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Goals of this lecture

show that the usual generalizations of linear algebra concepts
to the Hilbert space case (namely linear independence and
totality) are inappropriate in many cases;

that frames and Riesz bases (for subspaces) are the right
generalization to Hilbert spaces;

that Hilbert spaces are themselves a too narrow concept and
should be replaced Banach Gelfand Triples, ideally isomorphic
to the canonical ones (`1, `2, `∞);

Describing the situation of frames or Riesz bases via
commutative diagrams allows to extend this notation to
BGTs;

Demonstrate by examples (Fourier transform, kernel theorem)
that this viewpoint brings us very close to the
finite-dimensional setting!
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OVERVIEW over this lecture 60- MINUTES

This is a talk about the frames viewing frames as RETRACTS,
i.e. a construction which can be done in any category;

about the ubiquity of Banach Gelfand Triples ;

provides a setting very similar to the finite dimensional setting;

showing how easy they are to use;

showing some applications in Fourier Analysis;

indicating its relevance for numerical applications;

and for teaching purposes;

that it is a good vehicle to transfer algebraic facts
(over finite Abelian group to the setting of LCA groups);

perhaps change your view on Fourier Analysis.
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ANALYSIS: Calculating with all kind of numbers

We teach in our courses that there is a huge variety of NUMBERS,
but for our daily life rationals, reals and complex numbers suffice.
The most beautiful equation

e2πi = 1.

It uses the exponential function, with a (purely) imaginary
exponent to get a nice result, more appealing than (the equivalent)

cos(2π) + i ∗ sin(2π) = 1 in C.

But actual computation are done for rational numbers only!! Recall

Q ⊂ R ⊂ C
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ANALYSIS: Spaces used to describe the Fourier Transform
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Hausdorff Young Theorem for the Fourier Transform

FLp(Rd) ⊆ Lq(Rd), 1 ≤ p ≤ 2,
1

q
+

1

p
= 1.
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Wiener Amalgam spaces, Wiener Algebra, etc.
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Frames in Hilbert Spaces: Classical Approach

Definition

A family (fi )i∈I in a Hilbert space H is called a frame if there exist
constants A,B > 0 such that for all f ∈ H

A‖f ‖2 ≤
∑
i∈I
|〈f , fi 〉|2 ≤ B‖f ‖2 (1)

It is well known that condition (1) is satisfied if and only if the
so-called frame operator is invertible, which is given by

Definition

S(f ) :=
∑
i∈I
〈f , fi 〉fi , for f ∈ H,
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Frames in Hilbert Spaces: Classical Approach II

The obvious fact S ◦ S−1 = Id = S−1 ◦ S implies that the
(canonical) dual frame (f̃i )i∈I , defined by f̃i := S−1(fi ) has the
property that one has for f ∈ H:

Definition

f =
∑
i∈I
〈f , f̃i 〉fi =

∑
i∈I
〈f , fi 〉f̃i (2)

Moreover, applying S−1 to this equation one finds that the family
(f̃i )i∈I is in fact a frame, whose frame operator is just S−1, and
consequently the “second dual frame” is just the original one.
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Frames in Hilbert Spaces: Approach III

Since S is positive definite in this case we can also get to a more
symmetric expression by defining hi = S−1/2fi . In this case one has

f =
∑
i∈I
〈f , hi 〉hi for all f ∈ H. (3)

The family (hi )i∈I defined in this way is called the canonical tight
frame associated to the given family (gi )i∈I . It is in some sense the
closest tight frame to the given family (fi )i∈I .
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Where did frames come up? Historical views:

I think there is a historical reason for frames to pop up in the
setting of separable Hilbert spaces H. The first and fundamental
paper was by Duffin and Schaeffer ([3]) which gained popularity in
the “painless” paper by Daubechies, Grossmann and Y. Meyer
([2]). It gives explicit constructions of tight Wavelet as well as
Gabor frames. For the wavelet case such dual pairs are are also
known due to the work of Frazier-Jawerth, see [5, 6]. Such
characterizations (e.g. via atomic decompositions, with control of
the coefficients) can in fact seen as prerunners of the concept of
Banach frames to be discussed below.
These methods are closely related to the Fourier description of
function spaces (going back to H. Triebel and J. Peetre) using
dyadic partitions of unity on the Fourier transform side.
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Dyadic Partitions of Unity and Besov spaces
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Where did frames come up? Historical views II

The construction of orthonormal wavelets (in particular the first
constructions by Y. Meyer and Lemarie, and subsequently the
famous papers by Ingrid Daubechies), with prescribed degree of
smoothness and even compact support makes a big difference to
the Gabor case.
In fact, the Balian-Low theorem prohibits the existence of (Riesz-
or) orthogonal Gabor bases with well TF-localized atoms, hence
one has to be content with Gabor frames (for signal expansions) or
Gabor Riesz basic sequences (for mobile communication such as
OFDM).
This also brings up a connection to filter banks, which in the case
of Gabor frames has been studied extensively by H. Bölcskei
and coauthors ( see [1]).
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LINEAR ALGEBRA: Gilbert Strang’s FOUR SPACES

Let us recall the standard linear algebra situation. Given some
m × n -matrix A we view it as a collection of column resp. as a
collection of row vectors. We have:

row-rank(A) = column-rank(A)
Each homogeneous linear system of equations can be expressed in
the form of scalar products1 we find that

Null(A) = Rowspace(A)⊥

and of course (by reasons of symmetry) for A′ := conj(At):

Null(A′) = Colspace(A)⊥

1Think of 3x + 4y + 5z = 0 is just another way to say that the vector
x = [x , y , z] satisfies 〈x, [3, 4, 5]〉 = 0.
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Geometric interpretation of matrix multiplication

Since clearly the restriction of the linear mapping x 7→ A ∗ x

Rn

Row(A) Col(A) ⊆ Rm-
T̃ = T|row(A)

R

?

PRow

@
@
@
@
@
@
@@R

T : x → A ∗ x
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
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T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
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�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Four spaces and the SVD

The SVD (the so-called Singular Value Decomposition) of a
matrix, described in the MATLAB helpful as a way to write A as

A = U ∗ S ∗ V ′

, where the columns of U form an ON-Basis in Rm and the columns
of V form an ON-basis for Rn, and S is a (rectangular) diagonal
matrix containing the non-negative singular values (σk) of A. We
have σ1 ≥ σ2 . . . σr > 0, for r = rank(A), while σs = 0 for s > r .
In standard description we have for A and pinv(A) = A+:

A ∗ x =
r∑

k=1

σk〈x , vk〉uk , A+ ∗ y =
r∑

k=1

1

σk
〈y , uk〉vk .
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Generally known facts in this situation

The Four Spaces are well known from LINEAR ALGEBRA, e.g. in
the dimension formulas:

ROW-Rank of A equals COLUMN-Rank of A.

The defect (i.e. the dimension of the Null-space of A) plus the
dimension of the range space of A (i.e. the column space of A)
equals the dimension of the domain space Rn. Or in terms of
linear, homogeneous equations: The dimension of set of all
solution to the homogeneous linear equations equals the number of
variables minus the dimension of the column space of A.
The SVD also shows, that the isomorphism between the
Row-space and the Column-space can be described by a diagonal
matrix, if suitable orthonormal basis for these spaces are used.
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Consequences of the SVD

We can describe the quality of the isomorphism T̃ by looking at its
condition number, which is σ1/σr , the so-called Kato-condition
number of T .
It is not surprising that for normal matrices with A′ ∗ A = A ∗ A′

one can even have diagonalization, i.e. one can choose U = V ,
because

Null(A) =always Null(A′ ∗ A) = Null(A ∗ A′) = Null(A′).

The most interesting cases appear if a matrix has maximal rank,
i.e. if rank(A) = min(m, n), or equivalently if one of the two
Null-spaces is trivial. Then we have either linear independent
columns of A (injectivity of T >> RIESZ BASIS for
subspaces) or the columns of A span all of Rm

( i.e. Null(A′) = {0}): FRAME SETTING!

Hans G. Feichtinger BANACH FRAMES and BANACH GELFAND TRIPLES



Geometric interpretation: linear independent set > R.B.

Row(A) = Rn Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ ) = pinv(A)

T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

Hans G. Feichtinger BANACH FRAMES and BANACH GELFAND TRIPLES



Geometric interpretation: generating set > FRAME

Null(A) ⊆ Rn

Row(A) Col(A) = Rm
-

T̃ = T|row(A)

inv(T̃ ) = A′
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The frame diagram for Hilbert spaces:

If we consider A as a collection of column vectors, then the role of
A′ is that of a coefficient mapping: f 7→ (〈f , fi 〉).

`2(I )

H C(H)-
C

� R ?

P

�
�

�
�

�
�	

R

This diagram is fully equivalent to the frame inequalities (1).
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Riesz basic sequences in Hilbert spaces:

The diagram for a Riesz basis (for a subspace), nowadays called a
Riesz basic sequence looks quite the same.
In fact, from an abstract sequence there is no! difference, just like
there is no difference (from an abstract viewpoint) between a
matrix A and the transpose matrix A′.
However, it makes a lot of sense to think that in one case the
collection of vectors (making up a Riesz BS) spans the (closed)
subspace of H by just taking all the infinite linear combinations
(series) with `2-coefficients.
In this way the synthesis mapping c 7→

∑
i cigi from `2(I ) into the

closed linear span is surjective, while in the frame case the
analysis mapping f 7→ (〈f , gi 〉) from H into `2(I ) is injective
(with bounded inverse).
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Frames versus atomic decompositions

Although the definition of frames in Hilbert spaces emphasizes the
aspect, that the frame elements define (via the Riesz
representation theorem) an injective analysis mapping, the
usefulness of frame theory rather comes from the fact that frames
allow for atomic decompositions of arbitrary elements f ∈ H.
One could even replace the lower frame bound inequality in the
definition of frames by assuming that one has a Bessel sequence
(i.e. that the upper frame bound is valid) with the property that
the synthesis mapping from `2(I ) into H, given by c 7→

∑
i cigi is

surjective onto all of H.
Analogously one can find Riesz bases interesting (just like linear
independent sets) because they allow to uniquely determine
the coefficients of f in their closed linear span on that closed
subspace of H.
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A hierarchy of conditions 1

While the following conditions are equivalent in the case of a finite
dimensional vector space (we discuss the frame-like situation) one
has to put more assumptions in the case of separable Hilbert
spaces and even more in the case of Banach spaces.
Note that one has in the case of an infinite-dimensional Hilbert
space: A set of vectors (fi )i∈I is total in H if and only if the
analysis mapping f 7→ (〈f , gi 〉) is injective. In contrast to the
frame condition nothing is said about a series expansion, and in
fact for better approximation of f ∈ H a completely different finite
linear combination of g ′i s can be used, without any control on the
`2-norm of the corresponding coefficients.
THEREFORE one has to make the assumption that the range of
the coefficient mapping has to be a closed subspace of `2(I )
in the discussion of frames in Hilbert spaces.
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A hierarchy of conditions 2

In the case of Banach spaces one even has to go one step further.
Taking the norm equivalence between some Banach space norm
and a corresponding sequence space norm in a suitable Banach
space of sequences over the index set I (replacing `2(I ) for the
Hilbert space) is not enough!
In fact, making such a definition would come back to the
assumption that the coefficient mapping C : f 7→ (〈f , gi 〉) allows to
identify with some closed subspace of that Banach space of
sequences. Although in principle this might be a useful concept it
would not cover typical operations, such as taking Gabor
coefficients and applying localization or thresholding, as the
modified sequence is then typically not in the range of the
sampled STFT, but resynthesis should work!
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A hierarchy of conditions 3

What one really needs in order to have the diagram is the
identification of the Banach space under consideration (modulation
space, or Besov-Triebel-Lozirkin space in the case of wavelet
frames) with a close and complemented subspace of a larger space
of sequences (taking the abstract position of `2(I ).
To assume the existence of a left inverse to the coefficient mapping
allows to establish this fact in a natural way. Assume that R is the
left inverse to C. Then C ◦ R is providing the projection operator
(the orthogonal projection in the case of `2(I ), if the canonical
dual frame is used for synthesis) onto the range of C. The converse
is an easy exercise: starting from a projection followed by the
inverse on the range one easily obtains a right inverse operator R.
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A hierarchy of conditions 4

The above situation (assuming the validity of a diagram and the
existence of the reconstruction mapping) is part of the definition of
Banach frames as given by K. Gröchenig in [7].
Having the classical situation in mind, and the spirit of frames in
the Hilbert spaces case one should however add two more
conditions:
In order to avoid trivial examples of Banach frames one should
assume that the associated Banach space

(
B ‖ · ‖B

)
of sequences

should be assumed to be solid, i.e. satisfy that |ai | ≤ |bi | for all
i ∈ I and b ∈ B implies a ∈ B and ‖a‖B ≤ ‖b‖B.
Then one could identify the reconstruction mapping R with the
collection of images of unit vectors hi := R(~ei ), where ~ei is the
unit vector at i ∈ I . Moreover, unconditional convergence
of a series of the form

∑
i cihi would be automatic.
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A hierarchy of conditions 6

Instead of going into this detail (including potentially the
suggestion to talk about unconditional Banach frames) I would
like to emphasize another aspect of the theory of Banach frames.
According to my personal opinion it is not very interesting to
discuss individual Banach frames, or the existence of some Banach
frames with respect to some abstract Banach space of sequences,
even if the above additional criteria apply.
The interesting cases concern situations, where the coefficient and
synthesis mapping concern a whole family of related Banach
spaces, the setting of Banach Gelfand triples being the minimal
(and most natural) instance of such a situation.
A comparison: As the family, consisting of father, mother and the
child is the foundation of our social system, Banach Gelfand
Triples are the prototype of families, sometimes scales of Banach
spaces, the “child” being of course our beloved Hilbert space.
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Banach Gelfand Triples and Rigged Hilbert space

The next term to be introduced are Banach Gelfand Triples.
There exists already and established terminology concerning triples
of spaces, such as the Schwartz triple consisting of the spaces
(S,L2,S ′)(Rd), or triples of weighted Hilbert spaces, such as
(L2

w ,L
2,L2

1/w ), where w(t) = (1 + |t|2)s/2 for some s > 0, which is
- via the Fourier transform isomorphic to another (“Hilbertian”)
Gelfand Triple of the form (Hs ,L

2,Hs
′), with a Sobolev space and

its dual space being used e.g. in order to describe the behaviour of
elliptic partial differential operators.
The point to be made is that suitable Banach spaces, in fact
imitating the prototypical Banach Gelfand triple (`1, `2, `∞)
allows to obtain a surprisingly large number of results
resembling the finite dimensional situation.
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A Classical Example related to Fourier Series

There is a well known and classical example related to the more
general setting I want to describe, which - as so many things - go
back to N. Wiener. He introduced (within L2(U)) the space(
A(U), ‖ · ‖A

)
of absolutely convergent Fourier series. Of course

this space sits inside of
(
L2(U), ‖ · ‖2

)
as a dense subspace, with

the norm ‖f ‖A :=
∑

n∈Z |f̂ (n)|.
Later on the discussion about Fourier series and generalized
functions led (as I believe naturally) to the concept of
pseudo-measures, which are either the elements of the dual of(
A(U), ‖ · ‖A

)
, or the (generalized) inverse Fourier transforms of

bounded sequences, i.e. F−1(`∞(Z)).
In other words, this extended view on the Fourier analysis operator
C : f 7→ (f̂ (n)n∈Z) on the BGT (A,L2,PM) into (`1, `2, `∞)
is the prototype of what we will call a BGT-isomorphism.
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The visualization of a Banach Gelfand Triple

 The S
0
 Gelfand triple
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Rethinking shortly the Fourier Transform

Since the Fourier transform is one of the central transforms, both
for abstract harmonic analysis, engineering applications and
pseudo-differential operators let us take a look at it first. People
(and books) approach it in different ways and flavours:

It is defined as integral transform (Lebesgue!?);

It is computed using the FFT (what is the connection);

Should engineers learn about tempered distributions?

How can we reconcile mathematical rigor and still stay in
touch with applied people (physics, engineering).
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency
(FFT algorithms of signals of length N run in Nlog(N) time, for
N = 2k , due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (4)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (5)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd). One often speaks of Fourier
analysis being the first step, and the Fourier inversion as a method
to build f from the pure frequencies (we talk of Fourier synthesis).
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd) we have f̂ ∈ C0(Rd) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd));

2 The Fourier transform f on L1(Rd) ∩ L2(Rd) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 Lp-spaces have traditionally a high reputation among
function spaces, but tell us little about f̂ .
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Effects of Sampling and Periodization: Poisson’s formula
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A schematic description of the situation

L1

L2

C0

FL1

the classical Fourier situation
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The way out: Test Functions and Generalized Functions

The usual way out of this problem zone is to introduce generalized
functions. In order to do so one has to introduce test functions,
and give them a reasonable topology (family of seminorms), so
that it makes sense to separate the continuous linear functionals
from the pathological ones. The “good ones” are admitted and
called generalized functions, since most reasonable ordinary
functions can be identified (uniquely) with a generalized function
(much as 5/7 is a complex number!).
If one wants to have Fourier invariance of the space of
distributions, one must Fourier invariance of the space of test
functions (such as S(Rd)). If one wants to have - in addition -
also closedness with respect to differentiation one has to take
more or less S(Rd). But there are easier alternatives.
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A schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1

Hans G. Feichtinger BANACH FRAMES and BANACH GELFAND TRIPLES



The Banach space
(
S0(Rd ), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd), ‖ · ‖S0

)
or (M1(Rd), ‖ · ‖M1)), which will serve our

purpose. Its dual space (S0
′(Rd), ‖ · ‖S0

′) is correspondingly the
largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd)), we
will restrict ourselves to Banach Gelfand Triples, mostly
related to (S0,L

2,S0
′)(Rd).
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repeated: SOGELFTR

 The S
0
 Gelfand triple
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd )

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
There are many other independent characterization of this space,
spread out in the literature since 1980, e.g. atomic decompo-
sitions using `1-coefficients, or as W(FL1, `1) = M0

1,1(Rd).
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Basic properties of M∞( Rd ) = S0
′(Rd )

It is probably no surprise to learn that the dual space of(
S0(Rd), ‖ · ‖S0

)
, i.e. S0

′(Rd) is the largest (reasonable) Banach
space of distributions (in fact local pseudo-measures) which is
isometrically invariant under time-frequency shifts
π(λ), λ ∈ Rd × R̂d .
As an amalgam space one has
S0
′(Rd) = W(FL1, `1)

′
= W(FL∞, `∞)(Rd), the space of

translation bounded quasi-measures, however it is much better to
think of it as the modulation space M∞( Rd), i.e. the space of all

tempered distributions on Rd with bounded Short-time Fourier
transform (for an arbitrary 0 6= g ∈ S0(Rd)).
Consequently norm convergence in S0

′(Rd) is just uniform
convergence of the STFT, while certain atomic characterizations of(
S0(Rd), ‖ · ‖S0

)
imply that w∗-convergence is in fact equivalent to

locally uniform convergence of the STFT. – Hifi recordings!
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L2([0, 1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(U), the space of absolutely continuous Fourier series.
It is also not surprising in retrospect to see that the dual space
PM(U) = A(U)′ is space of pseudo-measures. One can extend the
classical Fourier transform to this space, and in fact interpret this
extended mapping, in conjunction with the classical Plancherel
theorem as the first unitary Banach Gelfand triple isomorphism,
between (A,L2,PM)(U) and (`1, `2, `∞)(Z).
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The BGT (S0,L
2,S0

′) and Wilson Bases

Among the many different orthonormal bases the wavelet bases
turn out to be exactly the ones which are well suited to
characterize the distributions by their membership in the classical
Besov-Triebel-Lizorkin spaces.
For the analogue situation (using the modulation operator instead
of the dilation, resp. the Heisenberg group instead of the
“ax+b”-group) on finds that local Fourier bases resp. the so-called
Wilson-bases are the right tool. They are formed from tight Gabor
frames of redundancy 2 by a particular way of combining complex
exponential functions (using Euler’s formula) to cos and sin
functions in order to build a Wilson ONB for L2(Rd).
In this way another BGT-isomorphism between (S0,L

2,S0
′)

and (`1, `2, `∞) is given, for each concrete Wilson basis.
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S0
′(Rd) onto S0

′(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (6)

is valid for (f , g) ∈ S0(Rd)× S0
′(Rd), and therefore on each level

of the Gelfand triple (S0,L
2,S0

′)(Rd).
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd)
correspond to norm convergence in (L1,L2,L∞)(R2d).
The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
This is a typical case, where we can see, that the w∗-continuity
plays a role, and where the fact that δx ∈ S0

′(Rd) as well as
χs ∈ S0

′(Rd) are important.
In the STFT-domain the w∗-convergence has a particular meaning:
a sequence σn is w∗-convergent to σ0 if Vg (σn)(λ)→ Vg (σ0)(λ)
uniformly over compact subsets of the TF-plane (for one or any
g ∈ S0(Rd)).
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Classical Results in Banach Space Theory

Wiener’s inversion theorem:

Theorem

Assume that h ∈ A(U) is free of zeros, i.e. that h(t) 6= 0 for all
t ∈ U. Then the function g(t) := 1/h(t) belongs to A(U) as well.

The proof of this theorem is one of the nice applications of a
spectral calculus with methods from Banach algebra theory.
This result can be reinterpreted in our context as a results which
states:
Assume that the pointwise multiplication operator f 7→ h · f is
invertible as an operator on

(
L2(U), ‖ · ‖2

)
, and also a

BGT-morphism on (A,L2,PM) (equivalent to the assumption
h ∈ A(U)!), then it is also continuously invertible as
BGT-morphism.
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SOGTr-results in Banach Triple terminology

In the setting of (S0,L
2,S0

′) a quite similar results is due to
Gröchenig and coauthors:

Theorem

Assume that for some g ∈ S0 the Gabor frame operator
S : f 7→

∑
λ∈Λ〈f , gλ〉gλ is invertible at the Hilbert space level, then

S defines automatically an automorphism of the BGT (S0,L
2,S0

′).
Equivalently, when g ∈ S0 generates a Gabor frame (gλ), then the
dual frame (of the form (g̃λ)) is also generated by the element
g̃ = S−1(g) ∈ S0.

The first version of this result has been based on matrix-valued
versions of Wiener’s inversion theorem, while the final result (due
to Gröchenig and Leinert, see [9]) makes use of the concept of
symmetry in Banach algebras and Hulanicki’s Lemma.
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Classical Results in Banach Space Theory 2

Theorem (Theorem by S. Banach)

Assume that a linear mapping between two Banach spaces is
continuous, and invertible as a mapping between sets, then it is
automatically an isomorphism of Banach spaces, i.e. the inverse
mapping is automatically linear and continuous.

So we have invertibility only in a more comprehensive category,
and want to conclude invertibility in the given smaller (or richer)
category of objects.
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Other relations to the finite-dimensional case

The paper [8]: Gabor frames without inequalities Int. Math. Res.
Not. IMRN, No.23, (2007) contains another collection of
statements, showing the strong analogy between a
finite-dimensional setting and the setting of Banach Gelfand triples:
The main result (Theorem 3.1) of that paper shows, that the
Gabor frame condition (which at first sight looks just like a
two-sided norm condition) is in fact equivalent to injectivity of the
analysis mapping (however at the “outer level”, i.e. from S0

′(Rd)
into `∞(Zd)), while it is also equivalent to surjectivity of the
synthesis mapping, but this time from `1(Zd) onto S0(Rd).

Hans G. Feichtinger BANACH FRAMES and BANACH GELFAND TRIPLES



Kernel Theorem for general operators in L(S0,S0
′)

Theorem

If K is a bounded operator from S0(Rd) to S0
′(Rd), then there

exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉

for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S0

′(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .
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Kernel Theorem II: Hilbert Schmidt Operators

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L2(R2d)-kernels. The complete picture can be best expressed by a
unitary Gelfand triple isomorphism. First the innermost shell:

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L2(R2d) on the kernels. An operator T has a kernel in
K ∈ S0(R2d) if and only if the T maps S0

′(Rd) into S0(Rd),
boundedly, but continuously also from w∗−topology into the norm
topology of S0(Rd).
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Kernel Theorem III

Remark: Note that for such regularizing kernels in K ∈ S0(R2d)
the usual identification. Recall that the entry of a matrix an,k is
the coordinate number n of the image of the n−th unit vector
under that action of the matrix A = (an,k):

k(x , y) = T (δy )(x) = δx(T (δy )).

Note that δy ∈ S0
′(Rd) implies that K (δy ) ∈ S0(Rd) by the

regularizing properties of K , hence the pointwise evaluation makes
sense.
With this understanding our claim is that the kernel theorem
provides a (unitary) isomorphism between the Gelfand triple (of
kernels) (S0,L

2,S0
′)(R2d) into the Gelfand triple of operator spaces

(L(S0
′,S0),HS,L(S0,S0

′)).
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AN IMPORTANT TECHNICAL warning!!

How should we realize these various BGT-mappings?
Recall: How can we check numerically that e2πi = 1??
Note: we can only do our computations (e.g. multiplication,
division etc.) properly in the rational domain Q, we get to R by
approximation, and then to the complex numbers applying “the
correct rules” (for pairs of real numbers).
In the BGT context it means: All the (partial) Fourier transforms,
integrals etc. only have to be meaningful at the S0-level!!! (no
Lebesgue even!), typically isometric in the L2-sense, and extend by
duality considerations to S0

′ when necessary, using w∗-continuity!
The Fourier transform is a good example (think of Fourier
inversion and summability methods), similar arguments apply to
the transition from the integral kernel of a linear mapping to its
Kohn-Nirenberg symbol., e.g..
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Frames and Riesz Bases: the Diagram

P = C ◦R is a projection in Y onto the range Y0 of C, thus we
have the following commutative diagram.

Y

X Y0-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces:

`2(I )

H C(H)-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces (S0,L
2,S0

′):

(`1, `2, `∞)

(S0,L
2,S0

′) C((S0,L
2,S0

′))-
C

� R ?

P

�
�

�
��	

R
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Verbal Description of the Situation

Assume that g ∈ S0(Rd) is given and some lattice Λ. Then (g ,Λ)
generates a Gabor frame for H = L2(Rd) if and only if the
coefficient mapping C from (S0,L

2,S0
′)(Rd) into (`1, `2, `∞)(Λ) as

a left inverse R (i.e. R ◦ C = IdH ), which is also a
GTR-homomorphism back from (`1, `2, `∞) to (S0,L

2,S0
′).

In practice it means, that the dual Gabor atom g̃ is also in S0(Rd),
and also the canonical tight atom S−1/2, and therefore the whole
procedure of taking coefficients, perhaps multiplying them with
some sequence (to obtain a Gabor multiplier) and resynthesis is
well defined and a BGT-morphism for any such pair.
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Gabor frame matrix representations

Much in the same way as basis in Cn are used in order to describe
linear mappings as matrices we can also use Gabor frame
expansions in order to describe (and analyze resp. better
understand) certain linear operators T (slowly variant channels,
operators in Sjoestrand’s class, connected with another family of
modulation spaces) by their frame matrix expansion. Working (for
convenience) with a Gabor frame with atom g ∈ S0(Rd) (e.g.
Gaussian atom, with Λ = aZ× bZ), and form for λ, µ ∈ Λ the
infinite matrix

aλ,µ := [T (π(λ)g)](π(µ)g).

This makes sense even if T maps only S0(Rd) into S0
′(Rd)!
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Gabor frame matrix representations II

For any good Gabor family (tight or not) the mapping
T 7→ A = (aλ,µ) is it self defining a frame representation, hence a
retract diagram, from the operator BGT (B,H,B′) into the
(`1, `2, `∞) over Z2d !
In other words, we can recognize whether an operator is
regularizing, i.e. maps S0

′(Rd) into S0(Rd) (with w∗-continuity) if
and only if the matrix has coefficients in `1(Z2d).
Note however, that invertibility of T is NOT equivalent to
invertibility of A! (one has to take the pseudo-inverse).
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The Spreading Representation

The kernel theorem corresponds of course to the fact that every
linear mapping T from Cn to Cn can be represented by a uniquely
determined matrix A, whose columns ak are the images T (~ek).
When we identify CN with `2(ZN) (as it is suitable when
interpreting the FFT as a unitary mapping on CN) there is another
way to represent every linear mapping: we have exactly N cyclic
shift operators and (via the FFT) the same number of frequency
shifts, so we have exactly N2 TF-shifts on `2(ZN). They even form
an orthonormal system with respect to the Frobenius norm,
coming from the scalar product

〈A,B〉Frob :=
∑
k,j

ak,j b̄k,j = trace(A ∗ B ′)

This relationship is called the spreading representation of the linear
mapping T resp. of the matrix A. It can be thought as a kind of
operator version of the Fourier transform.
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The unitary spreading BGT-isomorphism

Theorem

There is a natural (unitary) Banach Gelfand triple isomorphism,
called the spreading mapping, which assigns to operators T from
(B,H,B′) the function or distribution η(T ) ∈ (S0,L

2,S0
′)(R2d).

It is uniquely determined by the fact that T = π(λ) = MωTt

corresponds to δt,ω.

Via the symplectic Fourier transform, which is of course another
unitary BGT-automorphism of (S0,L

2,S0
′)(R2d) we arrive at the

Kohn-Nirenberg calculus for pseudo-differential operators. In other
words, the mapping T 7→ σT = F sympη(T ) is another unitary BGT
isomorphism (onto (S0,L

2,S0
′)(R2d), again).
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Consequences of the Spreading Representation

The analogy between the ordinary Fourier transform for functions
(and distributions) with the spreading representation of operators
(from nice to most general within our context) has interesting
consequences.
We know that Λ-periodic distributions are exactly the ones having
a Fourier transform supported on the orthogonal lattice Λ⊥, and
periodizing an L1-function corresponds to sampling its FT.
For operators this means: an operator T commutes with all
operators π(Λ), for some Λ C Rd × R̂d , if and only if
supp(η(T )) ⊂ Λ◦, the adjoint lattice. The Gabor frame operator is
the Λ-periodization of Pg : f 7→ 〈f , g〉g , hence η(S) is obtained by
multiplying η(Pg ) = Vg (g) pointwise by tt Λ◦ =

∑
λ◦∈Λ◦ δλ◦ .
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Consequences of the Spreading Representation 2

This observation is essentially explaining the Janssen
representation of the Gabor frame operator (see [4]).
Another analogy is the understanding that there is a class of
so-called underspread operators, which are well suited to model
slowly varying communication channels (e.g. between the basis
station and your mobile phone, while you are sitting in the - fast
moving - train).
These operators have a known and very limited support of their
spreading distributions (maximal time- and Doppler shift on the
basis of physical considerations), which can be used to “sample”
the operator (pilot tones, channel identification) and subsequently
decode (invert) it (approximately).
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Summability of sequences and quality of operators

One can however also fix the Gabor system, with both analysis and
synthesis window in S0(Rd) (typically one will take g and g̃
respectively, or even more symmetrically a tight Gabor window).
Then one can take the multiplier sequence in different sequence
spaces, e.g. in (`1, `2, `∞)(Λ).

Lemma

Then the mapping from multiplier sequences to Gabor multipliers
is a Banach Gelfand triple homomorphism into Banach Gelfand
triple of operator ideals, consisting of the Schatten classe S1 =
trace class operators, H = HS, the Hilbert Schmidt operators, and
the class of all bounded operators (with the norm and strong
operator topology).
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Automatic continuity (> Balian-Low)

In contrast to the pure Hilbert space case (the box-function is an
ideal orthonormal system on the real line, but does NOT allow for
any deformation, without loosing the property of being even a
Riesz basis):

Theorem (Fei/Kaiblinger, TAMS)

Assume that a pair (g ,Λ), with g ∈ S0(Rd) defines a Gabor frame
or a Gabor Riesz basis respectively [note that by Wexler/Raz and
Ron/Shen these to situations are equivalent modulo taking adjoint
subgroups!], then the same is true for slightly perturbed atoms or
lattices, and the corresponding dual atoms (biorthogonal
generators) depend continuously in the

(
S0(Rd), ‖ · ‖S0

)
-sense on

both parameters.
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THANK YOU!

Thank you for your attention!

Most of the referred papers of NuHAG can be downloaded from
http://www.univie.ac.at/nuhag-php/bibtex/

Furthermore there are various talks given in the last few years on
related topics (e.g. Gelfand triples), that can be found by
searching by title or by name in
http://www.univie.ac.at/nuhag-php/nuhag talks/
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