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ABSTRACT

Sampling as a long tradition at NuHAG
(the Numerical Harmonic Analysis Group, Vienna),
from the beginning. It was always viewed as a field where different
subjects have to come together:

mathematical modeling;

numerical algorithms

theoretical foundations

harmonic analysis

function spaces

good links to the real world;
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Traditional function spaces

The theory of function spaces has become an independent branch
of analysis (from where it arose) essentially in the second of of the
last century, with the start of approximation theory, the use of e.g.
Sobolev spaces in the theory of partial differential equations
(elliptic equations describe an isomorphism between a Sobolev
spaces of positive order and its dual, which is of negative order).
Of course the development of classical Lebesgue theory, with the
Lp-spaces, 1 ≤ p ≤ ∞, was significant for the early development of
functional analysis in the first part of the last century, while
interpolation theory was helping to understand that function
spaces are coming in parameterized families.
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Function Spaces for Fourier Analysis I

It is the current view-point in analysis that one needs to first
develop the Lebesgue integral in order to have the spaces(
L1(Rd), ‖ · ‖1

)
,
(
L2(Rd), ‖ · ‖2

)
,
(
L∞(Rd), ‖ · ‖∞

)
, where for

p = 1, 2,∞ the size (norm) of a function is given by

‖f ‖1 :=

∫
Rd

|f (x)|dx

‖f ‖2 =

√∫
Rd

|f (x)|2dx

and
‖f ‖∞ = ess sup

x∈Rd

|f (x)|.
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Function Spaces for Fourier Analysis II

Why are they considered useful?

because the Fourier transform is an integral transform;

because at first sight the definition of convolution requires
again a finite integral (at least almost everywhere)

the L2 allows to express “preservation of energy” under the
Fourier transform by the equation

‖f ‖2 = ‖f̂ ‖2.

And it is natural to interpolate (in the sense of complex
interpolation of Banach spaces) in order to get the Lp-spaces,
for general p ∈ [1,∞].
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The Hilbert Space L2(Rd)

Although one often reads (in books and articles) that it is natural
to consider the Hilbert space L2(Rd) because natural signals have
finite energy the truth seems to be that the scalar product turns
the linear space of signals into an infinite dimensional Euclidean
space, with all the geometric features of R3, such as angles,
orthonormal systems, etc..

Still, the mathematical formulation using Lp-spaces help neither to
understand the Fourier transform of a “pure frequency” nor is the
mathematically precise formulation in accepting the fact that for
practical purpose there is no problem to work with band-limited
signals of finite during (claimed to be “impossible” in
mathematics!).
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Traditional function spaces II

Aside from Lp-spaces the literature contains various other function
spaces which have their importance in analysis and sometimes to
applications, just to mention

1 Sobolev spaces, where one takes function having certain
number of derivatives in Lp; (properly defined);

2 to make the scale continuous the Bessel potential spaces
(defined using Fourier methods) are quite useful;

3 Besov spaces (and Triebel-Lizorkin spaces) allow to express
fractional order smoothness by adding typically a Lipschitz
condition on the highest existing derivative;
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Traditional function spaces III

L1

L2

C0

FL1

the classical Fourier situation
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Traditional function spaces IV

Since ordinary Lp-space on Rd have the problem that the are not
order by inclusion the idea came up to describe function spaces by
taking locally one possible norm (e.g. some Lp-norm) and globally
(e.g. over the integer sequence) some other `q space.
The following continuous embedding relations follow easily from
the discrete characterization of Wiener amalgam spaces.

1 W (B, `p) ↪→W (B, `r ) if and only if p ≤ r .

2 If B1
loc ↪→ B2

loc then W (B1, `p) ↪→W (B2, `p) for
1 ≤ p ≤ ∞.

3 W (B, `1) ↪→ B ↪→W (B, `∞).

4 Lp = W (Lp, `p) ↪→W (L1, `p).

5 W (C0, `
p) ↪→ Lp ∩ Co .
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Illustration of W (C0, `
p) spaces:
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Function spaces for Sampling

There are of course many different function spaces that can be
used, but the typical first theorem in sampling theory is Shannon’s
sampling theorem: Assume that Ω ⊂ Rd is a bounded subset with
the property Ω is disjoint from all its (non-trivial) Λ⊥-translates,
i.e. λ⊥ + Ω ∩ Ω = ∅ for all λ⊥ 6= 0, λ⊥ ∈ Λ⊥. Then every
Ω-band-limited function f ∈ L2(Rd) can be written as:

f (t) = CΛ

∑
λ∈Λ

f (λ)TλSINCΩ(t) = CΛ

∑
λ∈Λ

f (λ)SINCΩ(t − λ), (1)

where SINCΩ = IFFT (1Ω). For Ω = [−1/2, 1/2] this is the
classical SINC function, known to have bad localization.
!! Convergence is in the Lp-sense (1 < p <∞) and uniformly.
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Shannon’s sampling: illustration I
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Shannon’s sampling: illustration II
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But the speed/form of convergence depends (potentially)
sensitively on on the norm chosen.
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Wiener Amalgam spaces I

Mostly the function space W (C0, `
p) are useful in the context of

sampling because they guarantee that not only the (smooth)
function is in Lp, but also the samples (taken e.g. over some
lattice) are in the corresponding `p-space.
Since this space, endowed with its natural norm, is continuously
embedded into both the bounded and continuous functions (with
the sup-norm ‖f ‖∞) and into Lp convergence of the Shannon
series in the W (C0, `

p) implies both types of convergence.
For the case p = 2 one can in fact show that

1 any band-limited function;

2 any function in a Sobolev space of order s > d/2

belongs to the space W (C0, `
2). HENCE these space are

reproducing kernel Hilbert spaces.
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Reproducing kernel Hilbert spaces

However, having RKHs (Reproducing kernel Hilbert spaces) one
has a whole reservoir of Hilbert space methods and at the same
time concrete starting points for possible reconstruction:
By interpreting the point-values of the given set of samples as
scalar products with the corresponding reproducing kernels one can
of course (up to some stability questions) recover the sampled
function in our model space by linear combinations of the involved
kernels.
Note that one has shifted SINC-functions in the case of the
band-limited functions in L2(Rd). But knowing their bad
localization it is of course interesting to explore the freedom
gained by slight oversampling, which in turn allows
for improved locality of reconstruction.
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Reproducing kernel Hilbert spaces II
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Reproducing kernel Hilbert spaces III

For Sobolev spaces resp. L2-Bessel potential spaces, which can be
characterized as weighted L2-spaces on the Fourier transform side
a similar, and in a way better (because better localized)
reproducing kernel can be used.
As it is shown in a joint paper the ([fewe02]) the best = minimal
norm reconstruction of a function in the sense of such a Sobolev
space (of order s > d/2) depends in a very good and continuous
way on the parameter s and the lattice constant (for regular
sampling).
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Reproducing kernel Hilbert spaces IV

A new type of function space introduced in the PhD thesis of Roza
Aceska (2009, [acfe11]) appears to be suitable to handle the
variable case, i.e. the case where smoothness (in the sense of local
maximal frequency) is varying as a function on the location.
Since strictly band-limited are analytic they do not have any “local
behavior”, resp. must coincide globally if they would coincide
locally on some open set. Nevertheless a Gabor approach was
developed using time-frequency methods to describe such spaces in
terms of growths conditions on the Gabor coefficients (of
some/any good Gabor system).

Hans G. Feichtinger SISE II Irregular Sampling and Function Spaces



Reproducing kernel Hilbert spaces V

Essentially the weight depends on a band-width function which
does not change rapidly, and which “punishes” the “out of band
Gabor coefficients”. Clearly the order of growth has be satisfy the
Sobolev embedding condition s > d/2 and should be rather large.
For this setting the so-called coorbit theory (developed by
Fei/Groch) can be used to show the independence of this
characterization from the individual (good) Gabor system.
Moreover, as as been shown recently, these variable bandwidth
spaces have good reproducing kernels, and we expect/prepare
sampling results, involving the notion of a local Nyquist rate
[acfe13]).
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Reproducing kernel Hilbert spaces VI

It is known from Shannon’s sampling theorem that for the members
of suitable subspaces, e.g. for the band-limited functions with

spec(f ) ⊆ [−1/2 + δ, 1/2− δ]

the extra amount of freedom (oversampling rate) allows to replace
in the Shannon sampling theorem by a more localized function.
Especially for the variable situation we have in mind for field
reconstruction the locality of reconstruction is one of the
important points, and SINC reconstructions are definitely
inadequate.
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Reconstruction Strategies

Depending on the signal space model one has to apply
reconstruction methods, which are most of the time iterative in
nature. There are different reasons for this:

Size constraints (solving a linear system with too many
variables simply requires to look for alternatives to simple
matrix [pseudo-] inversion)

Real-time constraints: one may not have all the data to start
the computation, but needs at least good approximate answer
from the available data

The current work of Peter Berger (see poster) is e.g. investigating
the applicability of Kaczmarz methods methods ([stve09]),
among others because this approach (POCS methods)
shows a great amount of flexibility.
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Alternative Signal Space Models

Although the assumption of band-limitedness is natural for many
applications there are many other situations where the
reconstruction strategies developed in the last two decades at
NuHAG should be applicable.
The most important direction (originating in early work of Aldroubi
and Feichtinger, see the survey of Aldroubi and Gröchenig [algr01])
is that of spline-type spaces (also called shift-invariant function
spaces). Spaces of linear, quadratic or cubic splines are just a
special case.
Given a suitable form of equicontinuity (expressed essentially in the
norms W (C0, `

2)) of the members of such spaces (following from
minimal smoothness assumptions on the generators) one can
again use iterative methods for reconstruction.
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Alternative Signal Space Models II

The theory used/developed so far is mostly concentrating on the
reconstruction of functions in such spline-type space from regular
samples (up to a shift the same lattice is used for sampling as for
the generation the space as closed linear span of translates of the
template, e.g. a cubic B-spline) [a classical setting], or irregular
setting (now well understood). Function space theory allows to
provide claims on robustness (e.g. with respect to jitter errors or
model errors, i.e. the use of a slightly incorrect assumption about
the generator/atom).
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Alternative Signal Space Models III

Here two aspects come in:

As explained in the introduction signals will not always be
so nice to belong to L2(Rd) or some other Lp(Rd), they may
be slightly growing, or have good decay, or behave
approximately stationary, but not in a strictly periodic sense;
signal reconstruction strategies have to be able to cope with
these situations

The error description concerning the atoms has to be
undertaken at a much more refined level compared to the
signal description. Even for users interested in L2-theory only
the model error has to be small in the sense of a Wiener
algebra norm W(C0,L

1)(Rd) (norm equals essentiall the
upper Riemannian sum to ‖f ‖1 =

∫
Rd |f (x)|dx .
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NuHAG contributions to that aspect

In this sense the PhD thesis of Sebastian Schmutzhard entitled
“Galerkin methods for the numerical evaluation of the prolate
spheroidal wave functions” is a contribution to the efficient
computation of optimally localized building blocks for signal
composition.
He has a poster on this subject.
The prolate spheroidal functions are interesting for many reasons,
in our setting mostly for

optimal locality of reconstruction

is a possible building block for function spaces,
e.g. spline type spaces, adapted to given situations
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Elmar Pauwels PhD thesis I

The PhD thesis of Elmar Pauwels [pa11-4] (defended December
2011, and submitted partially as journal paper now) on
Pseudodifferential Operators, Wireless Communications and
Sampling Theorems is another example showing the usefulness of
(the appropriate) function spaces for the analysis of an applied
problem.
Based on experience within the team (mostly from the WWTF
project MOHAWI, on modern harmonic analysis and wireless
communication, also under K. Gröchenig and with Hlawatsch/Matz
as cooperation 1 partners) we had learned to understand that the
problem of channel identification and channel decoding can be put
in a clean mathematical setting using suitable function spaces.

1Two patents based on that project, with S. Das and T. Hrycak are
presently been moved to the US market.
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Elmar Pauwels PhD thesis II

Mathematically speaking the tools required to model mobile
channels with a given maximal time delay and Doppler shift as
underspread operators, i.e. as operators having a spreading
representation confined to a rectangular box Ω which is known by
assumption (based on physical considerations). One should think
of the spreading mapping as an operator analogue of the Fourier
transform,
Clearly the compact support of the spreading function implies that
its 2D-Fourier transform is a band-limited function and can be
recovered using Shannon’s theorem from sufficiently dense samples
as long as the Nyquist criterion is satisfied (the shifts of Ω should
not overlap). For the applications one takes the symplectic
Fourier transform and then the object obtained is the so-called
Kohn-Nirenberg symbol of the operator (the channel),
which is well defined (at least distributionally).
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Elmar Pauwels PhD thesis III

The key observation of the PhD thesis is to relate the problem of
identifying a slowly varying (underspread) channel from the receive
pilot tones.
Described more explicitly: The sending station is sending (in
between the data packages) pilot tones, known to the receiver. The
distortion observed by him/her are used to identify the channel.
Mathematically the channel (hopefully invertible and hence not a
Hilbert Schmidt operator) has to be reconstructed from a filtered
version of the Kohn-Nirenberg symbol. In fact, the density of pilot
tones (arranged along a lattice in the TF-plane) has to be at
Nyquist rate.
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Elmar Pauwels PhD thesis IV

Again the appropriate function spaces and an established natural
correspondence to families of linear operators can be used:

the small class of regularizing operators having nice kernels,
which are test functions of two variables (S0(R2d)).

the Hilbert space of Hilbert Schmidt operators with KNS or
kernel in L2(R2d);

the general class of operators L(S0,S0
′)

The smoothing kernel describing the filter of the KNS symbol,
depends on the window used for the pilot tones (ideally a
Gauss-like atom, part of the system design) has to be free of zeros
over the rectangle Ω.
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Elmar Pauwels PhD thesis V

The topic of the thesis is in fact closely related to another research
topic that has been pushed by HGFei in the last decade: Gabor
multipliers.
The corresponding problem is then to recover the upper symbol
of the Gabor multiplier (i.e. the amplitudes used by the
audio-engineer in his device, slowly changing the contribution of
the different frequencies) from the lower symbol (i.e. essentially
the strength (and phase) of the received pilot tones.
Instead of Shannon one needs there a sampling theory for
spline-type spaces (Gabor multipliers are elements from 2D
spline-type spaces, in the KNS setting).
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Other related projects at NuHAG

The EU-network UnlocX (2009-2013) is concerned with
uncertainty and localization. NuHAG is identifying optimal
sampling strategies (also with slowly varying Gabor windows);

The FWF Project by Maurice de Gosson deals with
Hamiltionian time-frequency analysis, where Gabor atoms are
slowly changing according to the Hamiltonian flow;

Recent work with D. Onchis considers the problem of
multi-window spline-type spaces and irregular sampling;

some ongoing master theses and PhD theses or concerned
with related topics;

Jose L. Romero (surgery of frames);
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Concluding Remarks

For scattered data or irregular sampling function spaces are
indispensible, because

they are needed to describe convergence

measure the error

allow to build a variety of function space models

e.g. spline-type spaces
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FINAL SLIDE
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