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Audio processing techniques like sound design, audio coding,
or speech & music processing require tools to:

analyse (represent, extract relevant features. . . )
process
re-synthesize sounds

Standard tools = time-frequency (TF) transforms

Humans listeners = main receivers of speech & music signals

Intuition: Account for auditory perception in signal analysis
= TF transform that approximates the auditory TF resolution

Ideal transform properties:

Invertibility

Computational efficiency

Adaptable redundancy



The Auditory Resolution.
1. Frequency domain: The Auditory Filters.

= Ability to resolve sinusoidal components in complex sounds.

Peripheral filtering ≡ bank of bandpass filters = auditory filters
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The Auditory Resolution.
2. Temporal domain.

= Ability to detect rapid changes in sounds over time.

Frequency partition into filters
; Time windows with frequency-dependent lengths

Windows’ length = temporal resolution

Windows’ shape is well approximated by Gaussians with
[van Schijndel et al., 1999]:

bandwidth ≈ ERB(F )
temporal width ≈ 4 periods of F , e.g.,
4 ms @ 1 kHz, 1 ms @ 4 kHz
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Auditory models [Plack et al., 2002; Meddis et al., 2012]
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Perceptually Motivated TF Representations.
State-of-the-Art.

Auditory models [Plack et al., 2002; Meddis et al., 2012]

� Useful to gain insights into auditory processing
X Not invertible, large parameter sets, computationally
demanding

Constant-Q transforms [Philippe et al., 1999; Velasco et al., 2011]

� Near-perfect or perfect reconstruction
X Approximate the auditory resolution only at high
frequencies, large concentration of filters at low frequencies

Auditory filterbanks (gammatone, frequency warping)
[Smith & Abel, 1999; Hohmann, 2002; Irino & Patterson, 2006]

� Approximate well the auditory resolution
X No or only approximate reconstruction
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Goal of the Study.

Achieve a linear TF transform featuring:

perceptually motivated TF resolution

perfect reconstruction

adaptable resolution and redundancy, i.e.,

adjustable frequency channels (number of sub-bands)
adjustable down-sampling factors

Proposed approach:

Use frame theory and the non-stationary Gabor transform
(NSGT) [cf. presentation by Peter Balazs] to develop a NSGT
matched to the ERB scale

“ERBlet transform” = non-uniform auditory filterbank
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The Non-Stationary Gabor Transform (NSGT).
Formulation as a Non-Uniform Filterbank [Balazs et al., 2011].

NSG system with resolution evolving across frequency:

G(g,D) := (gn,k[l]) = (gk [l − nDk])

where

l ∈ Z = time variable

n, k ∈ Z = time and frequency index, resp.

g := (gk) = frequency-dependent filters

D := (Dk) = frequency-dependent down-sampling factors



The NSGT continued.
Frame Theory.

The sequence (gn,k) is called a frame if the constants A,B ∈ R+⋆

exist that satisfy

A‖f‖2 ≤
∑

n,k

| 〈f, gn,k〉 |2 ≤ B‖f‖2

for any signal f ∈ R.



The NSGT continued.
Analysis and Synthesis (1/2).

NSG analysis:

Analysis through the frame operator S is given by

Sf =
∑

n,k

〈f, gn,k〉 gn,k.

If S is invertible, then perfect reconstruction is achieved using the
canonical dual frame

˜G(g,D) = (g̃n,k) = S−1(gn,k).

NSG synthesis:

f = S−1Sf =
∑

n,k

〈f, gn,k〉 g̃n,k.



The NSGT continued.
Analysis and Synthesis (2/2).

Conditions for “painless” reconstruction:

ĝk = F(gk) has a bandpass characteristic

supp(ĝk) = Ik (in samples)

Dk satisfies ⌈ L
Dk

⌉ ≥ Ik, L = signal length

It follows that the operator Ŝ := F SF−1 is diagonal and easily
invertible.
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ERBlet Design.
Analysis Windows.

ERBlet transform = G(g,D) with gk, k = 0 . . . K, defined in the
frequency domain by

ĝk[m] =
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Let Fmin, Fmax = min, max analysis frequencies, resp.

Then E0 = ERBnumber(Fmin) and EK = ERBnumber(Fmax)
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To obtain filters equidistantly spaced on the ERB scale:

Let Fmin, Fmax = min, max analysis frequencies, resp.

Then E0 = ERBnumber(Fmin) and EK = ERBnumber(Fmax)

Distribute K + 1 filters from E0 to EK with V filters/ERB

; Ek = E0 + k/V and K = V (EK − E0).

νk = ERB−1
number(Ek)

Γk = ERB(νk)

Windows truncated so that supp(ĝk) = Ik = ⌈4Γk⌉.



ERBlet Design.
Dual Windows.

“Painless case” condition:

i.e., choose Dk such that the number of time positions

Nk =

⌈
L

Dk

⌉
≥ ⌈4Γk⌉.

; Ŝ is diagonal and easily invertible and g̃n,k = F−1Ŝ−1ĝn,k.



ERBlet Design.
Dual Windows.

“Painless case” condition:

i.e., choose Dk such that the number of time positions

Nk =

⌈
L

Dk

⌉
≥ ⌈4Γk⌉.

; Ŝ is diagonal and easily invertible and g̃n,k = F−1Ŝ−1ĝn,k.

Otherwise,

if Nk < ⌈4Γk⌉ then Ŝ is not diagonal. We use an iterative method
to approximate Ŝ−1.



ERBlet Design.
Windows Example: Spectral Domain.

Analysis windows
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Fmin = 0, Fmax = 8 kHz (Nyquist frequency)

V = 1 filter/ERB (≡ auditory filterbank)

K = 34 channels



ERBlet Design.
Windows Example: Time Domain.

Analysis windows
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4 kHz: Resolution = 1.1 ms
(auditory = 1 ms)

1 kHz: Resolution = 3.7 ms
(auditory = 4 ms)



Algorithms.
1. NSG Analysis and Synthesis.

NSGT with resolution evolving over time available in LTFAT
[Søndergaard et al., 2012]: functions nsdgt.m and insdgt.m

Applying these algorithms to f̂ allows to construct NSGT with
resolution evolving over frequency

ERBlet is determined by 2 parameters: V and Dk

enable adaptable resolution & redundancy
red =

∑K

k=0
D−1

k

erblet.m and ierblet.m soon available in LTFAT



Algorithms.
2. Iterative Reconstruction.

We use a conjugate gradients algorithm (CG) to solve the system

Ŝf =
∑

n,k

cn,k ĝn,k.

CG works with Hermitian and positive-definite matrices
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Algorithms.
2. Iterative Reconstruction.

We use a conjugate gradients algorithm (CG) to solve the system

Ŝf =
∑

n,k

cn,k ĝn,k.

CG works with Hermitian and positive-definite matrices

Ŝ is Hermitian provided (gn,k) is a frame

Ŝf ≡ S−1Sf

we can use nsdgt.m followed by insdgt.m instead of Ŝ

Since ĝk decay fast, Ŝ is diagonal dominant and

P(Ŝ)
−1

m,l =

{(∑
Nk|ĝk|2

)−1
[m], if m = l

0, else

is a good preconditioner [Balazs et al., 2006].
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Simulations.
Overview.

2 Experiments:

Exp. 1: Test the convergence of CG for various redundancies

Exp. 2: Compare the ERBlet to a standard DGT and a linear
gammatone filterbank [Hohmann, 2002]

Setup:

Audio material: 2 musical excerpts (5–10 sec) in mono
format, sampled at 44.1 kHz, 16 bits/sample

Fmin = 0, Fmax = 22.05 kHz



Simulations.
Experiment 1: Convergence of CG.

Figure (CG)

G(g,D) V K Nk red B/A

ERBlet3 1 43 ⌈ 32 Γk

9
⌉ 3.53 1.44

ERBlet4 1 43 ⌈ 8 Γk

3
⌉ 2.64 1.44

ERBlet5 1 43 ⌈2Γk⌉ 1.98 1.52

ERBlet6 1 43 ⌈ 4 Γk

3
⌉ 1.32 2.56

ERBlet7 1 43 ⌈ 12 Γk

11
⌉ 1.08 5.88

Painless case (reference)

V K Nk red B/A

1 43 ⌈4Γk⌉ 4.00 1.44

3 129 ⌈4Γk⌉ 12.00 1.07



Simulations.
Experiment 2: ERBlet vs. DGT.
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Simulations.
Experiment 2: ERBlet vs. GFB.
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Conclusions.

ERBlet = Linear and perfectly invertible TF transform
adapted to human auditory perception

Adaptable resolution and redundancy

Perfect reconstruction achieved using iterative method
even using 1 filter/ERB and red = 1.08

Compatible with linear gammatone representation

Approximates well the auditory TF resolution

Soon available in the Matlab/Octave toolbox LTFAT

New analysis/synthesis tool for audio processing



Perspectives.

Include basilar membrane compression and compare with
nonlinear gammatone filterbanks [Irino & Patterson, 2006]

Use windows with Gaussian shapes on the ERB scale, i.e.,
use a warping function to map linear frequency to ERB scale

Introduce perceptual sparsity in the transform using recent
data on auditory TF masking [Balazs et al., 2010; Necciari, 2010]



Thank you for your attention!

thibaud@kfs.oeaw.ac.at
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