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Standard Approach to Gabor Analysis

The standard introduction to Gabor Analysis would be to recall the
claim made by Denis Gabor in his seminal paper of 1946 ([6]),
where he conjectured that “every signal can be expanded in a
unique way as a double sum (now called Gabor series expansions)
of time-frequency shifted Gauss-functions, shifted along the unit
lattice Z× Z, i.e. of atoms (from the non-orthogonal) system of
functions

gk,n(t) := e2πikt · g0(t − n); k, n ∈ Z.

A modern version would be: Every signal can be written as an
infinite series of such Gabor atoms, resp. a DSP can be
programmed to produce an arbitrary sound form elementary
sound-atoms, with Gaussian envelopes, played at a fixed
time-frequency-lattice.
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Standard Approach to Gabor Analysis II

Of course such a claim reminds us of Fourier’s statement that
every periodic function f (t) has a representation as the infinite
sum of pure frequencies, with uniquely determined coefficients
known as Fourier coefficients. We also know that it took decades
unit mathematicians had developed proper tools (including set
theory and Lebesgue’s integration theory) to give this claim a
meaning, finally with the insight that in some cases a
“distributional interpretation” is most appropriate.
We do not have the time here to discuss the historical approach to
Gabor analysis, but in short: he was slightly too optimistic
concerning the possibilities of such a representation. On the other
hand it is clear by now that redundant and stable representa-
tions are possible for lattices of the form aZ× bZ, if ab < 1.
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Standard Approach to Gabor Analysis III

The fact, that even after replacing the Gauss function by any
possible other well-localized and smooth functions such a stable
and unique representation is never possible for ab = 1 is meanwhile
known as Balian-Low theorem.
The case ab > 1 (undersampling case, in which one has a stable
Riesz basis for a closed subspace of

(
L2(R), ‖ · ‖2

)
) is not

uninteresting, because it can be used (in principle) for wireless
communication, where TF-shifted Gaussians are considered as
approximate eigenvectors to slowly varying channels.
Finally one has so-called Gabor frames for the case ab < 1, which
guarantee stable, but non-unique signal representations, not only
for L2-functions, but much more general distributions, and
has become a prototype for abstract frame theory.
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Standard Approach to Gabor Analysis IV

The usual way of introducing Gabor frames would be to define
them as frames within the (infinite dimensional) Hilbert space
H =

(
L2(Rd ), ‖ · ‖2

)
, and then to show that such system have a

lot of properties that even make the computation of the minimal
norm coefficients possible, even in a numerically efficient way.
Sometimes an easy way of computing “suitable coefficients” can
be carried out in a painless way ([2], practically used within MP3),
but the non-orthogonality appears to produce a lot of difficulties,
making this signal representation not so useful as one may think.
!! Wrong!
However, we will choose for this presentation an approach
which is starting with examples and tries to build the theory,
starting from a Linear Algebra view-point!
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General Aspects of Gabor Analysis

Linear Aspects: dual frame = pseudo-inverse, Gabor Riesz
basis: biorthogonal system

Algebraic Aspects: lattice (Abelian Groups) act on a Hilbert
space of signals via some projective representation,
commutation property of Gabor frame operator, i.e.
[π(λ), S ] == 0, imply specific sparsity structure of S .

Functional Analytic features: Convergence of double sums
(sums over lattice) appear to be complicated (Bessel
condition, unconditional convergence, modulation spaces,
etc.)

Specific properties of the acting Weyl-Heisenberg group
(!phase factors) or the validity of Poisson’s formula for
the symplectic Fourier transform (in contrast to wavelets);
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Overview

Concepts of Time-Frequency Analysis (music, audio);

The idea of Gabor expansions (discretization);

The Linear Algebra behind Gabor Analysis;

Regular (and non-regular) Gabor families;

Duality theory (Frames and Riesz bases);

The corresponding 2D version;

Function spaces, Banach Gelfand Triples;

Approximation of continuous setting by finite groups;

LET US START WITH AN STX-emo (ARI, OEAW)
Downloadable from the ARI website! (free demo-version)
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A Typical Musical STFT
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Relevance of STFT for MP3 Coding
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TF-concentration of shifted SINC-functions
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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Time-Frequency Shift Operators on Signals
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Time Frequency Shifts in Spectrogram
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Spectrogram of a Lowpass Signal
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Recalling concepts from linear algebra

We believe that we know how to translate concepts from linear
algebra into the infinite dimensional setting (using finite sets):
An indexed family (gi )i∈I (in a finite of infinite dimensional vector
space) is called linear independent if for every finite subset F ⊂ I
one has: ∑

i∈F

ci gi = 0⇒ ci = 0 ∀i ∈ F .

In this sense ANY family MkbTnag0 IS linear independent, even if
ab is small!
The concept of a “generating system” appears to be properly
generalized by the concept of a total set: A family (gi )i∈I is total
in H if every f ∈ H can be arbitrarily well approximated by finite
linear combinations (exactly for ab ≤ 1):

‖f −
∑
i∈F

ci gi‖H < ε.
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Matrix Multiplication: linear independent columns:

It is better to view a collection of vectors as a matrix, resp. identify
it with the linear mapping induced by the corresponding matrix.
Then our questions concern injectivity resp. surjectivity of such a
mapping:

Y

X Y0
-

x 7→ A ∗ x
�pinv(A) ∗ y←↩ y

?

PCol(A)A+

�
�

�
�
�	

Comment: For linear independent columns the synthesis map
x 7→ A ∗ x has a trivial nullspace, hence the row-space Row(A)
equals all of Rn, and the matrix A has maximal rank.
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Fames and Riesz Bases: the Diagram

If on the other hand we have m ≥ n vectors in Rn in a matrix F
(with columns (fi )) then the mapping C : x→ F ′ ∗ x = (〈x, fi 〉) is
injective if and only if the family (fi ) generates all of Rm.
P = C ◦R is a projection in Y = Rm onto the range Y0 (the
row-space of A) of C, thus we have the following commutative
diagram.

Y

X Y0-
C

� R ?

P

�
�

�
��	
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The frame diagram for Hilbert spaces:

The situation then can be generalized to Hilbert spaces, with the
target space now playing the role of Rm. Now it is not true
anymore that every total family (the closed linear span is all of H)
has a closed range within (`2(I ), ‖ · ‖2), but we may this fact into
a definition:

`2(I )

H C(H)-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces

The usual way of defining a so-called frame (you may call it a
stable generating system) is then to require that the following pair
of inequalities holds true:
There exist positive constants A,B > 0 such that one has:

A‖f ‖2
H ≤

∑
i∈I

|〈f , fi 〉|2 ≤ B‖f ‖H ∀f ∈ H.

Similarly the family (gj ) is a Riesz basic sequence (Riesz basis for
its closed linear span) if for some C ,D > 0 on has

C‖c‖2
ltI ≤ ‖

∑
j∈I

cj gj k‖H ≤ D‖c‖2
`2(I )

∀c ∈ `2(I ).
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Some terminology concerning Gabor analysis

The fact, that the mapping λ = (t, ω) 7→ π(λ) = MωTt defines a
projective representation of the Abelian group G×Ĝ on the Hilbert
space H = L2(G ) makes it interesting to choose as index sets for
disrete Gabor families not just a collection of well-spread points,
but in particular lattices satisfying some density requirements.

We call a Gabor family (gλ)λ∈Λ a regular Gabor family if the
index set Λ is a discrete subgroup of G×Ĝ. We call a regular
Gabor family a separable one, of Λ = Λ1 × Λ2, where Λ1 C G and
Λ2 C Ĝ, e.g. aZd × bZd C Rd × R̂d .
Regularity is sufficient to guarantee that the so-called
Gabor frame operator (which is pos. definite in the frame case)

S = Sg ,Λ : f 7→
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g

commutes with any π(λ), λ∈Λ.
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Some terminology concerning Gabor analysis

The combination of these observations tells us a lot about the rich
(sparse, but also algebraic) structure of the problem.
First of all it is obvious that one has for general frames

f = S−1S(f ) = f = S−1S(f ),

or writing g̃ := S−1(g) for the (canonical) dual window:

f =
∑
λ∈Λ

〈f , π(λ)g〉S−1(π(λ)g) =
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g̃ ,

respectively the atomic composition of f using (π(λ)g)λ∈Λ:

f =
∑
λ∈Λ

〈f , π(λ)g̃〉π(λ)g =
∑
λ∈Λ

STFT (f , g̃)(λ)π(λ)g .
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Some terminology concerning Gabor analysis

Sometimes the assymetry in the role of g resp. g̃ is a disadvantage
(e.g. of one wants to build self-adjoint operators from real-valued
Gabor multipliers, in a kind of discrete variant of the Anti-Wick
calculus) and for this reason one sometimes prefers to make use of
the canonical tight window h := S−1/2(g), for which one has the
representation

f =
∑
λ∈Λ

〈f , π(λ)h〉π(λ)h;

which in fact looks like an orthonormal expansion although it is
just a tight frame (hence in fact the orthonormal projection of
some orthonormal basis in an ambient Hilbert space).
Typical Gabor multipliers are then of the form

f 7→
∑
λ∈Λ

m(λ)〈f , π(λ)h〉π(λ)h.
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Wavelets versus Gabor Expansions

... while wavelet theory was gaining immediately recognition due to
results on Calderon-Zygmund type operators the corresponding
problem with respect to the STFT and Gabor system had not been
investigated equally well in the early days of wavelet theory, but
meanwhile we know (BECAUSE WE HAVE CORRESPONDING
PATENTS) that Gabor building blocks are good joint approximate
eigenvectors for slowly variant channels as they arise in mobile
communication (due to multi-path propagation and limited
Doppler effects, e.g. in car-to-car communication).
The corresponding matrix algebras are by now even better
understood, because their index set are discrete, Abelian groups,
even though the good Gabor families are no bases, but just
frames and therefore even invertible operators are represented
by infinite, non-invertible matrices (so properties of the
pseudo-inverse come into play).
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Recent Developments in Gabor Analysis

In Gabor analysis localization theory is well established, which
means that the dual frame of a Gabor family generated from an
atom which is well localized has similar properties (expressed in
terms of decay of the Gabor coefficients for any nice Gabor frame).
The same claim (in fact equivalent due to the Ron-Shen duality)
can be made for Gaborian Riesz bases.
There are important consequences in the theory of pseudo-
differential and Fourier integral operators, where e.g. Sjoestrand’s
class has now received a new interpretation in terms of modulation
spaces. Although introduced already 1983 by the author they
received only attention through the book [7] (see also [3]).
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Modulation Spaces and Gabor Expansions

The usefulness of modulation spaces, in particular of the Segal
algebra S0(Rd ) = M1,1

0 (Rd ) (Feichtinger’s algebra) and its dual are
not limited just to time-frequency analysis, but are playing more
and more an important role in classical Fourier analysis, especially
when one is interested in the constructive realization of algorithms.

Using the concept of Banach Gelfand Triples, specifically
(S0,L

2,S0
′)(Rd ). It can be used to describe the Fourier transform

as “the mapping identifying pure frequencies with Dirac measures”,
but also the spreading representation (the symplectic FT of the
Kohn-Nirenberg symbol mapping) as the mapping identifying pure
TF-shifts with Dirac measures in phase space (see [1]).
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DCT building blocks
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DCT2 building blocks
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Building blocks Image Processing
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Applications to Image Processing
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Applications to Image Processing 2
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Applications to Image Processing
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The Gabor Coefficients of the Zebra
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CONCLUSION

I hope that the talk (and the slides, even if not all of the have been
presented) convey the main spirit of Gabor Analysis:

Gabor expansions, if properly done, provide slightly
redundant, but well structured (obviously non-orthogonal)
frame expansions for a big class of signals;

Gabor multipliers are in fact a representative class of slowly
varying time-variant filters (and their inversion is non-trivial);

The decay properties of the Gabor coefficients indicate the
concentration of energy in phase space and allow to
characterize membership of distributions in certain
modulation spaces;

Such function spaces also allow to address questions of
approximation of continuous operations by finite ones;
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Not addressed here, hints to literature

There are of course many aspects that could not be addressed in a
survey talk like this. The setting of the Banach Gelfand Triple
(S0,L

2,S0
′) is developed broadly in [1].

Finally, the articles [5] indicates how to reach an understanding of
Gabor analysis coming from the linear algebra side (bottom up).
The algebraic side of Gabor Analysis is explained in the paper [4],
dealing with general finite Abelian groups. Of course FFT2 is
interpreting a pixel image of size M × N as a function on the finite
group ZM × ZN .
All the papers are downloadable from the NuHAG site
www.nuhag.eu resp. the BIBTEX collection at
http://www.univie.ac.at/nuhag-php/bibtex/index.php
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