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Gabor Analysis: Beethoven Piano Sonata
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Hints to the literature

Reading about Banach Gelfand Triples:
http://www.univie.ac.at/nuhag-php/home/db.php
From there you can go into TALKS and search e.g. for Banach
Gelfand (in the title), in particular the Bordeaux talk.

The BIBTEX section contains all our papers, including the ones
with the code feluwe07 (from Linear Algebra to Gabor Analysis)
resp. cofelu08 (Banach Gelfand triples), or fekolu09 (Gabor
Analysis over finite Abelian Groups).

MATLAB code for all this can also be obtained from hgfei. THe
LTFAT toolbox is highly recommended (running on Windows
or Linux, and Octave or MATLAB).
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Guess the Children’s Song Played!
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From a Mozart Piano Trio
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Aspects of Gabor Analysis

Gabor analysis is concerned with a very intuitive way of
representing signals, also allowing to realize time-variant filtering
(i.e. to do the computational analogue of the action of an audio
engineer).
The classical literature emphasizes the functional-analytic
subtleties of such non-orthogonal expansions. Describing Gabor
Analysis from a Numerical Linear Algebra and Harmonic Analysis
point of view however helps to separate the points to be observed
and allows to also explain the right view-point to the “continuous
case”.
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Aspects of Gabor Analysis II

There is a variety of application areas of Gabor Analysis (similar
and sometimes in competition with wavelets or shearlets,curvelets).
Let us mention project related topics:

audio signal processing (e.g. for electro-cars);

image processing (see our contribution to the hand-book of
image processing, [2], based on S. Paukner’s master thesis);

mobile communication (Gabor Riesz bases, ADSL, OFDM,...).

A short survey of the subject is given in
Encyclopedia Applied Mathematics (see [3]).
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AGENDA (for home-reading)

We would like to address the following questions:

What is Gabor analysis (motivation, problems, applications)?

What are the numerical challenges arising from this theory?

In which sense provides a combination of arguments from
numerical linear algebra combined with concepts from
(abstract) harmonic analysis the foundation for the
DEVELOPMENT OF EFFICIENT ALGORITHMS
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Linear Signal Representations

Let us compare various classical settings where signal
representations occur in a natural way:

Fourier Series;

Fourier transforms (on Rd);

FFT resp. DFT (Discrete Fourier Transform);

In the first case we have learned that the correct view-point is to
put oneself into the Hilbert space L2(U) and consider the sequence
of pure frequencies as a CONB for this space.
In the last (FFT) case the sum is even a finite one and we just have
a unitary change of basis (up to the normalization factor

√
N).
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Linear Signal Representations II

Already on L2(Rd) the situation is much more delicate:
Fourier analysis is obtained by computing

f̂ (s) =

∫
Rd

f (t)e−2πis·tdt,

which in fact is not even pointwise well defined for general
f ∈ L2(Rd). On the other hand the Fourier inversion formula is
known to be delicate (requiring summability) even for f ∈ L1(Rd);
so only “somehow” on has with χs(t) = e2πsṫ with f̂ (s) = 〈f , χs〉 :

f =

∫
Rd

f̂ (s)χsds =

∫
Rd

〈f , χs〉χsds,

or in a pointwise sense (if we are lucky)

f (t) =

∫
Rd

f̂ (s)χs(t)ds =

∫
Rd

f̂ (s)e2πs·t .
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Linear Signal Representations III

Although the integration technique are by now well developed we
can learn that one has to be careful with the kind of signal
representations that one is going to use, and as soon as infinite
families of building blocks are involved the corresponding infinite
sums have to be interpreted carefully (sometimes pointwise,
sometimes in the L2-sense, etc.).
For the Fourier inversion one can think of the family of characters
(χs)s∈Rd as a kind of “continuous basis”, but the strange thing is
that they do not belong to L2(Rd) and even less to L1(Rd), and so
finite Riemannian sums corresponding to the written integrals do
not make much sense in the Fourier inversion.
But in which sense are they “linear independent” and how is
convergence properly defined!?
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Linear Signal Representations IV

Just for the sake of comparison let us remind the audience of good
wavelet bases: These are double indexed families (ψk,l) with the
property of forming a CONB for L2(Rd). Therefore it is clear that
every f ∈ L2(Rd) has an (unconditional) convergence of the form

f =
∑
k,l

〈f , ψk,l〉lψk,l .

Of course wavelet system would not have gained so quickly high
recognition if they would not have some extra properties: good
wavelets, i.e. well concentrated, smooth wavelets satisfying a few
moment conditions allow to completely characterize the
membership of f in the classical function spaces (e.g. Besov
spaces), and convrgence of the sum is taking place automati-
cally on all those spaces (the form an unconditional basis!).
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Recalling facts about Matrices

Let A be a (potentially) rectangular m × n matrix, representing a
linear mapping from Cn to Cm. It obviously has a null-space
Null(A) and a range space, the column-space of A, denoted by
ColA. Of course the same is true for the adjoint matrix
A′ := conj(At) (using MATLAB notation). Since to columns of A′

are essentially the rows of A we call their linear span the row-space
RowA and refer to the space Null(A′) as the co-Null-space of A.
It is an elementary but important fact to observe that the
Cn = RowA

⊕
Null(A) and Cm = ColA

⊕
Null(A′), and we

should remember those FOUR SPACES (see Gilbert Strang).
Without justifying all the details let us make the following
observation: whatever matrix we are forming, starting from those
two matrices, e.g. the Gramian matrix G = A′ ∗ A, or S = A ∗ A′,
or the pseudo-inverse A⊥, or A⊥ ∗ A and A ∗ A⊥ etc., all their
Null-spaces or Range spaces are always one of those four spaces.
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Harmonic Analysis and Algorithms

(?) Abstract versus(?) Computational Harmonic Analysis 1 ??

1 Abstract Harmonic Analysis (AHA) provides a unified
terminology for Fourier Analysis over general LCA2 groups G,
be they continuous or discrete, compact or non-compact,
finite or infinite, one- or high-dimensional;

2 Not only Fourier Analysis has its natural analogue over finite
Abelian groups, but even all the ingredients of time-frequency
analysis have their natural meaning for finite groups ([4]);

3 In contrast to the valid analogy of concepts AHA provide only
little support from an approximation theoretic view-point, e.g.
quantitative error estimations.

1I like to call their combination conceptual harmonic analysis.
2Locally Compact Abelian!
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LINEAR ALGEBRA: Gilbert Strang’s FOUR SPACES

Let us now take a LINEAR ALGEBRA POINT OF VIEW!
We recall the standard linear algebra situation. We view a given
m × n matrix A either as a collection of column or as a collection
of row vectors, generating Col(A) and Row(A). We have:

row-rank(A) = column-rank(A)
Each homogeneous linear system of equations can be expressed in
the form of scalar products3 we find that

Null(A) = Rowspace(A)⊥

and of course (by reasons of symmetry) for A′ := conj(At):

Null(A′) = Colspace(A)⊥

3Think of 3x + 4y + 5z = 0 is just another way to say that the vector
x = [x , y , z] satisfies 〈x, [3, 4, 5]〉 = 0.
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Geometric interpretation of matrix multiplication

Since clearly the restriction of the linear mapping x 7→ A ∗ x is
injective we get an isomorphism T̃ between Row(A) and Col(A).

Rn

Row(A) Col(A) ⊆ Rm-
T̃ = T|row(A)

R

?

PRow

@
@
@
@
@
@
@@R

T : x → A ∗ x
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
@@R

T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Four spaces and the SVD

The SVD (the so-called Singular Value Decomposition) of a
matrix, described in the MATLAB helpful as a way to write A as

A = U ∗ S ∗ V ′

, where the columns of U form an ON-Basis in Rm and the columns
of V form an ON-basis for Rn, and S is a (rectangular) diagonal
matrix containing the non-negative singular values (σk) of A. We
have σ1 ≥ σ2 . . . σr > 0, for r = rank(A), while σs = 0 for s > r .
In standard description we have for A and pinv(A) = A+:

A ∗ x =
r∑

k=1

σk〈x , vk〉uk , A+ ∗ y =
r∑

k=1

1

σk
〈y , uk〉vk .
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Generally known facts in this situation

The Four Spaces are well known from LINEAR ALGEBRA, e.g. in
the dimension formulas:

ROW-Rank of A equals COLUMN-Rank of A.

The defect (i.e. the dimension of the Null-space of A) plus the
dimension of the range space of A (i.e. the column space of A)
equals the dimension of the domain space Rn. Or in terms of
linear, homogeneous equations: The dimension of set of all
solution to the homogeneous linear equations equals the number of
variables minus the dimension of the column space of A.

The SVD also shows, that the isomorphism T̃ between the
Row-space and the Column-space can be described by a
diagonal matrix, if suitable orthonormal bases are used.
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Consequences of the SVD

We can describe the quality of the isomorphism T̃ by looking at its
condition number, which is σ1/σr , the so-called Kato-condition
number of T .
It is not surprising that for normal matrices with A′ ∗ A = A ∗ A′

one can even have diagonalization, i.e. one can choose U = V ,
using to following simple argument:

Null(A) =always Null(A′ ∗ A) = Null(A ∗ A′) = Null(A′).

The most interesting cases appear if a matrix has maximal rank,
i.e. if rank(A) = min(m, n), or equivalently if one of the two
Null-spaces is trivial. Then we have either linear independent
columns of A (injectivity of T >> RIESZ BASIS for
subspaces) or the columns of A span all of Rm ( i.e.
surjectivity, resp. Null(A′) = {0}): >> FRAME SETTING!
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Geometric interpretation: linear independent set > R.B.

Row(A) = Rn Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ ) = pinv(A)

T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?
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Geometric interpretation: generating set > FRAME

Null(A) ⊆ Rn

Row(A) Col(A) = Rm
-

T̃ = T|row(A)

inv(T̃ ) = A′

?

PRow

@
@
@
@
@
@
@
@
@@R

T

�
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The frame diagram for Hilbert spaces:

If we consider A as a collection of column vectors, then the role of
A′ is that of a coefficient mapping: f 7→ (〈f , fi 〉).

`2(I )

H C(H)-
C

� R ?

P

�
�

�
�

�
�	

R

This diagram is fully equivalent to the frame inequalities (??).
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Riesz basic sequences in Hilbert spaces:

The diagram for a Riesz basis (for a subspace), nowadays called a
Riesz basic sequence (RBS) looks quite the same ([1]).
In fact, from an abstract sequence there is no! difference, just like
there is no difference (from an abstract viewpoint) between a
matrix A and the transpose matrix A′.
In this way in the RBS case one has the synthesis mapping
c 7→

∑
i cigi from `2(I ) into the Hilbert space H is injective, while

in the frame case the analysis mapping f 7→ (〈f , gi 〉) from H into
`2(I ) is injective (with bounded inverse).
Of course one can consider a RBS as a Riesz basis for the closed
linear span of its elements, establishing an isomorphism between
`2(I ) and H.
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CIMPA-13, third unit

What have we seen so far:

We can get a basic understanding of redundant signal
representations by refreshing our linear algebra background,
including SVD and PINV;

That in principle one can expect that things work in the same
way in a Hilbert space setting, and that this can be expressed
either by inequalities or by commutative diagrams;

That Gaborian systems have a particular structure, i.e. the
vectors used in the Hilbert space L2(G ) are obtained by
applying TF-shifts (from a lattice Λ C G × Ĝ ), which
gives the problem additional invariance properties.
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Facts about matrices

We have seen (as a consequence of SVD etc.) that associated with
every matrix A there are a couple of other matrices, such as the
transpose conjugate A′ or the pseudo-inverse A+, and that they all
share the same range and column spaces.a
In particular we have that A+ ∗ A is the projection onto the row
space of A and A ∗ A+ is the projection onto the column space of
A (the range of x→ A ∗ x). And A is injective (meaning that it
has linear independent) columns if and only if the Gram-Matrix
A′ ∗ A is invertible, and A is surjective (meaning that the columns
of A are a set of generators for Cm, or that A′ is injective) if and
only if A ∗ A′ (the frame operator matrix) is invertible.
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Facts about matrices II

There is a simple and quite useful formula (closely related to the
way how the normal equation is used in order to derive the
MNLSQ-principle, i.e. the PINV solution to A ∗ b = x):

A+ = (A′ ∗ A)+ ∗ A = A′ ∗ (A ∗ A′)+; (1)

of course equivalently, the dual system (e.g. dual frame resp.
biorthogonal system of vectors, which is (A+)′ = (A′)+) is

(A+)′ = A′ ∗ (A′ ∗ A)+ = (A ∗ A′)+ ∗ A. (2)

Recall that in the case of matrices of maximal rank we
can the pseudo-inverse of those square matrices by their true
inverse matrix, e.g. the inverse frame operator.
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Facts about matrices III

Furthermore we have noticed that in each case there is a “most
symmetric” version of the family under consideration available. In
case the case of linear independent systems the Loewdin
orthonomalization of the given system, and in the case of
generating systems or frames the canonical tight frame. Both are
maximally close to the original system in the Hilbert-Schmidt
Frobenius norm. Written for the maximal rank case Loewdin reads:

L = A ∗ (A′ ∗ A)−1/2. (3)

while the canonical tight frame is just

H = (A ∗ A′)−1/2 ∗ A = S−1/2(A). (4)

Hans G. Feichtinger From Numerical to Conceptual Harmonic Analysis with: Numerical Aspects of Gabor Analysis



The frame diagram for Hilbert spaces:

If we consider A as a collection of column vectors, then the role of
A′ is that of a coefficient mapping: f 7→ (〈f , fi 〉).

`2(I )

H C(H)-
C

� R ?

P

�
�

�
�

�
�	

R

This diagram is fully equivalent to the frame inequalities (??).

Hans G. Feichtinger From Numerical to Conceptual Harmonic Analysis with: Numerical Aspects of Gabor Analysis



Frames defined by a Pair of Inequalities

HHH

Definition

A family (fi )i∈I in a Hilbert space H is called a frame if there exist
constants A,B > 0 such that for all f ∈ H

A‖f ‖2 ≤
∑
i∈I
|〈f , fi 〉|2 ≤ B‖f ‖2

It is well known that condition (1) is satisfied if and only if the
associated frame operator is positive definite:
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Frames and Frame Operators II

Definition

S(f ) :=
∑
i∈I
〈f , fi 〉fi , for f ∈ H,

is invertible. The obvious fact S ◦ S−1 = Id = S−1 ◦ S implies that
the (canonical) dual frame (f̃i )i∈I , defined by f̃i := S−1(fi ) has the
property that one has for f ∈ H:

f =
∑
i∈I
〈f , fi 〉f̃i =

∑
i∈I
〈f , f̃i 〉fi (5)

These formulas emphasize either the reconstruction (sampling)
point of view or the atomic composition aspect of frames.
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Harmonic Analysis: Operators and Invariance

When you study wavelet theory you probably have found two
equivalent definitions of MRAs (multiresolution analysis). In any
case you assume that one has a scale space (I call it spline-type
space) which has a Riesz basis of translates. Others require an
ONB for their closed linear span. In his wavelet book Y. Meyer
talks of the application of G−1/2 to the original system because it
allows orthogonalization in a way compatible with the translation
structure.
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Illustration of Loewdin orthonormalization
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set of shifted Gaussians after Loewdin orthonormalization
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Invariance Properties of Frame operator

SIMILARLY we can prove that a Gabor frame operator

Sf =
∑
λ∈Λ

〈f , gλ〉gλ

commutes with the whole family of TF-shifts used from Λ:

S ◦ π(λ) = π(λ) ◦ S , ∀λ ∈ Λ.

This has many striking consequences, others:

Lemma

Given a regular Gabor system (induced by a lattice Λ) which is a
frame or a Riesz basis, then the corresponding dual system is also
a Gabor system.
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The spreading representation

The TF-view-point also provides a Fourier-like decomposiption of
matrices as a sum of TF-operators.
Recall that we have n cyclic shift operators on Zn and an equal
number of frequency shifts, so altogether n2 TF-shifts of the form
MjTk , 0 ≤ j , k ≤ n − 1.
Asking the question, whether those n2 special matrices are perhaps
a basis for the vector space of all ntn-matrices one comes to the
surprising answer that they are indeed an ONB with respect to the
Frobenius scalar product (Euclidean structure coming from Cn2

).

Definition

The mapping from the n × n-matrices into itself, which maps A to
the corresponding coefficients in this matrix is called the spreading
mapping. A = 1

n

∑
λ∈Zn×Zn

〈A, π(λ)〉HSπ(λ).
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Sampling point of view for Gabor
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Sampling point of view for Gabor II

FIRST recall some basic facts about TF-analysis.

When we read this last picture now in a continuous setting we
have to verify that the frame operator is bounded, but because it is
a composition of the analysis operator f 7→ Vg (f )|Λ and its
adjoint, which is given explicitly by c 7→

∑
λ∈Λ cλπ(λ)g it is

enough to first control the boundedness the sampling operator
from L2(Rd) to `2(Λ).
On the positive side we can see that for any g ∈ L2(Rd) the STFT
mapping f → Vg f is giving us a function in C0(Rd × R̂d), hence a
uniformly continuous function, which is also in L2(Rd), with
‖Vg f ‖2 = ‖f ‖2‖g‖2. Of course for this reason one assumes
‖g‖2 = 1 (e.g. the Gauss function) because then f → Vg f is
isometric! But this does NOT HELP.
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repeated: SOPLCLASS
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Tempered Distr.
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repeated: SOPLCLASS

S0
Schw

FL1

Tempered Distr.

SO’

L2

C0
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Functional Analytic Aspects

From a modeling point of view real world signals are analogue
while their representation in the computer are digital. Sound
signals are sampled at 44.1kHz , digital cameras turn images in the
optical lens into (stacks of 3) matrices (R-G-B).

Ignoring the (non-linear) problem of appropriate quantization a
good recording device (and then a system to perform digital signal
processing on the recorded signal) we realize that we are facing an
approximation theoretical problem, which in turn brings us to
functional analysis (measuring the errors by some norms) and
function spaces.
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Functional Analytic Aspects II

Analyzing more carefully what the typical situation is we are facing
various steps:

1 Describe according to which measure (norm) the result should
be “optimal” (e.g. forming a simulation routine should provide
good approximation of the “real output” up to a given error,
in some norm, and e.g. stochastically);

2 Approximation theory provides general possibilities,
constructive approximation theory is outlining a concrete
method, but at the end realization on a given computer has
to be carried out!

3 Ideally one should try to demonstrate that the chosen
strategy is close to optimal.
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Functional Analytic Aspects III

Without going into details let us mention that the classical
repertoire of function spaces is by no means satisfactory. Within
the large zoo of possible function space norms the most popular
ones in “hard analysis”, namely the spaces

(
Lp(Rd), ‖ · ‖p

)
are not

really important for applications, except of course p = 1, 2,∞.

While there is a variety of norms which describe the smoothness of
functions only the classical Sobolev spaces Hs(Rd) are really
important for PDE applications. For s ∈ N they can be described
as L2-functions with s (distributional) derivatives in L2(Rd).
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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Algebraic Properties of Gabor Frames

The algebraic properties allowing to use appropriate
(non-commutative) Banach algebras of sparse matrices can thus be
explained in the context of linear algebra and finite groups.
In a second step the transition to the infinite-dimensional situation
can be done using functional analytic arguments (some new
questions arise) and the proper function space setting (namely
modulation spaces, which contain ordinary Sobolev spaces and
Shubin classes, arising in the study of the harmonic oscillator).
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The Gabor Frame Operator for (g ,Λ)

Main properties of the Gabor frame operator

Sf =
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g =
∑
λ∈Λ

〈f , gλ〉gλ, f ∈ L2(Rd).

A typical example: every point of the left lattice below (Λ)
corresponds to one “atom centered at λ ∈ Rd × R̂d”:
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−200

−150
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−50

0

50
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200

 number of points: 720

 lattice of redundancy 3/2
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−50

0
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100
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200

 number of points: 320

 adjoint lattice: redundancy 2/3
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Commutation Rules in a Non-Comm. Setting

The commutation relation

S ◦ π(λ) = π(λ) ◦ S , ∀λ∈Λ.

implies that the matrix/operator can be written as a superposition
of TF-shift operators from the adjoint lattice. This is called the
Janssen representation of the Gabor frame operator.

Sg ,γ,Λ = red(Λ) ·
∑
λ◦∈Λ◦

Vγg(λ◦)π(λ◦).

Note the explicit form of the coefficients. Good decay and
smoothness imply that for γ = g the invertibility of Sg ,Λ

follows from concentration of Vg (g) around zero.
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The Ron-Shen Principle

From the Janssen criterion one finds that (g ,Λ) generates a Gabor
frame (i.e. S is invertible on L2(Rd)) if and only if there exists
γ ∈ L2(Rd) such that Vgγ(λ◦) = δ0,λ◦ . In fact, if g is normalized
with ‖g‖2 = 1 the zero-element π(0, 0) = Id takes a dominant role
within the Janssen expansions and guarantees invertibility (not
only over

(
L2(Rd), ‖ · ‖2

)
).

In particular, invertibility is granted if Λ◦ is coarse enough or
equivalently if Λ is dense enough.

Theorem

G (g ,Λ) is a frame if and only if the Gabor system G (g ,Λ◦) is a
Riesz basis for its linear span. Moreover, the condition number of
the frame operator for G (g ,Λ) coincides with the condition
number for the Gramian matrix for the system G (g ,Λ◦).
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Solving the Biorthogonality Problem

The Ron-Shen principle shows that one can replace the inversion of
the frame operator S by the inversion of the Gram matrix for the
system (gλ◦)λ◦∈Λ◦ , which is smaller.
For the finite setting, e.g. n = 480, red = 3/2 we have 720 Gabor
atoms for the space Cn, and the Gram-matrix has only size
320× 320.
The invariance properties mentioned allow to solve the problem to
solve the equation

S(h) = g

for h ∈ L2(Rd). In fact one obtains the canonical dual atom
by inverting the positive definite and sparse matrix.
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Function spaces based on TF-analysis

Function spaces resulting from TF-analysis4 turn out to be more
useful for a variety of applications, among them the Segal algebra(
S0(Rd), ‖ · ‖S0

)
(functions from L1 ∩ L∞(Rd) with a STFT

Vg (f ) ∈ L1(R2d)), which is the smallest Banach space of functions
with an isometrically translation invariant norm and also Fourier
invariant.

Together with the Hilbert space L2(Rd) and its dual space S0
′(Rd),

which can be characterized as the space of all (tempered)
distributions with uniformly bounded spectrogram
one obtains the Banach Gelfand triple (S0,L

2,S0
′), which is

naturally isomorphic (via Wilson bases, to the BGTriple
(`1, `2, `∞), endowed with three types of norm convergence
plus also w∗ = coordinatewise convergence in `∞.

4i.e. analyzing a distribution by looking at its Short-time Fourier transform
or spectrogram, which is a continuous function over phase-space anyway!
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Signal Representation and Mobile Communication

The Ron-Shen principle also says that the stability of the two
related families, namely the Gabor frame (gλ)λ∈Λ , expressed by
the condition number of the Gabor frame operator S is exactly the
same as the quality of the (linear independent) Riesz basic
sequence (gλ◦)λ◦∈Λ◦ (for its closed linear span), i.e. the condition
number of the corresponding Gram matrix.
While frames are good for the representation of “arbitrary signals”
(functions or even tempered distributions) the good stability of
Gaborian Riesz bases, which provide approximate eigenvectors to
slowly variant channels (linear operators).
Our patents concern efficient algorithms to identify such operators
(from the received pilot tones) and to do a fast approximate
inversion (channel identification and decoding).
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Further Numerical Issues

In addition to the general structural properties of Gaborian families
(frame resp. Riesz basic sequences) we have studied and
implemented methods considering:

1 preconditioners, double preconditioners (obtained by inverting
e.g. the diagonal or circulant “component” of S , resp.
commutative subalgebras!)

2 functional analytic (spectral - Banach algebra methods) allow
to show good properties of the atom g (decay at infinity and
smoothness) imply corresponding properties for the dual atom
g̃ = h (as above), which indicates that a local biorthogonality
problem will/can give good approximate dual window;

3 Locality allows to go for a theory where regularity is
only valid locally (but not globally).
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.

Hans G. Feichtinger From Numerical to Conceptual Harmonic Analysis with: Numerical Aspects of Gabor Analysis



SOGTr-results in Banach Triple terminology

In the setting of (S0,L
2,S0

′) a quite similar results is due to
Gröchenig and coauthors:

Theorem

Assume that for some g ∈ S0 the Gabor frame operator
S : f 7→

∑
λ∈Λ〈f , gλ〉gλ is invertible at the Hilbert space level, then

S defines automatically an automorphism of the BGT (S0,L
2,S0

′).
Equivalently, when g ∈ S0 generates a Gabor frame (gλ), then the
dual frame (of the form (g̃λ)) is also generated by the element
g̃ = S−1(g) ∈ S0.

The first version of this result has been based on matrix-valued
versions of Wiener’s inversion theorem, while the final result
(due to Gröchenig and Leinert, see [5]) makes use of
the symmetry in Banach algebras and Hulanicki’s Lemma.
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Finally some Applications

Gabor multipliers are just time-variant filterbanks:
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Applications to Image Processing
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Applications to Image Processing 2
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Applications to Image Processing 3
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Applications to Image Processing 3
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The Gabor Coefficients of the Zebra
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Some Group Theoretical Questions

The lattice, the adjoint lattice and their common, commutative
subgroup.
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Gabor and Spline-type Spaces

Due to the fact that efficient Gabor expansions also allow to realize
Gabor multipliers one may ask, whether a given operator can be
optimally approximated by a Gabor multiplier, resp. whether a
given matrix can be best approximated by the action of a Gabor
multiplier for a given Gabor frame generated by (g ,Λ), measured
in the Frobenius norm.
For that purpose it is of course optimal if the trivial multiplier by
m(λ) ≡ 1 provides the identity. Gabor atoms h with Sh,Λ = Id are
called tight Gabor atoms, and they can be obtained from a general
Gabor atom by computing S−1/2g .
Using the so-called Kohn-Nirenberg symbol for general operators
this problem can be equivalently expressed as a best approxi-
mation of a given L2(R2d)-function by a spline-like function.
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