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General Considerations I

While mathematicians like to work with abstract, continuous
models engineers argue that there is nothing like this on the
computer, and therefore one has to work with discrete, in fact
finite length, i.e. periodic and discrete signals.
It is the purpose of this talk to shed some light on the highly
non-trivial connection between these two worlds.

Rephrasing words of our EU-officer: Demonstrate that your work is
a proof of concept, and argue why the arguments given in fact
demonstrate that the proof of concept is in fact a proof of concept.

In our situation this means: replace hand-waving arguments
used normally by solid, mathematical arguments,
based on a clear problem definition.
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General Considerations II: Viewpoints

There are several ways to look at this problem:

the pedantic/fundamentalistic approach: Tell the engineers
how sloppy they, knowing that we are doing things in the right
way;

the liberal/neocapitalistic approach: Let them do what they
do, even if it is incorrect, but hoping it will work in most cases;

the pedagogical approach: Teach the engineers how to
correctly work with the mathematical objects (so bring the
over to our side, but help them to do it correctly);

the cooperative (I hope!) approach: Provide simple tools,
to use “our” technology to build more simple models and
show how the make use them; also build bridges
between the two worlds and establish links;
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General Considerations III: Motivation

There are several motivations behind this effort:

In some 20 years of cooperation with computer scientists,
electrical engineers, medical staff, astronomers, geophysicists,
etc. and and have seen how most of them work resp. what
their mathematical background is;

I have recognized that many things (detailed technical
questions) emphasized tremendously within mathematical
analysis (e.g. questions about Lp-functions) have virtually now
relevance for applications, while others (e.g. SVD) are not
taught prominently in many mathematical curricula;

One can (and should!) use mathematical background
knowledge to help the applied scientist to get access
to proper (and hopefully simple) mathematical models
which reflect the essential features in a given situation.
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General Considerations IV: Vision

There is a vision behind this effort, which I also like to share:

From experience I know that the cooperation between applied
scientist and mathematicians is fruitful for both sides, but
requires a long time of interaction, in order to develop mutual
understanding;

There is a need for change because otherwise a lot of
resources goes into short-term optimization of parameters, the
combat against symptoms, or the building of overly complex
(and uncontrollable) structures;

Some people already argue (John Casti: The collaps of
everything) that complexity is growing faster than our
ability to control it; hopefully mathematical thinking
is able to contribute also on this control side;
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General Considerations V:

I like to give (the older I am getting the more and more!)
comparisons between mathematical ideas and everyday life
experiences. Here are some comparisons with the situation as I
perceive it:

It does not make sense to bring our (US/European) concept
of mobility (using cars) to China or India, but we could help
them to establish appropriate transport systems;

It is not helpful to transfer one-to-one democratic models to
the Arabic countries, but we should help them to allow the
population to gain self-determination;

It is not appropriate to transfer agricultural models from
industrialized countries to Africa, but they have fertile
soil and our knowledge can certainly help them
to feed their population properly!
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Concrete Topics Illustrating the Proposed Concepts

It is hard to think of any subfield (even within signal and image
processing) where the problems mentioned above would not be
present, and in most cases they are put under the rug!
I have chosen the following ones (because we have results in this
direction and they are the most basic ones), but we will not be
able to go through all of them in detail:

the Fourier transform versus FFT;

the description of TILS (translation invariant systems);

the transition from finite Gabor analysis (MATLAB) to
continuous theory with Hilbert spaces;

the kernel theorem (continuous matrix representations);
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TEST case: the Fourier transform

A nice and convenient test-case is the Fourier transform, which we
use in the following convention

f̂ (s) =

∫
R

f (t)χs(t)dt =

∫
R

f (t)e−2πistdt

It has the advantage of being unitary, hence norm and angle
preserving, and one of the most important Fourier invariant
functions is the Gauss function (density of the normal distribution),
given by go(t) := e−πt

2
.

A good experiment showing some of the basic problems with the
naive approach of going from the continuous domain R to the
setting of vectors of finite length becomes obvious, if one runs
the following command:
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s = gauss(linspace(−5, 5, 512)); plot(fft(s));
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What we expect:

Of course we would like to “see” a Fourier pair (under the FFT)
which looks like this, indicating Fourier invariance of the discrete
Gauss-function (we show the Gauss fct. and its cubed version):
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This can be obtained (following the suggestion of N. Kaiblinger,
NuHAG) easily in the following way:
Instead of just sampling the continuous signal one should at the
same time sample AND periodize (and label coordinates in a
constistent way), because this ensures that the the FFT applied to
the finite sequence coincides (exactly) with the basic period of a
sampled and periodized version of the (continuous) Fourier
transform of the function.
Of course we have to make sure that the original function is kind
of smooth (nut a discontinuous function, or badly decaying),
sampling has to be performed fine enough and periodization has to
be course enough.
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Three principles

The three basic facts helping out (to get from the continuous resp.
high signal dimensions down to lower dimensions):

sampling the signal corresponds to periodization of the
spectrum (FT);

periodizing the signal corresponds to sampling of the
spectrum;

if the periodization is an integer multiple of the sampling rate
then the these two operations commute (i.e. sampling first
and periodization then has the same effect as periodization
first and sampling then).
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Three principles II

The most important observations are now the following ones (they
apply both to the continuous case as well as to subsampling and
periodization for “long discrete signals”) are the following one:

1 Every periodic and discrete sequence can be uniquely
determined by the basic period, typically by the values at
positions 0, a, . . . , (n − 1)a where n is the number of samples
within the period (hence the signal length of the basic period);

2 Up to a suitable normalization factors one has: choosing as
periodization parameter on the Fourier transform the inverse
of the sampling rate, and as sampling rate the inverse
periodization constant, then the basic period of the sampled
and periodized version of F(x) (resp. fft(x)) is just the
FFT of the basic period in the time domain.
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A good reservoir of decent functions: S0(Rd) = M1,1
0 (Rd)

The decisive results concerning the Fourier transform involve a
function space from the family of modulation spaces, which has
been introduced by the author in 1979 ([1]);
It can be motivated by the following consideration: While signals
of finite energy, i.e. elements from the Hilbert spaces L2(Rd) have
bounded and square integrable spectrograms (in fact for
normalized windows) the total energy of the signal is distributed in
a continuous fashion in the spectrogram ( ‖f ‖2 = ‖Vg (f )‖2), only
“good functions” have an integrable Vg (f ) (e.g. with Gaussian
window g). We define the norm by:

‖f ‖1 =

∫
Rd × R̂d

|Vg (f )(x , ω)|dxdω,

which is in fact a Fourier invariant norm: ‖f̂ ‖S0 = ‖f ‖S0 .
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A good reservoir of decent functions: S0(Rd), II

This function spaces takes (from my point of view) the role of the
rational numbers within the real or complex numbers:
Computations (such as inversion) are “easy” for rational numbers,
and we use limits of such computations (in the sense of infinite
decimals) when we work with real numbers.
In a similar way functions from the space

(
S0(Rd), ‖ · ‖S0

)
behave

nicely, and don’t create technical problems. One does not need the
Lebesgue integral in order to integrate them, and sets of measure
zero do not play a role (they are decent and continuous functions).
Convergence in

(
S0(Rd), ‖ · ‖S0

)
implies uniform as well as

Lp-convergence and in L2!. Samples on a grid are absolutely
summable, i.e. satisfy

∑
λ∈Λ |f (λ)| ≤ C‖f ‖S0 .
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A good reservoir of decent functions: S0(Rd), III

Hence Poisson’s formula is valid for any f ∈ S0(Rd):∑
k∈Zd

f (k) =
∑
n∈Zd

f̂ (n).

or equivalently, in a distribution setting (as for FFT):

t̂t = tt .

Any good function (except the discontinuous box function and the
non-integrable SINC function) are in the space S0(R), in particular
if f , f ′, f ” are in L1(Rd) the function f is in S0(R).
Moreover all the so called summability kernels used in
classical Fourier analysis belong to the space S0(Rd).
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A good reservoir of decent functions: S0(Rd), IV

For this reason we will introduce a simple tool, the so-called
BUPUs, the “bounded uniform partitions of unity”. For simplicity
we only consider the regular case, i.e. BUPUs which are obtained
as translates of a single function:

Definition

A sequence Φ = (Tλϕ)λ∈Λ, where ϕ is a compactly supported
function (i.e. ϕ ∈ Cc(Rd)), and Λ = A(Zd) a lattice in Rd (for
some non-singular d × d-matrix) is called a regular BUPU if∑

λ

ϕ(x − λ) ≡ 1.
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A good reservoir of decent functions: S0(Rd), V
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The regular BUPUs are sufficient for our purposes. They are a
special case for a more general concept of BUPUs:
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A good reservoir of decent functions: S0(Rd), V

Definition

A δ−BUPU, a so-called bounded uniform partition of unity:

1 supp(ψi ) ⊆ Bδ(xi ) for all i ∈ I ;

2 0 ≤ ψ(x) ≤ 1,∀x ∈ Rd ;

3 The family of supports (xi + U)i∈I is relatively separated, i.e.
for each i ∈ I the number of intersecting neighbors is
uniformly bounded.

4
∑

i∈I ψi (x) ≡ 1 .
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A good reservoir of decent functions: S0(Rd), VI

Results obtained by N. Kaiblinger and the author describe the use
of such BUPU’s in order to come back properly from the finite
sequences (e.g. the output of some MATLAB computation, such
as the FFT) to the continuous domain.
Assume that we have data vector (which is supposed to be a
sequence of regular samples of a widely periodized version of a
finely sampled version of f̂ ) it is clear how to put it back to the
function space domain by building linear combinations of such
BUPUs.
In the most simple cases the BUPU consists of tightly and
regularly spaced triangular functions and then the procedure is
nothing else but piecewise linear interpolation, e.g. the thing
that is used even by MATLAB to give the user the impression
of a continuous functions as opposed to a finite sequence.
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Positive Statements

There are several results (many of them joint work with Norbert
Kaiblinger) showing that such a procedure is stable on the space
S0(Rd). Just to give two examples:
a) Assume one samples a function f in the above way, then takes
the FFT of the samples and then goes back to the continuous
domain using spline-quasi-interpolation, one can make the
SOsp-error as small as possible (by using longer and longer FFTs);
In other words, for a given degree of precision ε > 0 there is a way
to perform the approximation using finite computations!
b) Similar statements are true for other settings, e.g. the transition
from the Gabor atom to the dual Gabor atom. If we have good
MATLAB code for the computation of dual Gabor windows in the
discrete setting (we have such code!) it can be used to simulate
properly the continuous case (again, to any degree requested), see
[3].
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The Scandal in System-Theory

There is a series of paper (couple of years ago) by I. Sandberg
about the scandal in system theory ([4]), indicating that the basic
explanation in system theory (which in turn used the sifting
property of the Dirac delta), namely the relation

f =

∫
Rd

f (x)δxdx =

∫
Rd

f (x)Tx(δ0)dx (1)

is mathematically not well justified, and that there are in fact
translation invariant BIBOS systems, i.e. linear mappings
T :

(
Cb(Rd), ‖ · ‖∞

)
→
(
Cb(Rd), ‖ · ‖∞

)
which are NOT

represented by convolution operators! Hence such operators
do not have a transfer function.
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Translation Invariant Systems
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Translation Invariant Systems

The argument then continues with the “observation” that one
obtains, by making the rectangles shorter and shorter (suitably
normalized, such that they all have area one) an impulse and the
corresponding limit of the output results T (g) “tend to some
impulse response ” function (or object, in whatever sense), so
that one can explain the behaviour of a linear system by translating
the impulse response (with amplitudes coming from the input
signal f ). In quasi-mathematical writing one is describing it by the
sifting property of the Delta “function” (see the literature of signal
processing).
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Translation Invariant Systems: Reactions

As a mathematician one can have different reactions:

it is true, the engineers are very sloppy;

well, it is true that the axiom of choice implies the existence
of such operators, but they appear to be irrelevant in practice;

modify the model of translation invariant systems, e.g:
1 either assume that to domain is just the collection of

continuous signals supported on a finite interval
(Riemann’s spirit), and BIBOS is valid:

maxz |Tf (z)| ≤ CTmaxx |f (x)|,∀f ∈ Cc(Rd).

2 or assume a bit more of continuity: if hn(x)→ h0(x) uniformly
on compact sets, then T (hn)(z)→ T (h0)(z)
should show the same behavior.

In BOTH settings the scandal disappears, but the
(slight) extra assumptions are made explicit.
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Translation Invariant Systems: Reactions II

Clearly the description of the existence of an impulse response to a
given system (its Fourier transform is the transfer function of the
system) requires also some slight (and in fact easy) modification,
because we do not assume that discontinuous input is allowed:

a better approximation using piecewise linear functions
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Translation Invariant Systems: Reactions III

At a technical level it is then necessary to verify that the limit of
T (∆n), where ∆N is a sequence of smaller and smaller triangular
functions, normalized to have total mass (or area, or L1-norm)
equal to 1 exists (in the appropriate sense, in fact in the w∗-sense
of functionals on

(
C0(Rd), ‖ · ‖∞

)
), and is in fact the Dirac

(measure or distribution), and that the system can be realized as a
convolution with T (δ0), but NOW (under the assumptions made)
we can mathematically justify that there are now problems and that
the handwaving arguments have a clear mathematical meaning.

Just recall the formula e2πi = 1 (irrational, complex exponent!).
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BUPUs in two-dimensional situation

For image processing applications the BUPUs are used for e.g.
upsampling of images to increase the number of pixels.

Of course one can take tensor-products of one-dimensional BUPUs
in order to obtain 2D-BUPUs.

Within the ESO-project (European Southern Observatories, In-kind
project, final review 29.10.2012 in Garching) we have used this
method in order to apply rectification of hyperspectral image cubes
at sub-pixel accuracy. Typical formast: 40× 40 or
110× 140 times1600.
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The Kernel Theorem

The Kernel theorem is an extension of the well-known principle,
that every linear mapping T on Rn is represented by a matrix A.
The columns of the matrix are given as the images of the unit
vectors under T : ak = T (ek), 1 ≤ k ≤ n, or an,k = 〈en,T (ek)〉..
The continuous analog for linear mappings of functions on Rd to
functions (or in fact distributions) on Rd could/should be given by
an integral transform (e.g. on L2(Rd)):

Tf (x) =

∫
Rd

K (x , y)f (y)dy .

Obviously this is only possible in special cases, because a
multiplication operator should have a kernel K (x , y) which is
concentrated on the diagonal, a subset of measure zero!
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The Kernel Theorem II

The usual (functional analytic) replacement is the introduction of
Hilbert Schmidt operators (having an infinite square summable
sequence of singular values), which correspond to integral
operators with K ∈ L2(R2d). Recall that
S0(Rd) ⊂ Lp(Rd) ⊂ S0

′(Rd), 1 ≤ p ≤ ∞.

Theorem

Any bounded linear operator from the (dual) space S0
′(Rd) into

S0(Rd) has the representation as an integral operator:

Tf (x) =

∫
Rd

K (x , y)f (y)dy ,

with
K (x , y) = T (δy )(x) = δx(T (δy )).

For general operators T one needs distributional kernels K .
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Further Information

The talk manager

There is a huge amount of material available in the internet,
mostly via www.nuhag.eu, but specifically through the TALK
manager http://www.univie.ac.at/nuhag-php/nuhag talks/

Course notes (running semester, in English) on the subject:
http://www.univie.ac.at/NuHAG/FEICOURS/ws1213/ANGAN1213.pdf

Slides for/from the final event of EUCETIFA at IST:
www.univie.ac.at/nuhag-php/dateien/talks/1458 eucetifafei.pdf

(Institute of Science and Technology, Austria, Klosterneuburg)
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