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Challenges in numerical solutions of PIDEs arising in numerical finance

Computation of European option prices via numer. solution of PIDE problem ([RSW10])
∂τu(τ, x)− BX [u](τ, x) = 0, x ∈ Rn, τ ∈ (0,T ],
u(0, x) = h(x), x ∈ Rn,

where X = (X 1
t , . . . ,X n

t )t≥0 is Lévy process with infinitesimal generator

BX [w ] :=
1
2

nX
i,j=1

Qij
∂2w
∂xi∂xj

+
nX

i=1

γi
∂w
∂xi

+

Z
Rn

“
w(·+ y)−w + 1{|y|≤1}

nX
i=1

yi
∂w
∂xi

”
ν( dy).

I Unbounded domain:
 A priori versus adaptive
truncation.

I Non-local operator BX :
 Wavelet compression.

I Spatial dimension:
 Avoid curse of dimension by
sparse grids or adaptive methods.

[RSW10] N. Reich, C. Schwab, C. Winter. On Kolmogorov equations for anisotropic multivariate Lévy
processes. Finance and Stochastics, 2010
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Adaptive solution of the option pricing problem
∂τu(τ, x)− BX [u](τ, x) = 0, x ∈ Rn, τ ∈ (0,T ],
u(0, x) = h(x), x ∈ Rn.

For the discretization of BX , a common assumption is (compare, e.g., [Hep11]):

〈v1 ⊗ · · · ⊗ vn,BX [w1 ⊗ · · · ⊗ wn]〉 =
` MX

m=1

αm · a(1)
m (v1,w1)⊗ · · · ⊗ a(n)

m (vn,wn)
´
,

where for i ∈ {1, . . . , n} at most one univariate bilinear form a(i)
m is non-local.

Where wavelets find applications...
I Fast approximate evaluation of non-local bilinear forms ( wavelet compression).
I Non-smooth payoff h requires adaptive refinement (see also [BHPS12]).
I Treatment of unbounded domain Rn: Towards optimal balancing of truncation

and discretization error.
I Fast exact evaluation of local bilinear forms.

[Hep11] P. Hepperger. Option pricing in Hilbert space-valued jump diffusion models using partial
integro-differential equations. SIAM Journal on Financial Mathematics, 2011.
[BHPS12] H.-J. Bungartz, A. Heinecke, D. Pflüger and S. Schraufstetter. Option pricing with a direct adaptive
sparse grid approach. Journal of Computational and Applied Mathematics, 2012.
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Given f ∈ X ′, consider a linear, well-posed operator equation:

A[u] = f in X ′,

I X is a Sobolev space over an unbounded domain Ω (e.g., X = H1(Rn)),
I A : X → X ′ is boundedly invertible, self-adjoint.

Requirements for numerical scheme
I Adaptive domain truncation and local refinement.
I Optimal convergence rate under weak smoothness assumptions.
I Linear complexity for a large class of operators A.

New approach
Existing methods (Infinite Elements, BEM, . . .) do either not cover all of these
requirements or are only applicable for special classes of A.
I Equivalent formulation in an infinite-dimensional sequence space `2 of wavelet

coefficients,
A[u] = f in X ′ ⇐⇒ Au = f in `2.

I Approximation of u by means of adaptive wavelet methods.
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Univariate Riesz wavelet bases

Let Ω ⊆ R be a domain (possibly unbounded).
We consider a Riesz wavelet basis Ψ = {ψλ : λ ∈ J } that characterizes univariate
Sobolev spaces Hs(Ω) (possibly incorporating essential homogeneous bc’s)

CΨ
Hs‖v‖2

`2(J ) ≤
‚‚X
λ∈J

vλψλ/‖ψλ‖Hs
‚‚2

Hs(Ω)
≤ CΨ

Hs‖v‖2
`2(J ), ∀v = v>Ds Ψ ∈ Hs(Ω),

where −γ̃ < s < γ. Here, Ψ is a column vector and Ds = diag
ˆ
(‖ψλ‖−1

Hs )λ∈J
˜

a
bi-infinite diagonal matrix.

Standard wavelet assumptions / notations

I ψλ := 2j/2ψ(i)(2j · −k), λ = (i , j , k).
I ψλ are piecewise polynomials of order d .
I Local support: diam suppψλ h 2−j .
I Example:

ΨL2(R) := {2j0/2φ(2j0 · −k) : k ∈ Z}
∪ {2j/2ψ(2j · −k) : j ≥ j0, k ∈ Z}

-2

-1

 0

 1

-2 -1  0  1  2  3
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Tensor product Riesz wavelet bases

Let now Ω := Ω1 × · · · × Ωn be a product domain (possibly unbounded).
With n univariate Riesz wavelet bases Ψ(i) for L2(Ωi ) (i ∈ {1, . . . , n}),

Ψ := Ψ(1) ⊗ · · · ⊗Ψ(n) = {ψλ := ψλ1 ⊗ · · · ⊗ ψλn : λ = (λ1, . . . , λn) ∈ J }

is a Riesz wavelet basis for L2(Ω) where J := J (1) × · · · × J (n).
For Sobolev spaces X over Ω that can be characterized by (intersections of) tensor
products of univariate Sobolev spaces,

ΨX := DXΨ := {ψλ/‖ψλ‖X : λ ∈ J }, DX := diag
ˆ
(‖ψλ‖−1

X )λ∈J
˜
,

is a tensor product Riesz wavelet basis for X .
Tensor product wavelets

I ψλ are piecewise polynomials.
I Local anisotropic support:

| suppψλ| h 2−(|λ1|+···+|λn|).
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Wavelet discretization of operator equations

Unique expansion of u in DXΨ, u = u>(DXΨ) :=
P

λ∈J uλDXλψλ, yields ([CDD01])

〈v ,A[u]〉 = 〈v , f 〉, ∀v ∈ X ⇔ 〈DXΨ,A[DXΨ]〉| {z }
A

u = 〈DXΨ, f 〉| {z }
f

⇔ Au = f in `2(J ).

Infinite load vector f = DX
ˆ
(〈ψλ, f 〉)λ∈J

˜
∈ `2(J ).

Boundedly invertible bi-infinite system matrix A = DX
ˆ
(〈ψλ,A[ψµ]〉)λ,µ∈J

˜
DX .

=⇒: This discretization only requires a Riesz basis (independent of the domain).

Error estimate: Riesz basis property guarantees for both bounded and unbounded
domains Ω that

C‖u− uΛ‖`2 ≤ ε =⇒ ‖u − u>Λ(DXΨ)‖X ≤ ε

=⇒: Local refinement and adaptive domain truncation via selecting significant wavelet
indices from u.

[CDD01] A. Cohen, W. Dahmen, R. DeVore. Adaptive wavelet methods for elliptic operator equations:
Convergence rates. Mathematics of Computation, 2001.
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Adaptive approximation of Au = f

Solve finite Galerkin systems on nested index sets Λk ⊂ Λk+1 ⊂ · · · ⊂ J ([GHS07]).

AWGM[ε]
for k = 0; ‖rk‖`2 ≤ ε; k = k + 1 do

Compute approx. solution wΛk of

AΛk uΛk = fΛk .

Compute approximation rk of the
infinite residual

f− AwΛk .

Compute smallest Λk+1 ⊃ Λk s.t.

‖PΛk+1 rk‖`2 ≥ µ ‖rk‖`2 (1)

for µ ∈ (0, 1) where PΛv := v|Λ.
end for

[GHS07] T. Gantumur, H. Harbrecht, R. Stevenson. An optimal adaptive wavelet method without coarsening of
the iterands. Mathematics of Computation, 2007.
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Idea from [KU12]:
In (1), significant wavelet indices λ ∈ J
are added for
I local refinement of singularities, and
I domain extension.

Approximation of the infinite residual

 ‖APPLY[wΛk , η]− AwΛk ‖`2 ≤ η,
 ‖RHS[η]− f‖`2 ≤ η.

For suff. small η, define rk as

rk := RHS[η]− APPLY[wΛk , η].

[KU12] S. K., K. Urban. Adaptive wavelet methods on unbounded domains. Journal of Scientific Computing,
2012.
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[SU09] W. Sickel, T. Ullrich. Tensor products of Sobolev-Besov spaces and applications to approximation from
the hyperbolic cross. Journal of Approximation Theory, 2009
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Adaptive approximation of Au = f
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Best N-term approximation:

‖u− uN‖`2 ≤ CN−s.

 (Tensor-)Besov regularity of u ([SU09]).
 Asymptotic dimension-independent
convergence rates are possible.

[GHS07, Theorem 2.7]
Given suitable routines APPLY and RHS:
I ‖u− uΛk ‖`2 h ‖u− uNk ‖`2 . N−s

k
where Nk := supp wΛk .

I Linear complexity.

 Optimal scheme for bounded and
unbounded domains
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Adaptive wavelet algorithms: From bounded to unbounded domains

Bounded domain: Ω = (a,b)

J Ω := {(j , k) : j ≥ j0, k ∈ Ij}, j0 ≥ 0 .

X Fixed minimal level j0.

X Realization of RHS (e.g. [GHS07]):

X Realization of APPLY (e.g., [Ste09],
[Urb09]).

X Quantitative analysis (e.g. [DHS07]).

Unbounded domain: R (cf. [KU12])

J R := {(j , k) : j ≥ j0, k ∈ Z}, j0 ∈ Z.

X Good choice of j0:
 Diameter initial domain: h 2−j0 .

X Construct finite ∇η ⊂ J R with

‖f− f|∇η‖`2 ≤ η.

 Bound for translation indices.

X Special treatment of negative levels:

A =

„
A+− A++

A−− A−+

«
.

X Adaptive domain truncation, local
refinement, convergence.

[DHS07] W. Dahmen, H. Harbrecht and R. Schneider. Adaptive methods for boundary integral equations:
complexity and convergence estimates. Mathematics of Computation, 2007.
[Ste09] R. Stevenson. Adaptive wavelet methods for solving operator equations: An overview. Springer, 2009.
[Urb09] K. Urban. Wavelet methods for elliptic partial differential equations. Oxford University Press, 2009.
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Adaptive approximation of Au = f: Numerical experiment

Solve finite Galerkin systems on nested index sets Λk ⊂ Λk+1 ⊂ · · · ⊂ J ([GHS07]).

AWGM[ε]
for k = 0; ‖rk‖`2 ≤ ε; k = k + 1 do

Compute approx. solution wΛk of

AΛk uΛk = fΛk .

Compute approximation rk of the
infinite residual

f− AwΛk .

Compute smallest Λk+1 ⊃ Λk s.t.

‖PΛk+1 rk‖`2 ≥ µ ‖rk‖`2

for µ ∈ (0, 1) where PΛv := v|Λ.
end for
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Solve finite Galerkin systems on nested index sets Λk ⊂ Λk+1 ⊂ · · · ⊂ J ([GHS07]).

AWGM[ε]
for k = 0; ‖rk‖`2 ≤ ε; k = k + 1 do

Compute approx. solution wΛk of

AΛk uΛk = fΛk .

Compute approximation rk of the
infinite residual

f− AwΛk .

Compute smallest Λk+1 ⊃ Λk s.t.

‖PΛk+1 rk‖`2 ≥ µ ‖rk‖`2

for µ ∈ (0, 1) where PΛv := v|Λ.
end for
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Adaptive approximation of Au = f: Numerical experiment

Solve finite Galerkin systems on nested index sets Λk ⊂ Λk+1 ⊂ · · · ⊂ J ([GHS07]).

AWGM[ε]
for k = 0; ‖rk‖`2 ≤ ε; k = k + 1 do

Compute approx. solution wΛk of

AΛk uΛk = fΛk .

Compute approximation rk of the
infinite residual

f− AwΛk .

Compute smallest Λk+1 ⊃ Λk s.t.

‖PΛk+1 rk‖`2 ≥ µ ‖rk‖`2

for µ ∈ (0, 1) where PΛv := v|Λ.
end for

...
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Adaptive wavelet methods on unbounded domains: Remarks

Product domains are not mandatory.

Works also within heuristic wavelet
schemes (e.g. [BK06]).

Same proceeding for non-linear
problems on unbounded domains (when
isotropic wavelet bases are used).

Adaption of special multiwavelet bases
for constant coefficient PDE operators
(e.g. [DS10]) is possible (cf. [K.12]). On
the right, applied to the problem

−∆u + u = f in H−1(R2).

Work in progress: Non-local operators.
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[BK06] S. Berrone, T. Kozubek. An adaptive WEM algorithm for solving elliptic boundary value problems in fairly
general domains. SIAM Journal on Scientific Computing, 2006.
[DS10] T. Dijkema, R. Stevenson. A sparse Laplacian in tensor product wavelet coordinates. Numerische
Mathematik, 2009.
[K.12] A special multiwavelet basis for unbounded product domains. Proceedings of ENUMATH 2011, 2012.



Page 14/22 AWGM: Extension to unbounded domains and fast evaluation of system matrices | Fast evaluation of system matrices

Overview

Motivation: Wavelet methods in numerical finance

Adaptive wavelet (Galerkin) methods on unbounded domains

Fast evaluation of system matrices
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Tensor structure of the system matrix A

Consider Ψ = Ψ(1) ⊗ · · · ⊗Ψ(n) and letB(v ,w) := 〈v ,A[w ]〉 be such that

B(⊗n
i=1vi ,⊗n

i=1wi ) :=
MX

m=1

nY
i=1

a(i)
m (vi ,wi ),

where a(i)
m are local, univariate bilinear forms related to coordinate direction ei . Now,

A = DB(Ψ,Ψ)D = D
h MX

m=1

nO
i=1

~S(i)
m

i
D, ~S(i)

m := a(i)
m (Ψ(i),Ψ(i)).

Poisson’s equation
`
n = 2, Ω = (0, 1)2´

B(Ψ,Ψ) = ~A⊗ ~M + ~M ⊗ ~A,

where Ψ(1) = Ψ(2) and

~A :=
ˆR 1

0 ∂ψλ∂ψµ
˜
λ,µ∈J ,

~M :=
ˆR 1

0 ψλψµ
˜
λ,µ∈J .

=⇒B(Ψ,Ψ) is not sparse!
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Three fundamental principles

Splitting into unidirectional operations

~S ⊗ ~S =
`
~S ⊗ ~Id

´
◦
`
~Id⊗ ~S

´
=
`
~Id⊗ ~S

´
◦
`
~S ⊗ ~Id

´
.

Sequential application of up- and down operations

~S = [a(ψλ, ψµ)]λ,µ∈J = ~L + ~U, ~L = [a(ψλ, ψµ)]|λ|>|µ|, ~U = [a(ψλ, ψµ)]|λ|≤|µ|.

Multi-level structure of univariate wavelet bases

Ψ =
S
`∈N0

Ψj , Ψ` := {ψλ : λ ∈ J , |λ| = `}
closL2

`
span

S
0≤`≤j Ψ`

´
= closL2

`
span Φj

´ ff
Bi-directional transformations in
linear complexity: FWT, IFWT.

These principles have been introduced in sparse grid settings (using in particular
hierarchical bases), see, e.g., [BG04, Bun92 BZ96, Zei11, Zen91].

[BG04] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 2004.
[Bun92] H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen
Poisson-Gleichung. PhD Thesis (TU München), 1992.
[BZ96] R. Balder and C. Zenger. The solution of multidimensional real Helmholtz equations on sparse grids.
SIAM Journal on Scientific Computing, 1996.
[Zei11] A. Zeiser. Fast matrix-vector multiplication in the sparse-grid Galerkin method. Journal of Scientific
Computing, 2011.
[Zen92] C. Zenger. Sparse grids. Parallel algorithms for fluid mechanics, 1991.
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Example: Matrix-vector multiplication on sparse grids

Given a refinement level j ∈ N0, consider the (two-dimensional) sparse grid space

Λj :=
[

`1+`2≤j

Λ(`1,`2), Λ(`1,`2) := {(λ1, λ2) : |λ1| = `1, |λ2| = `2}, #Λj h (j + 1) 2j .

`1

`2

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2)

(0, 3)

λ1

λ2
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Example: Matrix-vector multiplication on sparse grids

Given a refinement level j ∈ N0, consider the (two-dimensional) sparse grid space

Λj :=
[

`1+`2≤j

Λ(`1,`2), Λ(`1,`2) := {(λ1, λ2) : |λ1| = `1, |λ2| = `2}, #Λj h (j + 1) 2j .

Within the matrix-vector multiplication on a sparse grid, by the splitting ~S = ~L + ~U,

PΛj (
~S ⊗ ~S)EΛj = PΛj (

~L⊗ ~Id)EΛj PΛj (
~Id⊗ ~S)EΛj + PΛj (

~Id⊗ ~S)EΛj PΛj (
~U ⊗ ~Id)EΛj

we do not leave the sparse grid index set Λj !

`1

`2

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

(1, 1)

`1

`2

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

(1, 1)

`1

`2

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

(1, 1)
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Towards adaptivity: multi-tree structured index sets

A (univariate) index set Λ ⊂ J is a (univariate) tree when for all λ ∈ Λ

suppψλ ⊂
[

µ∈Λ,|µ|=|λ|−1

suppψµ.

Theorem ([KS12a]): When Λ̃,Λ ⊂ J are trees, then PΛ̃
~X EΛ =

ˆ
a(ψλ, ψµ)

˜
λ∈Λ̃,µ∈Λ

for
~X ∈ {~S,~L, ~U} can be applied within O(#Λ̃ + #Λ) operations.

multi-scale representation

V0

W2

W4

W6

W8

W10

W12

W14

 0  0.2  0.4  0.6  0.8  1

local single-scale representation

V0

V2

V4

V6

V8

V10

V12

V14

 0  0.2  0.4  0.6  0.8  1

[KS12a] S. K., R. Stevenson Fast evaluation of system matrices w.r.t. multi-tree collections of refineable tensor
product basis functions. Preprint (submitted), 2012.
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Towards adaptivity: multi-tree structured index sets

A (univariate) index set Λ ⊂ J is a (univariate) tree when for all λ ∈ Λ

suppψλ ⊂
[

µ∈Λ,|µ|=|λ|−1

suppψµ.

Theorem ([KS12a]): When Λ̃,Λ ⊂ J are trees, then PΛ̃
~X EΛ =

ˆ
a(ψλ, ψµ)

˜
λ∈Λ̃,µ∈Λ

for
~X ∈ {~S,~L, ~U} can be applied within O(#Λ̃ + #Λ) operations.

Λ ⊂ J is a multi-tree (cf. [KS12a]) when for any λ = (λ1, . . . , λi−1, λi+1, . . . , λn)

Λei ,λ := {µ ∈ J : (λ1, . . . , λi−1, µ, λi+1, . . . , λn) ∈ Λ}, i ∈ {1, . . . , n},

is a tree (or the empty set). “A multi-tree Λ, when frozen in n − 1 coordinate directions,
is a tree in the remaining coordinate.”

[KS12a] S. K., R. Stevenson Fast evaluation of system matrices w.r.t. multi-tree collections of refineable tensor
product basis functions. Preprint (submitted), 2012.
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Towards adaptivity: multi-tree structured index sets

λ1

λ2

Λ ⊂ J = J ⊗ J is a multi-tree when for any λ ∈ J

Λe1,λ := {µ ∈ J : (µ, λ) ∈ Λ}, Λe2,λ := {µ ∈ J : (λ, µ) ∈ Λ},

is a tree or the empty set.
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Towards adaptivity: multi-tree structured index sets

λ1

λ2

Λ ⊂ J = J ⊗ J is a multi-tree when for any λ ∈ J

Λe1,λ := {µ ∈ J : (µ, λ) ∈ Λ}, Λe2,λ := {µ ∈ J : (λ, µ) ∈ Λ},

is a tree or the empty set.
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Theorem ([KS12a]): Consider two (poss. different) tensor product Riesz wavelet bases

qΨ :=
˘
qψλ : λ ∈ qJ

¯
:= qΨ(1) ⊗ · · · ⊗ qΨ(n), pΨ :=

˘
pψλ : λ ∈ pJ

¯
:= pΨ(1) ⊗ · · · ⊗ pΨ(n)

for L2(Ω). If qΛ ⊂ qJ , pΛ ⊂ pJ are multi-trees, then the matrix-vector multiplication w.r.t.

P
qΛB( qΨ, pΨ) E

pΛ := P
qΛ

h MX
m=1

nY
i=1

a(i)
m (qΨ(i), pΨ(i))

i
E

pΛ

can be computed within O
`
#qΛ + #pΛ

´
operations.

This result generalizes results from adaptive sparse grids (see, e.g., [Pfl10]):

I Different trial- and test bases ( 
Petrov-Galerkin methods).

I Very general tree concept.

I Different input and output sets.
I New approximate residual

approximation (cf. [KS12b]).

The resulting algorithm uses the decomposition ~S = ~L + ~U analogously to sparse grid
schemes and is recursive in the dimension n.

[Pfl10] D. Pflüger Spatially adaptive sparse grids for high-dimensional problems. PhD Thesis, 2010.
[KS12b] S. K., R. Stevenson An efficient approximate residual evaluation in the adaptive tensor product wavelet
method. Preprint (submitted), 2012.
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Numerical experiment 1: Poisson’s equation with variable coefficients
∇ · (p∇u) = f on � := (0, 1)2

u|∂� = 0

I Constant right-hand side f ≡ 20.
I Biorthogonal wavelets (d = 3).
I AWGM with multi-tree constraint

and new approximate residual.
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Numerical experiments realized with Library for Aadaptive Wwavelet Applications (http://lawa.sourceforge.net)
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Numerical experiment 2: Poisson’s equation with constant coefficients
∇ · (∇u) = f on � := (0, 1)3

u|∂� = 0

I Constant right-hand side f ≡ 100.
I L2-orthonormal multiwavelets.
I AWGM with multi-tree constraint

and new approximate residual.
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Contact

Sebastian Kestler
Institute for Numerical Mathematics

University of Ulm

sebastian.kestler@uni-ulm.de

http://www.uni-ulm.de/
mawi/mawi-numerik/

Thank you for your attention!

Questions / Remarks . . .
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