

χs(t − z) = e−2πiszχs(t).

3 Translation invariant linear systems, i.e. mappings T
commuting with shift-operators pop up everywhere
(> signal and image processing, PDE).
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The continuous Fourier transform

Looking at the formulas once more:

f̂ (s) =

∫
R

f (t)χs(t)dt =

∫
R

f (t)e−2πistdt

and an inversion of the form (IF f̂ is integrable!)

f (t) =

∫
R

f̂ (s)χs(t)ds =

∫
R

f̂ (s)e2πistds.

Do we have to learn Lebesgue integration theory to understand the
fine details of the Fourier transform? (answer later: better learn
distribution theory!)
But what are we achieving in this way: To approximate (? in which
sense) a harmless and smooth bump-function f by certain linear
combinations of pure frequencies (trigonometric polynomials).
Well, we have now an uncountable continuous family of them!
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projects

Time-Frequency Analysis and Music



The Short-Time Fourier Transform of this Song



Choice of the window. Why not BOX-function?
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Choice of the window. Why not BOX-function?
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.. due to the bad decay of SINC
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Motivated by MUSICAL SCORE one could do ?
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... and cut the signal into pieces
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... and do localized spectra
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Choice of the window. Why not BOX-function?
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Choice of the window. Why not BOX-function?
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D.Gabor’s suggestion of 1946

Choose the Gauss-function, because it is the unique minimizer to
the Heisenberg Uncertainty Relation and choose the critical,
so-called von-Neumann lattice, which is simply Z2.
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The Gaborian Building blocks
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Building blocks are associated with points in phase space
or the TIME-Frequency Plane
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The Key Players (why is it called TF-analysis)

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rdd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (t, ω) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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Modern Viewpoint I

Todays Rules of the Game
Choose a good window or Gabor atom (any g ∈ S(Rd) will do)
and try to find out, for which lattices Λ ∈ R2d the signal f resp. its
STFT (with that window) can recovered in a STABLE way from
the samples, i.e. from the values 〈f , π(λ)g〉.
We speak of tight Gabor frames (gλ) if we can even have the
expansion (for some constant A > 0)

f = A ·
∑
λ∈Λ

〈f , gλ〉gλ, ∀ f ∈ L2(Rd).

Note that in general tight frames can be characterized as
orthogonal projections of orthonormal bases of larger spaces!!!
(this gives an idea how one might produce tight frames in general).
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Modern Viewpoint II

Another basic fact is that for each g ∈ S(Rd) one can find, if Λ is
dense enough (e.g. aZ× bZ ⊂ Rd for ab < 1 in the Gaussian
case) a dual Gabor window g̃ such that one has at least

f =
∑
λ∈Λ

〈f , g̃λ〉gλ =
∑
λ∈Λ

〈f , gλ〉g̃λ (1)

g̃ can be found as the solution of the (positive definite) linear
system Sg̃ = g , where Sf =

∑
λ∈Λ〈f , gλ〉gλ, so using g̃ instead

of g for analysis or synthesis corrects for the deviation from the
identity operator. An important fact is the commutation relation
S ◦ π(λ) = π(λ) ◦ S , for all λ ∈ Λ.
Thus (1) is just S ◦ S−1 = Id = S−1 ◦ S in disguise!).
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A generic, high redundancy frame in the plane

a frame of redundancy 18 in the plane
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The action of a corresponding frame multiplier

The effect of a frame multiplier in the plane:
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Gabor Analysis in our kid’s daily live (MP3)
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The audio-engineer’s work: Gabor multipliers
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Pending application: Removing Fringes in Astronomy ?
as part of an ongoing ESO project in AUSTRIA.
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Motivation for compactness of musical description

1 It is localized (as opposed to the global Fourier transform)

2 Its building blocks are localized pure frequencies, hence
approximate eigenvectors to slowly variant systems;

3 recall that the pure frequencies are a complete system of
eigenvectors for the (commutative algebra) of translation
operators;

4 one has to choose whether one wants to have redundant and
generating families (frames), OR undersampled, linear
independent families (Riesz bases), and one cannot have both,
except with other undesirable properties (Balian-Low principle)
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2D-Gabor Transform: Plane Waves

a plane wave
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2D-Gabor Analysis: Test Images
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2D-Gabor Transform: Test-Images 2
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Image Compression: a Test Image
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Showing the elementary 2D-building blocks
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Thanks!

THANK you for your attention
maybe you visit www.nuhag.eu

and checkout other talks and related material. hgfei



The setting of finite Abelian grous

We recall that we have for any finite Abelian Group G the
character group

Ĝ = {χ | |χ(x)| ≡ 1, χ(x + y) = χ(x) · χ(y), x , y ,G}

Let us assume for this session that G is a FINITE ABELIAN
GROUP (so in principle it is a product of cyclic groups ZN). On of
the basic observations, providing a starting point to time-frequency
analysis, is the introduction of time-frequency shift operators

π(x , χ) : f 7→ MχTx f

where Tx f (y) = f (y − x) and Mχ = χ · f .
Engineers write Mω for χ(t) = χω(t) = e2πiωt , and call them pure
frequencies.



The setting of finite Abelian grous

Some algebra: [THE REST is for people with interest in GROUP
theory and ALGEBRA, it is part of a Talk at AMS, JAN. 2010]

Theorem

1 Both the time- resp. frequency shifts for an Abelian group
(isomorphic to G × Ĝ );

2 they don’t commute in general, but satisfy the canonical
commutation relations (with phase factors, related to the
eigenvalues of the characters under shift operators);

3 (t, χ) 7→ π(t, χ) := MχTx is a so-called projective

representation of phase space, i.e. the Abelian group G × Ĝ .

4 There is a natural extension of π which makes it an ordinary
unitary representation of the reduced Heisenberg group
G × Ĝ × U on `2(G ) (which is irreducible);



Phase space points as operators

So we have now for a group of cardinality #G = N exactly N2

TF-shift matrices, within the matrix algebra over G , which has
exactly this dimension N2. In fact, they form an orthonormal basis
(w.r.t. the Hilbert-Schmidt resp. Frobenius scalar product).

Theorem (spreading representation)

Every matrix has a representation of the form

A =
∑
G × Ĝ

cλπ(λ),

with
cλ = trace(A ∗ π(λ)∗)/N2.

The spreading function A 7→ c = c(A) is unitary from the Hilbert
Schmidt operators to `2(G × Ĝ ). It’s symplectic Fourier transform
is just the Kohn-Nirenberg symbol of the operator A.



Phase space points as operators

Even if not all TF-shifts commute which each others, there are
considerable large groups of commuting operators (we have seen
the group of all time- and all frequency shifts are such lattices of
order N, each)

Lemma

For each subgroup (lattice) Λ within the group G × Ĝ (viewed as
Abelian group) there is a corresponding group Λ◦, with
#Λ ·#Λ = N2,with

Λ◦ = {λ◦ |π(λ◦)π(λ) = π(λ)π(λ◦) ∀λ∈Λ}

The symplectic version of Poisson’s formula is made exactly such
that it maps the indicator function of Λ onto (a multiple of) the
indicator function of Λ◦ (and vice versa, or equivalently: Λ◦◦ = Λ).



Lattices and Adjoint Lattices
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Phase space points as operators

Now that we have an identification of points in phase space G × Ĝ
and operators is given, we can produce for any finite or countable
set of points a family of vectors in the Hilbert space `2(G ) by
applying the corresponding operators to a given vector (usually
called atom or window), namely gλ = π(λ)g . If we take a Gauss
function then the spectrogram of gλ will be clearly concentrated
around the point λ. Thus we expect that it makes sense to cover
the whole TF-plane in a reasonable we.
For this (algebraically oriented) talk we restrict our attention to
finite subgroups Λ of the (Abelian) group G × Ĝ .



TF-picture of atoms in general position
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(regular) Gabor families: Frames and Riesz bases

Definition

Given a pair (g ,Λ), consisting of a vector g ∈ `2(G ) and a lattice
Λ / G × Ĝ we call the family (gλ)λ∈Λ a Gabor frame, if the family
spans all of `2(G ). It is called a Gaborian Riesz basis (resp. Riesz
basic sequence) if it is a linear independent set.

There are - for people in numerical analysis - quality measures for
the quality of such families, in the sense of a conditioning of the
problem, thus being a quotient of two relevant singular values of
associated operators, we don’t go into details here.
Both situations are of practical relevance!



Usefulness and applications of Gabor frames:

The question of Gabor frames is of interest, when a signal (say
some audio signal, or some image, cf. introduction) is to be
decomposed into meaningful elementary building blocks, somehow
like transcription. Ideally the distribution of energy in the signal
goes over into an equivalent energy distribution. AND WHAT can
we do with this:
a) contributions may be irrelevant (or disturbing) and can be
eliminated (the bird contributing to the open air classical concert):
denoising of signals
b) signals can be separated in a TF-situation
c) unimportant, small contributions can be omitted (+ masking
effect): allows for efficient lossy compression schemes >> MP3.



The audio-engineer’s work: Gabor multipliers
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Applications of Gabor Riesz bases:

Of course Gabor Riesz bases (for subspaces) will correspond to
lattices Λ with at most N points. Ideally, the Gram matrix of the
corresponding system is diagonal dominant (there is the so-called
piano-reconstruction theorem).
They are very useful in mobile communication. The fact, that
smooth envelopes (as used for Gabor frames), multiplied with pure
frequencies are at least approximate eigenvectors for so-called
slowly varying channels makes them useful for mobile
communication. The physical assumption of limited multi-path
propagation (variable kernels over time) and Doppler (due to
movement) related to underspread operators, i.e. to matrices whose
spreading function is supported on a given rectangular domain.



Mobile Communication
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Mobile Communication
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Applications of Gabor Riesz bases:

The information, encoded as a collection of coefficients which we
will call (cλ◦) are used to form a linear combination of the
elements of our Gaborian Riesz basis. I.e. the sender plays slowly a
melody on the piano.
Assume we are able to estimate the approximate eigenvalues (dλ◦

of the involved building blocks (gλ◦ , the approximate eigenvector
property of these building blocks implies that the receiver obtains∑

λ◦ cλ◦dλ◦gλ◦ . Knowing the factors (dλ◦) (by sending so-called
pilot tones) and the biorthogonal basis the receiver can then
(approximately) recover the set of coefficients (cλ◦) sent by the
sender.
In other words, the receiver listens to the music behind a wall,
knowing e.g. that higher frequencies are absorbed more (or less)
then others and figures out, what has been played.



Underspread operators

spreading support
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Pilot tones and Channel estimation

Underspread operators can be viewed as the analogue of
band-limited signals. As we know they can be recovered (i.e.
completely desribed) by knowing sufficiently many samples on a
(sufficiently dense) lattice Λ.
The specific properties of such underspread operators in turn
makes the idea of channel estimation on the basis of pilot tones
work: sending station and receiver agree on certain Gabor atoms
to be sent regularly. The receiver can recognize from their
distortion (+noise) at least approximately what the channel (=
operator) might be so that the inversion of the channel (decoding)
can be done more efficiently.
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Periodic operators and spreading support on grids

It is a well know principle in signal processing resp. Fourier
transform theory, that periodizing of a function corresponds to
sampling of its Fourier transform (and vice versa).
At the mathematical basis of this observation is Poisson’s formula,
which in the discrete setting corresponds to the fact that the
G -Fourier Transform of the indicator function of Λ / G is #Λ · Λ⊥.
Reading sampling as multiplication with such a Shah-comb (and
convolution with a Shah-comb as periodization) one can easily
understand this connection (also closely related to the group
theoretical view on Shannon’s sampling theorem, also known as
Kluvanek’s theorem in the LCA setting).
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The Gabor frame operator:

The crucial operator for he determination, whether (g ,Λ) generates
a Gabor frame or not is the question, whether to so-called frame
operator is positive definite (or possibly singular, otherwise).

Sf =
∑
λ∈Λ

〈f , gλ〉gλ.

The most important fact to be known about this operator is a
commutation relation:

S ◦ π(λ) = π(λ) ◦ S ∀λ∈Λ.



The (canonical) dual Gabor frame

This greatly simplifies the calculation of (minimal norm)
coefficients for the given signal. In fact, it is found that the
solution g̃ of the simple (positive definite) linear equation

Sg̃ = g resp. g̃ = S−1g ,

spans the dual Gabor frame. In fact FFT-based methods can be
applied to efficiently calculate these coefficients, once g̃ is given.
Sometimes alternative sets of coefficients are equally useful.
For the solution of the above equations various iterative methods,
e.g. conjugate gradients, can be applied .



A generic, high redundancy frame in the plane
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Janssen’s representation of the frame operator

If we look at the operator S (but also S−1 or S−1/2) they are
commute with all the TF-shifts from the generating lattice Λ. This
property is reflected by an equivalent property in the spreading
domain: certain plane waves leave the spreading symbol invariant,
or equivalently, only the spreading coefficients over the so-called
adjoint lattice Λ◦ can be non-zero.
This also implies that the dual Gabor atom g̃ is just a linear
combination of elements from the adjoint orbit. This gives an
explicit sparsity of the frame operator and all the polynomials of
the frame operator and hence a fast realization of conjugate
gradients.



A generic, high redundancy frame in the plane

zoom into the frame matrix  S
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The relevant (non-commutative) Algebras

Theorem

The set of all matrices commuting with all TF-shifts from the
lattice Λ are exactly those who are having a spreading support
within Λ◦. Hence also the inverse of the operator S−1 belongs to
the same algebra.
This algebra is commutative if and only if Λ◦ ⊂ Λ (e.g. ab|N, the
so-called integer oversampling case). In this case FFT2-based
methods can be used, which are expressed using the so-called
Zak-transform.
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Useful COMMUTATIVE subalgebras

This algebra is also in the background of a method called double
preconditioning. Typically the frame matrix will either be diagonal
dominant or very close to a convolution matrix (not these are
related to commutative subgroups of the group Λ, viewed as a
family of TF-shift operators).
For “nice atoms” it is a good option in order to get good
approximation to the inverse frame operator (hence g̃) to apply
both the inverse of the diagonal part and afterwards the inverse of
the convolution part to g .
In this way the modified frame matrix will have a Janssen
representation with a dominant Identity contribution.
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The effect of double preconditioning in the spreading
domain
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A generic, high redundancy frame in the plane
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Continuous dependence of lattice constants

The last structure allows to explain and demonstrate a number of
interesting features of Gabor families, such as

The dual (and also the tight atom) depond continuously on
the lattice constants; if g is Fourier invariant and a = b then
the dual atom is also Fourier invariant;

There is a mirror symmetry of along the (critical) midline:
above it we have undersampled lattices with #Λ ≤ N and
below we have #Λ ≥ N, which is exactly the correspondence
between Λ (with (a, b)) and Λ◦ (with (N/b,N/a)).

One can have biorthogonal families in the undersampled case,
and dual frames in the undersampled case



dual atoms and Gabor multipliers

It is clear, that one actually would like to build an arbitrary signal f
given the pair (g ,Λ) (in the frame case), or at least do the best
approximation of f by linear combinations from the Gabor family
in the Riesz basis case. In both cases one has a number of choices,
but the canonical one (related to PINV resp. to the associated
MNLSQ-problem is the one usually preferred.
The appropriate coefficients are then obtained by taking scalar
products with respect to the correspondig “dual” family, which is
numerically efficiently implemented by doing a sampled STFT
(using FFT-based methods).



Wexler-Raz and Ron-Shen Theorems

Theorem

(1) (Wexler-Raz): The family generated by (g ,Λ) is a Gabor
frame, if and only if the family (g ,Λ◦) is a Gaborian Riesz basis.
Moreover, the generator g̃ of the dual frame coincides (up to a
normalizing factor) with the generator of the biorthogonal system
of the Riesz basis built from (g ,Λ◦).
(2) (Ron-Shen): If we look at the corresponding bounds for the
frame operator resp. the Gramian matrix the are (again up to a
fixed scaling, depeding on the size of the fundamental domain of Λ)
exactly equal, hence their condition numbers are exactly the same.

From an abstract view-point there is a so-called Morita-Equivalence
of Banach algebras in the background (cf. the work of Franz Luef).



Operating on the audio signal: filter banks
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Finally let us operate on the Gabor coefficients

Definition

Let g1, g2 be two L2-functions, Λ a TF-lattice for Rd , i.e. a discrete
subgroup of the phase space Λ C Rd × R̂d . Furthermore let
m = (m(λ))λ∈Λ be a complex-valued sequence on Λ. Then the
Gabor multiplier associated to the triple (g1, g2,Λ) with (strong
or) upper symbol m is given as

Gm(f ) = Gg1,g2,Λ,m(f ) =
∑
λ∈Λ

m(λ)〈f , π(λ)g1〉π(λ)g2. (2)

g1 is called the analysis window, and g2 is the synthesis window. If
g1 = g2 and m is real-valued, then the Gabor multiplier is
self-adjoint. Since the constant function m ≡ 1 is mapped into the
Identity operator if g1 = g2 is a Λ-tight Gabor atom this is often
the preferred choice.



The family of projection operators (Pλ)

Theorem

Assume that (g ,Λ) generates an S0-Gabor frame for L2(Rd), with
‖g‖2 = 1, and write Pλ for the projection f 7→ 〈f , π(λ)g〉π(λ)g.
i) Then the family (Pλ)λ∈Λ is a Riesz basis for its closed linear span
within the Hilbert space HS of all Hilbert-Schmidt operators on
L2(Rd) if and only if the function H(s), defined as the Λ-Fourier
transform of

(
|STFTg (g)(λ)|2

)
λ∈Λ

is does not have zeros.
ii) An operator T belongs to the closed linear span of this Riesz
basis if and only if it belongs to GM2, the space of Gabor
multiplier with `2(Λ)-symbol.
iii) The canonical biorthogonal family to (Pλ)λ∈Λ is of the form
(Qλ)λ∈Λ,

Qλ = π(λ) ◦ Q ◦ π−1(λ) for λ∈Λ,

for a uniquely determined Gabor multiplier Q ∈ B.
iv) The best approximation of T ∈ HS by Gabor multipliers based
on the pair (g ,Λ) is of the form

PG (T ) :=
∑
λ∈Λ

〈T ,Qλ〉HS Pλ. (3)

Hence PG describes the orthogonal projection from HS onto
GM2(g ,Λ).



The family of projection operators (Pλ)

We make use here of the fact, that π ⊗ π∗ (coming from a
projective representation on `2(G )) is now a true unitary
representation of G × Ĝ on HS.
The Kohn-Nirenberg (recall: the symplectic Fourier version of he
spreading symbol) is turning this representation of matrices into a
subrepresentation of the regular representation of G × Ĝ : The
KN-symbols of Gabor multipliers are just linear combinations of
translates along Λ of the KNS of the rank-one operators
f 7→ 〈f , g〉g . In other words, the best HS-approximation problem
for matrices is equivalent to the problem of best approximation of
function in L2(G × Ĝ ) by the elements of some spline-type space
(so again groups and FFT-based methods can be employed).



Equivalent representations and intertwining operators

Again a group theoretical view-point can be helpful.

Theorem

The unitary transforms which identify a Hilbert Schmidt operator
(as operator on L2(G )) with its matrix kernel (with the Frobenius
norm), with its spreading symbol (in `2(G × Ĝ )) or its
Kohn-Nirenberg symbol are all intertwining with the natural action
of phase space on each of these Hilbert spaces:
(i) π ⊗ π∗ at the operator level
(ii) Multiplication with appropriate plane waves in the spreading
domain (as a result of the commutation relations);
(iii) as ordinary shifts in the KNS-setting...



1D versus 2D: a group theoretic view:

Whereas it is clear from the group theory that isomorphic Abelian
groups will have “isomorphic Gabor theory” (atoms, frames, Riesz
bases, dual atoms, etc.) in terms of code (for actual computation)
or especially applications (images look really different from
audio-signals) one has to think about it.
Just to mention: if one has a group of the form Zp × Zq with p
and q relatively prime (e.g. p = 256 and q = 243) then we can
map images of such a format (also Gabor atoms etc.) on
corresponding functions of size N = 256 · 243 = 62208, and use
1D-MATLAB code for 2D applications.
Otherwise, of course, one is taking tensor products of 1D-atoms.
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A generic, high redundancy frame in the plane

a frame of redundancy 18 in the plane
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The action of a corresponding frame multiplier

The effect of a frame multiplier in the plane:
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The classical setting of test functions & distributions

Schw L1

Tempered Distr.

L2

C0

FL1
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A suitable Banach space of test functions & distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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