A perfectly invertible and perceptually motivated time-frequency transform for audio representation, analysis and synthesis

Thibaud Necciari

joint work with Peter Balazs, Nicki Holighaus, and Peter L. Søndergaard

Acoustics Research Institute, Vienna

ESI12 Workshop, December 3–7, 2012, Vienna *Time-frequency methods for the applied sciences*

Context: Analysis-Synthesis of Sound Signals.

- Audio processing techniques like sound design, audio coding, or speech & music processing require tools to:
 - analyse (represent, extract relevant features...)
 - process
 - re-synthesize sounds
- Standard tools = time-frequency (TF) transforms

Context: Analysis-Synthesis of Sound Signals.

- Audio processing techniques like sound design, audio coding, or speech & music processing require tools to:
 - analyse (represent, extract relevant features...)
 - process
 - re-synthesize sounds
- Standard tools = time-frequency (TF) transforms
- Humans listeners = main receivers of speech & music signals
- Intuition: Account for auditory perception in signal analysis
 - = TF transform that approximates the auditory TF resolution

Context: Analysis-Synthesis of Sound Signals.

- Audio processing techniques like sound design, audio coding, or speech & music processing require tools to:
 - analyse (represent, extract relevant features...)
 - process
 - re-synthesize sounds
- Standard tools = time-frequency (TF) transforms
- Humans listeners = main receivers of speech & music signals
- Intuition: Account for auditory perception in signal analysis
 - = TF transform that approximates the auditory TF resolution

Ideal transform properties:

- Invertibility
- Computational efficiency
- Adaptable redundancy

1. Frequency domain: The Auditory Filters.

= Ability to resolve sinusoidal components in complex sounds.

Peripheral filtering \equiv bank of bandpass filters = auditory filters

1. Frequency domain: The ERB Scale [Moore & Glasberg, 1983].

- distribution of filters:
 - \approx linear at low frequencies (F < 500 Hz)
 - logarithmic at high frequencies (F > 2 kHz)
- $ERB(F) \approx \text{constant-Q}$ only at high frequencies

1. Frequency domain: The ERB Scale [Moore & Glasberg, 1983].

- o distribution of filters:
 - \approx linear at low frequencies (F < 500 Hz)
 - logarithmic at high frequencies (F > 2 kHz)
- $ERB(F) \approx \text{constant-}Q$ only at high frequencies

2. Temporal domain.

- = Ability to detect rapid changes in sounds over time.
 - Frequency partition into filters
 - \rightsquigarrow Time windows with frequency-dependent lengths
 - Windows' length = temporal resolution
 - Windows' shape is well approximated by Gaussians with [van Schijndel *et al.*, 1999]:
 - bandwidth $\approx ERB(F)$
 - temporal width \approx 4 periods of F, e.g.,
 - 4 ms @ 1 kHz, 1 ms @ 4 kHz

Perceptually Motivated TF Representations. State-of-the-Art.

Auditory models [Plack et al., 2002; Meddis et al., 2012]
 ✓ Useful to gain insights into auditory processing
 X Not invertible, large parameter sets, computationally demanding

Perceptually Motivated TF Representations. State-of-the-Art.

- Auditory models [Plack et al., 2002; Meddis et al., 2012]
 ✓ Useful to gain insights into auditory processing
 X Not invertible, large parameter sets, computationally demanding
- Constant-Q transforms [Philippe et al., 1999; Velasco et al., 2011]
 ✓ Near-perfect or perfect reconstruction
 X Approximate the auditory resolution only at high frequencies, large concentration of filters at low frequencies

Perceptually Motivated TF Representations. State-of-the-Art.

- Auditory models [Plack et al., 2002; Meddis et al., 2012]
 ✓ Useful to gain insights into auditory processing
 X Not invertible, large parameter sets, computationally demanding
- Constant-Q transforms [Philippe et al., 1999; Velasco et al., 2011]
 ✓ Near-perfect or perfect reconstruction
 X Approximate the auditory resolution only at high frequencies, large concentration of filters at low frequencies
- Auditory filterbanks (gammatone, frequency warping)
 [Smith & Abel, 1999; Hohmann, 2002; Irino & Patterson, 2006]
 ✓ Approximate well the auditory resolution
 X No or only approximate reconstruction

Goal of the Study.

Achieve a linear TF transform featuring:

- perceptually motivated TF resolution
- perfect reconstruction
- adaptable resolution and redundancy, *i.e.*,
 - adjustable frequency channels (number of sub-bands)
 - adjustable down-sampling factors

Goal of the Study.

Achieve a linear TF transform featuring:

- perceptually motivated TF resolution
- perfect reconstruction
- adaptable resolution and redundancy, *i.e.*,
 - adjustable frequency channels (number of sub-bands)
 - adjustable down-sampling factors

Proposed approach:

- Use frame theory and the non-stationary Gabor transform (NSGT) [cf. presentation by Peter Balazs] to develop a NSGT matched to the ERB scale
- "ERBlet transform" = non-uniform auditory filterbank

1 Underlying concept: The non-stationary Gabor transform

2 ERBlet implementation

3 Simulations

1 Underlying concept: The non-stationary Gabor transform

2 ERBlet implementation

3 Simulations

4 Conclusions & perspectives

The Non-Stationary Gabor Transform (NSGT). Formulation as a Non-Uniform Filterbank [Balazs *et al.*, 2011].

NSG system with resolution evolving across frequency:

$$\mathcal{G}(\mathbf{g}, \mathbf{D}) := (g_{n,k}[l]) = (g_k \left[l - nD_k \right])$$

where

- $l \in \mathbb{Z} = time variable$
- $n, k \in \mathbb{Z} = \text{time and frequency index, resp.}$
- $\mathbf{g} := (g_k) = \text{frequency-dependent filters}$
- $\mathbf{D} := (D_k) = \text{frequency-dependent down-sampling factors}$

The NSGT continued.

Frame Theory.

The sequence $(g_{n,k})$ is called a *frame* if the constants $A, B \in \mathbb{R}^{+\star}$ exist that satisfy

$$A||f||^2 \le \sum_{n,k} |\langle f, g_{n,k} \rangle|^2 \le B||f||^2$$

for any signal $f \in \mathbb{R}$.

The NSGT *continued*. Analysis and Synthesis (1/2).

NSG analysis:

Analysis through the frame operator S is given by

$$\mathbf{S}f = \sum_{n,k} \langle f, g_{n,k} \rangle \, g_{n,k}.$$

If ${\bf S}$ is invertible, then perfect reconstruction is achieved using the canonical dual frame

$$\widetilde{\mathcal{G}(\mathbf{g},\mathbf{D})} = (\widetilde{g}_{n,k}) = \mathbf{S}^{-1}(g_{n,k}).$$

NSG synthesis:

$$f = \mathbf{S}^{-1}\mathbf{S}f = \sum_{n,k} \langle f, g_{n,k} \rangle \, \tilde{g}_{n,k}.$$

The NSGT *continued*.

Analysis and Synthesis (2/2).

Conditions for "painless" reconstruction:

- $\hat{g}_k = \mathcal{F}(g_k)$ has a bandpass characteristic
- $\operatorname{supp}(\hat{g}_k) = \mathcal{I}_k$ (in samples)
- D_k satisfies $\lceil \frac{L}{D_k} \rceil \ge \mathcal{I}_k, L = \text{signal length}$

It follows that the operator $\hat{\mathbf{S}}:=\mathcal{F}\,\mathbf{S}\,\mathcal{F}^{-1}$ is diagonal and easily invertible.

Underlying concept: The non-stationary Gabor transform

2 ERBlet implementation

- Analysis & dual windows: ERBlets
- Algorithms

3 Simulations

4 Conclusions & perspectives

ERBlet Design. Analysis Windows.

ERBlet transform = $\mathcal{G}(\mathbf{g}, \mathbf{D})$ with $g_k, k = 0 \dots K$, defined in the frequency domain by

$$\hat{g}_k[m] = \frac{1}{\sqrt{\Gamma_k}} e^{-\pi \left[\frac{m-\nu_k}{\Gamma_k}\right]^2}$$

ERBlet transform $= \mathcal{G}(\mathbf{g}, \mathbf{D})$ with $g_k, k = 0 \dots K$, defined in the frequency domain by

$$\hat{g}_k[m] = \frac{1}{\sqrt{\Gamma_k}} e^{-\pi \left[\frac{m-\nu_k}{\Gamma_k}\right]^2}$$

To obtain filters equidistantly spaced on the ERB scale:

- Let F_{\min} , $F_{\max} = \min$, max analysis frequencies, resp.
- Then $E_0 = ERB_{number}(F_{min})$ and $E_K = ERB_{number}(F_{max})$
- Distribute K + 1 filters from E_0 to E_K with V filters/ERB
- $\rightsquigarrow E_k = E_0 + k/V$ and $K = V (E_K E_0)$.
- $\nu_k = ERB_{number}^{-1}(E_k)$
- $\Gamma_k = ERB(\nu_k)$

ERBlet transform $= \mathcal{G}(\mathbf{g}, \mathbf{D})$ with $g_k, k = 0 \dots K$, defined in the frequency domain by

$$\hat{g}_k[m] = \frac{1}{\sqrt{\Gamma_k}} e^{-\pi \left[\frac{m-\nu_k}{\Gamma_k}\right]^2}$$

To obtain filters equidistantly spaced on the ERB scale:

- Let F_{\min} , $F_{\max} = \min$, max analysis frequencies, resp.
- Then $E_0 = ERB_{number}(F_{min})$ and $E_K = ERB_{number}(F_{max})$
- Distribute K + 1 filters from E_0 to E_K with V filters/ERB
- $\rightsquigarrow E_k = E_0 + k/V$ and $K = V (E_K E_0)$.
- $\nu_k = ERB_{number}^{-1}(E_k)$
- $\Gamma_k = ERB(\nu_k)$

Windows truncated so that $\operatorname{supp}(\hat{g}_k) = \mathcal{I}_k = \lceil 4 \Gamma_k \rceil$.

ERBlet Design. Dual Windows.

"Painless case" condition:

i.e., choose D_k such that the number of time positions

$$N_k = \left\lceil \frac{L}{D_k} \right\rceil \ge \left\lceil 4 \, \Gamma_k \right\rceil.$$

 $\sim \hat{\mathbf{S}}$ is diagonal and easily invertible and $\widetilde{g_{n,k}} = \mathcal{F}^{-1} \hat{\mathbf{S}}^{-1} \widehat{g_{n,k}}$.

"Painless case" condition:

i.e., choose D_k such that the number of time positions

$$N_k = \left\lceil \frac{L}{D_k} \right\rceil \ge \left\lceil 4 \, \Gamma_k \right\rceil.$$

 $\sim \hat{\mathbf{S}}$ is diagonal and easily invertible and $\widetilde{g_{n,k}} = \mathcal{F}^{-1} \hat{\mathbf{S}}^{-1} \widehat{g_{n,k}}$.

Otherwise,

if $N_k < \lceil 4\Gamma_k \rceil$ then $\hat{\mathbf{S}}$ is not diagonal. We use an iterative method to approximate $\hat{\mathbf{S}}^{-1}$.

ERBlet Design. Windows Example: Spectral Domain.

• $F_{\min} = 0$, $F_{\max} = 8$ kHz (Nyquist frequency)

- V = 1 filter/ERB (\equiv auditory filterbank)
- K = 34 channels

ERBlet Design. Windows Example: Time Domain.

Analysis windows

Algorithms.

1. NSG Analysis and Synthesis.

- NSGT with resolution evolving over time available in LTFAT [Søndergaard *et al.*, 2012]: functions nsdgt.m and insdgt.m
- Applying these algorithms to \hat{f} allows to construct NSGT with resolution evolving over frequency
- ERBlet is determined by 2 parameters: V and D_k
 - enable adaptable resolution & redundancy

•
$$red = \sum_{k=0}^{K} D_k^{-1}$$

• erblet.m and ierblet.m soon available in LTFAT

Algorithms. 2. Iterative Reconstruction.

We use a conjugate gradients algorithm (CG) to solve the system

$$\widehat{\mathbf{S}}f = \sum_{n,k} c_{n,k} \, \widehat{g_{n,k}}.$$

• CG works with Hermitian and positive-definite matrices

$$\widehat{\mathbf{S}}f = \sum_{n,k} c_{n,k} \, \widehat{g_{n,k}}.$$

CG works with Hermitian and positive-definite matrices
Ŝ is Hermitian provided (g_{n,k}) is a frame

$$\widehat{\mathbf{S}}f = \sum_{n,k} c_{n,k} \, \widehat{g_{n,k}}.$$

CG works with Hermitian and positive-definite matrices
Ŝ is Hermitian provided (g_{n,k}) is a frame
Ŝf ≡ S⁻¹Sf

$$\widehat{\mathbf{S}}f = \sum_{n,k} c_{n,k} \, \widehat{g_{n,k}}.$$

- CG works with Hermitian and positive-definite matrices
 Ŝ is Hermitian provided (g_{n,k}) is a frame
 Ŝ f ≡ S⁻¹Sf
 - \bullet we can use <code>nsdgt.m</code> followed by <code>insdgt.m</code> instead of $\hat{\mathbf{S}}$

$$\widehat{\mathbf{S}}f = \sum_{n,k} c_{n,k} \, \widehat{g_{n,k}}.$$

- CG works with Hermitian and positive-definite matrices
 Ŝ is Hermitian provided (g_{n,k}) is a frame
 Ŝf ≡ S⁻¹Sf
 we can use nodgt, m followed by incident, m instead of Ŝ
- we can use nsdgt.m followed by insdgt.m instead of S
 Since \$\hat{g}_k\$ decay fast, \$\hat{S}\$ is diagonal dominant and

$$\mathbf{P}(\hat{\mathbf{S}})_{m,l}^{-1} = \begin{cases} \left(\sum N_k |\hat{g}_k|^2\right)^{-1} [m], & \text{if } m = l \\ 0, & \text{else} \end{cases}$$

is a good preconditioner [Balazs et al., 2006].

Underlying concept: The non-stationary Gabor transform

2 ERBlet implementation

3 Simulations

- Iterative reconstruction
- Signal representation

Simulations.

Overview.

2 Experiments:

- Exp. 1: Test the convergence of CG for various redundancies
- Exp. 2: Compare the ERBlet to a standard DGT and a linear gammatone filterbank [Hohmann, 2002]

Setup:

- Audio material: 2 musical excerpts (5–10 sec) in mono format, sampled at 44.1 kHz, 16 bits/sample
- $F_{\min} = 0$, $F_{\max} = 22.05 \text{ kHz}$

Simulations. Experiment 1: Convergence of CG.

10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-15} 0 5 10 10 10 10 10 10 10 10										
Figure (CG)						Painless case (reference)				
$\mathcal{G}(\mathbf{g},\mathbf{D})$	V	K	N_k	red	B/A	V	K	N_k	red	B/A
ERBlet3	1	43	$\left\lceil \frac{32\Gamma_k}{9} \right\rceil$	3.53	1.44	1	43	$\lceil 4\Gamma_k\rceil$	4.00	1.44
ERBlet4	1	43	$\left[\frac{8\ddot{\Gamma}_k}{3}\right]$	2.64	1.44	3	129	$\lceil 4 \Gamma_k \rceil$	12.00	1.07
ERBlet5	1	43	$\lceil 2 \widetilde{\Gamma}_k \rceil$	1.98	1.52					
ERBlet6	1	43	$\left\lceil \frac{4\Gamma_k}{3} \right\rceil$	1.32	2.56					
ERBlet7	1	43	$\left\lceil \frac{12\Gamma_k}{11} \right\rceil$	1.08	5.88					

Simulations. Experiment 2: ERBlet vs. DGT.

- B/A = 1.0
- red = 11.73
- Rel. error $< 10^{-15}$

Simulations. Experiment 2: ERBlet *vs.* GFB.

Simulations. Experiment 2: ERBlet vs. GFB.

Underlying concept: The non-stationary Gabor transform

- 2 ERBlet implementation
- 3 Simulations
- 4 Conclusions & perspectives

Conclusions.

- ERBlet = Linear and perfectly invertible TF transform adapted to human auditory perception
- Adaptable resolution and redundancy
 - Perfect reconstruction achieved using iterative method even using 1 filter/ERB and red=1.08
- Compatible with linear gammatone representation
 - Approximates well the auditory TF resolution
- Soon available in the Matlab/Octave toolbox LTFAT
- New analysis/synthesis tool for audio processing

Perspectives.

- Include basilar membrane compression and compare with nonlinear gammatone filterbanks [Irino & Patterson, 2006]
- Use windows with Gaussian shapes on the ERB scale, *i.e.*, use a warping function to map linear frequency to ERB scale
- Introduce perceptual sparsity in the transform using recent data on auditory TF masking [Balazs et al., 2010; Necciari, 2010]

Thank you for your attention!

thibaud@kfs.oeaw.ac.at