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OUTLINE

The main theme of this talk is the usefulness of (locally compact)
groups and the function spaces defined over such groups for a
good understanding of signal representation, be it via the Fourier
transform (relevant for Abelian groups), or the wavelet transform,
or equally for non-orthogonal Gabor expansions of generalized
functions.
They allow to choose the building blocks (freely!) from appropriate
spaces of test functions, and guarantee convergence of the
resulting expansions in suitable function spaces.
Finally one can claim that discrete groups (and hence the use of
various forms of FFT) are behind many of the
efficient algorithms developed in this field.
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Personal background

What are the ingredients for COORBIT THEORY and why does
this work (which is up to now the most cited work of both authors)
have such an impact, over a period of more than 25 years?

I had from the beginning an interest in function spaces over
locally compact groups (under my advisor Hans Reiter);

I had realized through interpolation theory that they come in
families (strong influence of H. Triebel and J. Peetre);

Harmonic Analysis was for me always s a subdiscipline of
functional analysis, where duality is a crucial concept;
therefore the use of generalized functions is obligatory;

Faszination with smoothness described by Fourier
methods (E. Stein, L. Hörmander).
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Historical Viewpoint I

If one looks at the development of function space theory, Fourier
analysis or even the theory of PDE one my notice an intensive
exchange between the needs of applications and the
development of the appropriate mathematical tools.
First it was the work of J.P. Fourier which kept generations of
mathematicians busy with his claim that any periodic function
could be represented as a superposition of “pure frequencies”. But
what is a function, what does it mean to “represent” a function
(since there are infinitely many of them, so the notion of
convergence has to be specified!).
The work of B. Riemann, H. Lebesgue, or L. Schwartz gave
us what is now viewed as Classical Fourier Analysis (using
Lp-spaces and integrals, resp. tempered distributions) to
describe the properties of the Fourier transform.
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Historical Viewpoint II

First the questions of function representation was taken serious by
Dirichlet, who found conditions about the convergence of the
Fourier series at good points.
The more refined study of points of convergence inspired the
invention of set theory, and the determination of Fourier
coefficients is of course based on a suitable concept of an integral,
first the well-known Riemann integral and then the Lebesgue
integral is the final development in this direction.
The convergence theorems valid for Lebesgue integrable functions
imply that

(
L1(U), ‖ · ‖1

)
is a complete (i.e. a Banach space), and

that
(
L2(U), ‖ · ‖2

)
is a Hilbert space. Parseval’s identity (the

infinite version of Pythagoras’ theorem) is valid: the
Fourier transform is energy preserving. On the other hand this
makes convergence in the quadratic mean almost obvious.
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Historical Viewpoint III

Such considerations lead to the analysis of Lp-spaces, duality and
the foundation of functional analysis in the first half of the last
century.
The theory of Fourier transforms on R and Rd are good examples
of a combination of functional analytic tools (Lp-spaces) and
concrete measure theoretic arguments in order to establish e.g.
Plancherel’s theorem: ‖f̂ ‖2 = ‖f ‖2, ∀f ∈ L2(Rd ).
The difficulty now being that the discrete sum is replaced by a
continuous integral, which needs some extra properties to be valid
(and are not satisfied by the simple SINC function, because it is
not integrable). Another difficulty is the fact that
pure frequencies do not belong to L2(R).
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Historical Viewpoint IV

It is interesting to observe that the convolution theorem, telling us
that the Fourier transform converts convolution into pointwise
multiplication, plays only a little role in Zygmund’s monumental
treatise [7], while it is important e.g. in probability theory: The
characteristic function of the distribution of a sum of two indepen-
dent random variables (Fourier Stieltjes transform of their distribu-
tions) is the product of the individual characteristic functions.

Of course, any LCA (locally compact Abelian) group G carries a
translation invariant Haar measure, which in turn is the basis for
defining

(
L1(G ), ‖ · ‖1

)
and a Fourier transform, using characters.

Again there we have Plancherel’s theorem and a convolution
theorem, but also the Hausdorff-Young inequality, telling us
that FG (Lp(G )) ⊂ Lq(Ĝ ) for 1 ≤ p ≤ 2, with 1/q = 1− 1/p.
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Historical Viewpoint V

This view-point appears as the culmination of this development.
As Andre Weil was presenting it: The realm of LCA-groups is the
natural setting of what has been later called (by E. Hewitt)
Abstract Harmonic Analysis.
An interesting aspect is the connection to the theory of Banach
algebras, specifically to the work of I.M. Gelfand, with the insight
that the dual group can be identified with the spectrum of the
Banach algebra

(
L1(G ), ‖ · ‖1

)
, endowed with convolution. In fact,

for every non-zero multiplicative linear functional σ on

(L1(G ), ∗, ‖ · ‖1)

there exists a unique point in χ ∈ Ĝ such that

σ(f ) = f̂ (χ) ∀f ∈ L1(G ).
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Historical Viewpoint VI

With the (academically) significant paper by L. Carleson (1966)
concerning the almost everywhere convergence of the inverse
Fourier transform the most important results concerning the
Fourier transform in the most general setting had been settled, and
the theory of maximal functions, Muckenhoupt weights, and
function spaces started to gain interest.
For the applications the extension of the Fourier transform to
tempered distributions through Laurent Schwartz was probably
much more important. Its subsequent intensive use by Lars
Hörmander for the study partial differential equations (including
the development of microlocal analysis) has changed the field.
Finally one can of course combine the setting to work with
distributions over LCA groups or even consider generalized
stochastic processes over LCA groups.
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Historical Viewpoint VII

Even for engineers the abstract harmonic analysis view-point has
big advantages. It puts the underlying group in the focus, and
consequently function on a group can be shifted. It also tells us,
that in each case there are the characters, i.e. objects which are
invariant with respect to translation, and that the theory of Fourier
transform just provides a kind of representation of general
functions on the group, specifically those from L2(G ), as a
(possible continuous) superposition of those pure frequencies.
Depending on the group, whether it is discrete or “continuous”,
one- or multidimensional, or just finite (with cyclic shifts then),
there is always only one natural way to define convolution and a
Fourier transform satisfying the convolution theorem. Thus
the DFT (FFT) is the Fourier transform for the cyclic group
of unit roots of order N (resp. products of such groups).
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Groups in Fourier Analysis

Poisson’s formula

Shannon’s sampling theorem

the slice theorem (> tomography)

cubic splines > spline-type spaces
(with applications in irregular sampling, see [1]);

minimal norm interpolation in Sobolev spaces

(via the Kohn-Nirenberg symbol):
best approximation of operators by Gabor multipliers;
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Illustration
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Groups in Fourier Analysis: Hints

It maybe worthwhile noticing, that certain practical conventions,
which influence e.g. the choice of formats for digital displays, can
be also explained using group theory:
Why do we have a standard HiFi sampling rate of N = 44100?
First of all because we have to obeye the Nyquist criterion (with
some oversamplig), so ca. 40.000 ∗ (1 + δ) would be fine.
Looking for numbers in this range, which are also rich in divisors
(resp. subgroups of ZN) you will find that there are 81 of them,
because

44100 = 22 · 32 · 52 · 72

has many different small prime factors.
Similar arguments apply to most display formats for your
electronic devices, just test them! (e.g. 1366× 768).
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Groups in Fourier Analysis: Problems

Before turning to non-commutative groups (where one cannot
expect to have a joint diagonalization of all convolution operators,
because the do not commute anymore, even if the group is finite!)
let us point out some problems with the Fourier transform, from a
more technical view-point:

The Fourier inversion does not apply to all elements in the
Fourier algebra FL1(Rd ) (only to L1(Rd ) ∩ FL1(Rd ));

Even that space is too big for Poisson’s formula;

Later on we will see that some pairs of functions in L2(Rd )
the sampled STFT may not belong to `2(Z2d ).

So somehow despite their deceptive “naturality” for the use
in Fourier Analysis the Lp-spaces are not so useful for the
discussion of Fourier analysis.
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From Abelian to Non-Ablian Groups

Having reviewed the basic facts about commutative Harmonic
Analysis let us turn (still keeping a group-theoretical setup of our
mind) to non-commutative.
Note that direct products of commutative groups are again
commutative groups and hence have been covered already. In fact,
the FFT2 is just the tensor product of the FFT action (on rows
and columns of a matrix) and is thus the basis of digital image
processing.
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Non-Abelian Groups, the two Main examples

One natural way to obtain non-Abelian groups is the combine
commutative groups in a different way, namely either as a
semi-direct product. This is the way how one can obtain the affine
group, the so-called ax+b-group. It is composed from the additive
group of translations (i.e. G1 = (R,+)) and the multiplicative
group of positive reals with multiplication (i.e. G2 = (R∗+, ·)),
which acts of course as group of automorphisms x 7→ ax on G1.

Another way to construct the more-or-less least non-commutative
(namely nilpotent, step-1) group is to combine the commutative
group of time-shifts with the commutative group of frequency
shifts (modulation operators f 7→ χ · f , χ ∈ Ĝ ). From an
engineering point we talk about time-frequency (TF-) shifts),
which create a projective representation of phase space, i.e.
of Rd × R̂d on

(
L2(Rd ), ‖ · ‖2

)
, via unitary mappings.
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Non-Abelian Groups

Of course a price has to be paid for the nontrivial commutation
relations for TF-shifts (they commute only up to phase factors,
which are equal to 1 only under specific conditions). Gabor
Analysis, i.e. the idea of representing signals as superposition of
TF-shifted copies of a Gabor atom) is a perfect example showing
that projective group representations work almost like ordinary
group representations, where addition of group elements
corresponds exactly the composition of the corresponding unitary
operators.

One way out of this defect in the composition law is to add as a
third component a torus, i.e. to form Rd × R̂d × U, the
reduced Heisenberg group. Its representation of this enlarged
group is then called the Schrödinger representation.
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Non-Abelian Groups

In summary: The continuous wavelet transform resp. the
spectrogram (short-time or sliding window Fourier transform) are
representatives of transforms, obtained from the action of suitable
non-Abelian groups on the Hilbert space L2(Rd ).

The theory of coorbit space then tried to unify this situation and
take an abstract approach, describing both situations in the
following way. The setting envisaged is then then following one:
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Non-Abelian Groups

In the definition of voice-transform a unitary and irreducible
representation π of the group (G, ·) on a Hilbert space H is used,
which is supposed to be strongly continuous, i.e. π(x)g depends
continuously on x ∈ G for every g ∈ H. The voice transform of
f ∈ H generated by the representation π and by the analyzing
window or atom g ∈ H is the (possibly complex-valued)
continuous and uniformly bounded (by Cauchy Schwarz) function
on G defined by

(Vg f )(x) := 〈f , π(x)g〉 (x ∈ G, f , g ∈ H). (1)

The prototypes are the CWT and the STFT!
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Non-Abelian Groups: Coorbit spaces

The insight which arose by comparing the characterization of
modulation spaces (at the time of the invention of coorbit spaces
only known, with the present view-point to the author) through
the behaviour of the STFT of their elements, quite similar to the
characterization of the classical function spaces (Triebel-Lizorkin
and Besov spaces) through the CWT (continuous wavelet
transform), was very helpful in the design of coorbit spaces.
In order to have the most natural and most general setting coorbit
spaces are defined as spaces of (e.g. tempered) distributions, with
a certain behavior of their voice transform, describing typically
their smoothness or decay at infinity. It then easy define coorbit
spaces (with respect to π) by

Coπ(Y) := {f |Vg (f ) ∈ Y}.
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Gabor Analysis: Beethoven Piano Sonata
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Usefulness of Gabor Expansions: Audio

Gabor multipliers are just time-variant filterbanks:
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Usefulness of Gabor Expandions: Audio

The interpretation of the spectrogram (resp. STFT, or sliding
window Fourier transform) makes it natural to use it for various
purposes in (musical) audio-processing. Note that for this purpose
one does not have to store only the absolute values of the STFT
(|Vg (f )|2 really can be viewed as energy distribution, but not in
the pointwise sense) but also the phase.
Either one wants to do denoising, knowing in which are in phase
space the “bird was making extra noise in the open air concert”.
But for concrete applications one may want to use not just the
standard Gaussian atoms or B-splines as atoms, but maybe
generalized i.e. chirped Gaussians, where the ambiguity
function Vg g has elliptic contour lines, and correspondingly
the corresponding Gabor expansions use sheared lattices.
On the other hand MP3 compression used by everybody can be
seen as STFT-thresholding to compress audio data.
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Abstract Coorbit Space Theory

Coπ(Y) := {f |Vg (f ) ∈ Y}.

To make those Banach spaces we need a few basic facts:

Does the definition depend on the choice of the analyzing
window? (of course the same condition on g should apply for
the full range of p ∈ [1,∞]);

What about other (solid) function spaces on G, instead of
Lp(G ), for example weighted mixed-norm spaces?

Motivated by the theory of coherent states one may ask:
Can one build the elements of those coorbit spaces
from the Orbit of an atom under the group action?
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Non-Abelian Groups, Different Types

The technicalities behind this abstract approach my look a bit
complicated, but this should not be a surprise given the fact that a
variety of special cases already requires non-trivial arguments.
For example, one can attribute the so-called admissibility condition
to be imposed on the analyzing wavelet to the fact that the
ax+b-group is not unimodular, hence convolution from the right by
some L1(G )-function does not necessarily define a bounded
operator on L2(G ) resp. on other Lp-spaces over G.
In contrast, the reduced Heisenberg group relevant for modulation
spaces is a nilpotent and unimodular group, even an [IN]-group,
i.e. having compact invariant neighborhoods Q of the identity,
with yQ = Qy ,∀y , e.g. Q = [−δ, δ]2 × U.
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Non-Abelian Groups, Function Spaces

One of the possible technicalities observed by the novice interested
in the coorbit spaces may be the degree of generality concerning
the space (Y, ‖ · ‖Y) (on G) used in the construction.
It turns out that it is sufficient to assume that Y is solid (i.e. only
“seize matters”: Given a function in Y any other function which is
dominated - in terms of absolute values - also belongs to the
spaces and has smaller norm) and that is translation invariant.
Due to the covariance properties of the voice-transform this implies
that with a given g also any linear combination of windows of the
form g1 =

∑
ciπ(λi )g can be used, and those atoms h ∈ H such

that Vh(f ) is dominated by |Vg1f |, and this is enough to establish
independence of the definition from g for a large
collection of atoms g .
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Non-Abelian Groups, Mixed Norm Spaces

The most popular function spaces to be used are mixed norm
spaces with weights. On our groups those weights are typically
related to polynomial growth in the “smoothness direction”. In
fact, such a weight will grow like r s for r > 0 in the direction of
scale space, and the (homogeneous) Besov spaces are
characterized as coorbit spaces for spaces with respect to the
natural representation of the ax+b group on L2(Rd ). All wavelets
with sufficiently many vanishing moments and good polynomial
decay at infinity will qualify.

In the design of modulation spaces care has been taken to design
them in a quite similar fashion. This is why the “classical
modulation spaces” Ms

p,q(Rd ) have the same parameters as

the Besov family Bs
p,q(Rd ) (and quite comparable properties).
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Atomic Characterization via Series Expansions

One of the key features of Coorbit Theory it the fact that it allows
to answer two more or less equivalent questions:

1 Can one recover a voice transform from it sufficiently dense
samples at points (xi )i∈I , i.e. from the values (Vg f (xi ))i∈I ?

2 Can on expand all the elements in Coπ(Y) as a
non-orthogonal, but unconditionally convergent sum of the
form

f =
∑

i

ciπ(xi )g ,

with coefficients coming from a disrete version Yd

of the function spaces (Y, ‖ · ‖Y).

In a linear algebra situation one would say: YES, if the family
(π(xi )g) generates the spaces! (here: is a Banach frame!)
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Atomic Characterization via Series Expansions II

It is plausible that one may have to make still further assumptions
on the atoms (slightly stronger than the one for independent
characterization of the coorbit spaces), at least in some cases.
Slightly more surprising this extra assumption are automatically
satisfied in the case of modulation spaces!. Here we have the
pleasant situation (we restrict our attention now to the unweighted
case, i.e. to the modulation spaces Mp,q(Rd )), that the atom
belongs to the minimal space in this family, namely M1,1

0 (Rd ) or
M1(Rd ) = S0(Rd ), the minimal Segal algebra with respect to the
property of being isometrically invariant under TF-shifts, i.e. the
Schrödinger representation. It is the [IN]-property of the acting
group together with convolution relations for Wiener amalgam
spaces which allows to make this conclusion.
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Atomic Characterization via Series Expansions III

The final result can then be summarized as follows:

Theorem

Given a family of coorbit spaces with a uniform control on the
norm of the operators π(x), acting on them a one can guarantee
that for all sufficiently “decent” atoms g (with Vg g ∈ L1

w (G )) the
answer to the above questions (in fact to both of them) is positive,
for any sufficiently dense family (xi )i∈I , meaning that a covering of
“balls centered at those points is possible.

aUniformity meant for each fixed x ∈ G with respect to the family, by a
submultiplicative weight w(x) on G.

Hans G. Feichtinger Group theoretical methods and wavelet theory (coorbit theory and applications)



History of Fourier Analysis Abelian Fourier Analysis Non-Abelian Groups and Signal Representations Specific Facts about Gabor Expansions

Atomic Characterization via Series Expansions IV

For a given atom or window g and a family of spaces, “morally”
the result can be compared with a kind of Nyquist criterion:
If there the density is high enough the voice-transforms show
uniform “smoothness” and stable recovery is possible, in the sense
that whenever samples from a function in f ∈ Coπ(Y) the recovery
(typically iterative) will be convergent in this space, at a geometric
rate. The higher the “sampling rate” resp. the quality of g the
better the guaranteed rate of convergence.
If we take the final result we can say: there is a linear mapping
from the space of samples back to the coorbit space, which in fact
is robust with respect to jitter error or slightly incomplete
information with respect to the window g or additive noise
(if it is small in Yd ).

Hans G. Feichtinger Group theoretical methods and wavelet theory (coorbit theory and applications)



History of Fourier Analysis Abelian Fourier Analysis Non-Abelian Groups and Signal Representations Specific Facts about Gabor Expansions

Atomic Characterization via Series Expansions V

If we go to back to the Hilbert space case, typically H = L2(Rd ),
then the situation is more or less comparable with the problem of a
MNLSQ-problem. For a given family (xi )i∈I the set of samples is a
closed subspace of `2(I ). Hence for any sequence in `2(I ) (be it in
the range of the mapping f 7→ (Vg f (xi ))i∈I or not) there exists a
projection on that space, which is in a one-to-one correspondence
to the original space, i.e. H = Co(L2(G )).
While the most natural left inverse to the sampling operator is the
identification of the “least norm” solution to the modified problem
(consistent system of linear equations), resp. to Moore-Penrose
pseudo-inverse, such a thing does not exist in the general setting
and therefore constructive, iterative methods to solve the problem
“in the same spirit” are a good working solution. It is also
important that the method of recovery does not require that
the user knows which space Y is involved.
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The Role of Groups for Gabor Expansions

Let us recall that the theory of Gabor expansions is concerned with
the recovery of functions from samples of the STFT (Short-Time
Fourier Transform). For simplicity let us assume that we have
signals on the real line, and consequently Vg f is a function over
phase space, resp. the complex plane, of you want.
Any non-zero Schwartz-function g will be fine for practically all
relevant modulation spaces (including the Shubin classes Qs(Rd )).
If the sampling is coming from a lattice, i.e. a discrete subgroup Λ,
which is dense enough, we know (see above) that stable recovery is
possible.
In the classical case on takes Λ = aZ× bZ, and then it is
enough that max(a, b) ≤ δ0, for a suitable value of δ0 > 0.
For the Gauss function (suggested by D. Gabor) one even
knows that ab < 1 is a sufficient and necessary condition.
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The Role of Groups for Gabor Expansions II

The advantage of the regular case, i.e. the case that the sampling
is is not just a general, sufficiently dense set, but even a discrete
subgroup of phase space Rd × R̂d (taken as an additive group,
isomorphic to R2d ) is the fact that one can write the recovery in a
Shannon-like form (convergence in e.g. H:

Vg f =
∑
λ∈Λ

Vg f (λ)π(λ)g̃ ,

for a well choosen “dual Gabor window g̃ , which can be obtained
by solving the positive definite equation Sg ,Λg̃ = g for g̃ , where

Sg ,Λ(f ) =
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g ,

the so-called Gabor frame operator (which is pos. definite if and
only if the family is a Gabor frame).
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The Role of Groups for Gabor Expansions III

Depending on the density of the lattice there are many alternative
options to chose instead of the canonical dual window (which is
the solution of the problem with minimal norm, or also the solution
closest to g in the L2(Rd )-sense) alternative dual windows. This is
comparable to the situation of regular sampling with some
redundancy, where the not-so-localized SINC function can be
replaced by a better concentrated function in the recovery.
Typical questions arising in this context are then

1 For which given pairs (g ,Λ) can one guarantee reconstruction
(i.e. when is the family (π(λ)g)λ∈Λ a Gabor frame)

2 What can be said about the condition number of the
frame operator Sg ,Λ?

3 How well localized is the expansion, which has a lot to
do with the concentration of Vg̃ g̃ around the origin.
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The Role of Groups for Gabor Expansions IV

Answers to the question of localization, at least at a qualitative
level arise from so-called localization theory, introduced by
K. Gröchenig: One can show, nowadays mostly using Banach
algebra methods, that whenever the Gabor frame operator is
invertible on the Hilbert space L2(Rd ) and the atom g is well
concentrated (in both time and frequency), then the same can be
said for the canonical dual g̃ .
Technically such results are very much in the spirit of Wiener’s
inversion theorem, showing that the pointwise inverse of a function
having an absolutely convergent Fourier series has the same
property.
Unfortunately there is typically now control on the constants
involved in the most general case, but one can invoke the
Neumann series argument in many practically relevant case.
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The Role of Groups for Gabor Expansions V

When it comes to analyze the quality of (regular) Gabor frames one
can define various measure of quality of a Gabor family, such as

the condition number of the Gabor frame operator;

the concentration of the dual atom;

the S0-norm of the dual window;

the quotient between minimal covering and maximal paving
radius (for Gauss functions, resp. circles).

Fortunately systematic experiments have resulted in the insight,
that the relative ranking is not very sensitive with respect to the
choice of the criterion. Furthermore, the most hexagonal like
lattices are the best one for the (discretized) Gauss function.

Hans G. Feichtinger Group theoretical methods and wavelet theory (coorbit theory and applications)



History of Fourier Analysis Abelian Fourier Analysis Non-Abelian Groups and Signal Representations Specific Facts about Gabor Expansions

The Role of Groups for Gabor Expansions VI

The studies undertaken in this directions had again to do with
investigations concerning the signal size N that one should use
(again: N should be rich of divisors, because in this case also the
number of subgroups of ZN × ZN is large!)
For a given signal size and any possible divisor of N2 (i.e. any
possible cardinality of groups) we are now able to produce an
exhausting list of subgroup of equal redundancy (Gabor frames
with localized windows have to have > N elements) and use our
fast algorithms in order to determine the figures of merit
mentioned above. As it turns out one can find quite good Gabor
families at redundancy in the range of [1.2, 1.75], if the lattice and
the window match well.
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The Role of Groups for Gabor Expansions VII

A slightly different criterion was considered in a recent master
thesis (Kirian Doepfner, Vienna, 2012), who investigated the
ability, to approximate (in the Hilbert Schmidt sense) a given
slowly-varying channel by a Gabor multipier. Such a time-variant
filter can be realized typically as an STFT-multiplier. Here it is
better to look out for tight Gabor families, i.e. atoms h with

f =
∑
λ∈Λ

〈f , hλ〉hλ,

and one can expect that very smooth STFT-multipliers can be well
approximated by Gabor multipliers.
As it turned out the problem can be reformulated as an
approximation problem of the (smooth) STFT-multiplier
(upper or Anti-Wick symbol) by shifted bump-functions along
the lattice used, obtained as Kohn-Nirenberg symbols of the
rank 1 operator f 7→ 〈f , h〉h. Redundancies around 4 are OK.
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What made Wavelets so quickly important?

Why did wavelets have an immediate impact in the field of
Calderon Zygmund operators?
An a posteriori explanation from today’s point of view can the
based on the following list of facts:

Wavelet systems are good bases for the function spaces under
consideration (which are in fat the right ones), namely
Lp-spaces, and Besov or Triebel-Lizorkin spaces, but also the
real Hardy space and BMO;

CZ-operators have a matrix representation which is strongly
diagonally concentrated, i.e. good wavelets are joint
approximate eigenvalues for CZ-operators!
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The Role of Groups for Gabor Expansions VIII

The corresponding problem with respect to the STFT and Gabor
system had not been investigated equally well in the early days of
wavelet theory, but meanwhile we know (BECAUSE WE HAVE
CORRESPONDING PATENTS) that Gabor building blocks are
good joint approximate eigenvectors for slowly variant channels as
they arise in mobile communication (due to multi-path propagation
and limited Doppler effects, e.g. in car-to-car communication).
The corresponding matrix algebras are by now even better
understood, because their index set are discrete, Abelian groups,
even though the good Gabor families are no bases, but just frames
and therefore even invertible operators are represented by infinite,
non-invertible matrices (so properties of the pseudo-inverse
come into play).
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The Role of Groups for Gabor Expansions IX

In Gabor analysis localization theory is well established, which
means that the dual frame of a Gabor family generated from an
atom which is well localized has similar properties (expressed in
terms of decay of the Gabor coefficients for any nice Gabor frame).
The same claim (in fact equivalent due to the Ron-Shen duality)
can be made for Gaborian Riesz bases.
There are important consequences in the theory of pseudo-
differential and Fourier integral operators, where e.g. Sjoestrand’s
class has now received a new interpretation in terms of modulation
spaces.
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The Role of Groups for Gabor Expansions X

The usefulness of modulation spaces, in particular of the Segal
algebra S0(Rd ) = M1,1

0 (Rd ) (Feichtinger’s algebra) and its dual are
not limited just to time-frequency analysis, but are playing more
and more an important role in classical Fourier analysis, especially
when one is interested in the constructive realization of algorithms.

Using the concept of Banach Gelfand Triples, specifically
(S0,L

2,S0
′)(Rd ). It can be used to describe the Fourier transform

as “the mapping identifying pure frequencies with Dirac measures”,
but also the spreading representation (the symplectic FT of the
Kohn-Nirenberg symbol mapping) as the mapping identifying pure
TF-shifts with Dirac measures in phase space (see [2]).
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Applications to Image Processing
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Applications to Image Processing 2
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Applications to Image Processing
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The Gabor Coefficients of the Zebra

Hans G. Feichtinger Group theoretical methods and wavelet theory (coorbit theory and applications)



History of Fourier Analysis Abelian Fourier Analysis Non-Abelian Groups and Signal Representations Specific Facts about Gabor Expansions

CONCLUSION

In summary we have seen that

group theoretical methods allow for a unified treatment;

group theoretical methods yield efficient algorithms

Banach spaces of functions and distributions often have their
natural expanding system (of coherent-like atoms);

there are more groups to be studied besides the ax+b-group
and the Heisenberg group, e.g. shearlets

function spaces are not only of academic interest but are
relevant for the validity and efficiency of computations carried
out with finite vectors.
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