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Abstract

At the occasion of the 10th event in a series of conferences, or 18
years after the first SampTA conference (1995 in Riga) it makes
sense to look back, and to observe what changed in this period,
which dreams have come true (or not) and what the future of the
field and hence the SampTA conference series can be.

Clearly my views are coming from a rather limited subjective
perspective, and | have to ask the audience for excuse for any
omissions or mis-interpretations.

Overall | hope to provide a birds-eye view on the subject,
reflecting a bit on connections between topics and open
issues, and formulate a few desiderata for the field.
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Classical Setting

Classical Motivation

The classical motivation for the irregular sampling problem comes
of course from variations on Shannon’s Sampling Theorem, which
mathematically speaking is a consequence of Poisson’s formula.

In short it provides a concrete answer to the problem of complete
recovery of a band-limited function from regular samples, by
providing a series expansions of those band-limited functions, using
translates of a given function (e.g. the classical SINC-function), if
only the so-called Nyquist criterion is satisfied.

Still one has to cope with different kind of errors: Can one control
the error if the function is not perfectly band-limited (aliasing
error) or if the sampling location is not exactly known or used
(jitter error). Moreover, in practice only finitely many data are
available (truncation error), requiring function space methods.
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Classical Setting

Irregular Sampling and Scattered Data Approximation

Although the problem of exactly interpolating finite data by
polynomials of a corresponding degree has a unique answer
(Lagrangian interpolation) it often does NOT provide the expected
answer, which may be more like fitting the data in the sense of
polynomial regression.

Therefore the irregular sampling problem as understood in “our
community” is often better presented as scattered data
approximation. The task is to find a smooth function which
optimally fits a collection of noisy point values.

Sampling theory has become a field within analysis which interacts
with a wide range of topics and methods. In many cases it is a
testing place of ideas that apply potentially in a much broader
context, while on the other hand abstract ideas are relevant

for the practical solutions of irregular sampling problems.
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Questions?

What are the Questions?

@ Under which conditions on the function f and the sampling
family X = (x;j)je; can one guarantee reconstruction of f,
either “perfectly” or with some error (which however should
be controlled); Very often the model assumptions
(band-limited, spline-type, etc.) come into play here;

@ Hopefully the recovery can be done in a linear way, possibly
with efficient iterative algorithms;

@ Even if such algorithms are described mathematically the
questions from the community will be: what is a good
implementation of such an algorithm, what kind of
memory requirements does one have, etc.
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Questions?

What are the Questions 1?7

Of course also the question of what our main questions can be
stretched. In many cases it is not point measurements (i.e.
samples), but rather localized information about the underlying
(smooth) function.

Hence an important variant of the sampling problem is the
question of recovery of a function in a given space from local
average. Depending on the application these averages are of
constant width (easy case) or vary from place to place (different
devices, or potentially different reliability).

| will not go deeper into this interesting subject, but mention two
aspects: First of all it indicates that we are really doing functional
analysis here. On the other hand many of the existing results
solely rely on the diameter of the averaging window, and thus
cover jitter error as special case, while concrete

measurement devices may not be so bad!
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Questions?

What are the Tools? A Mini-Problem first:

cubic polynomial with 7 noisy samples
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Questions?

What are the Tools? A Mini-Problem first:

It may be useful to recall the situation in the setting of linear
algebra. Here we have the advantage of a being able to understand
everything in terms of matrices, and we can do all the
computations using MATLAB or OCTAVE, compute eigenvectors
of corresponding (frame) matrices and check their condition
numbers.

Finding the solution of the MNLSQ-problem to the problem of
finding a cubic curve, given 7 noise samples of such a curve may
be a good setting to teach students what irregular sampling resp.
regression is all about. But it is clear that here the
pseudo-inverse of the corresponding matrix may be a good
answer. Of course, later on, we will interpret this as making

use of the canonical dual frame.
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Tools

What are the Tools |7

The first question is about the model for the space of functions (in
a general sense) to which the sampled signal belongs. There are in
fact many choices:

@ the classical setting of band-limited functions;

@ the setting of spline-type space (PSI or wavelet spaces);

@ or just RKH (reproducing kernel Hilbert spaces) over some
domain, among them Hilbert spaces of analytic functions;

@ often a transformation which allows to identify the given
Hilbert spaces with a RKH over another domain: see STFT or
CWT, transforming # = L?(R?) into a space of continuous
functions in L?(G), for suitable groups G (ax + b resp.
Heisenberg group).

Hans G. Feichtinger Sampling theory and applications: developments in the last 2



Tools

What are the Tools Il

Within a given class of functions we often find a natural
description of their decay or summability properties in terms of
(e.g. weighted LP-norms). For so-called well-spread point sets one
then typically finds that corresponding discrete norms (weighted /P
sequence space norms), applied to the family of sampling values
(f(xi))ies provide equivalent norms.

Of course there is a large variety of possible function spaces, but |
would recommend not to invest to much effort in increasing the
number of parameters, but rather make generic assumptions on the
function spaces used (e.g. solidity, translation invariance, etc.).

At this place | have to strongly urge everybody to look for
solutions for families of function spaces and not just for
arbitrary (but fixed) individual function spaces!

Hans G. Feichtinger Sampling theory and applications: developments in the last 2



Generalizations done properly

Doing Generalizations properly!

Over the years we have learned to extend results first obtained in
the context of some Hilbert space to more general function spaces.
But how should such extensions be done? Replace L?(RR) by
L%(R9), by L?(G), or even some weighted LP-space (G LCA).

Let us look at some examples:

The first one is just the LP-variant of Shannon's classical theorem:

Theorem

Given p € (1,00) and «a < 1 there exists some constant C, > 1
(depending on p and «) such that one has

1/p
G HIfllp < (Z!f(an)l”> < Gl flp-

nezZ

BUT DOES SUCH A THEOREM HELP?
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Generalizations done properly

Doing Generalizations properly |l

Think of various scenarios:

@ You obtain some data, and would like to recover f from the
data. Will the user provide the INFORMATION to you:
“| took the samples from a function in L%/4(RR)?

@ Even if we assume this oracle to be available, what is the
actual help from this statement? Will the constant Cs/4 be
large (because p = 5/4 is not so far away from p = 1)?

@ As a matter of fact one can show that C, — oo as p — 17

@ Even if this situation would be answered in a satisfactory way
it would just allow as to state that the set of samples is a
closed subspace of ¢P(Z). But what happens if we get slightly
perturbed data not in the range? Can we then just
project them to the range of the sampling operator?
Unfortunately there are plenty of non-complemented
closed subspaces for p # 2.
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Generalizations done properly

Doing Generalizations properly Il

In this sense a theorem of the following type is much more useful
(and actually used in applications):

Theorem
For any o < 1 there exists some constant C, > 1 such that

1/p
G lIfllp < (Z\f(a")”> < Gllfllp,

nez

and furthermore, for atoms g chosen properly one has an
unconditionally convergent series representation

f=> f(an)Tang, for feLP(R),
nez

assuming only that spec(f) C [-1/2,1/2]. .
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Generalizations done properly

[llustration of SINC versus better atoms:

The alternative kernel is of course much better concentrated, but
it has a (much) larger spectrum in the particular case:
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Generalizations done properly

Doing Generalizations properly 1V

Let us shortly analyze the situation and learn from it:

@ In the first version, the reconstruction standing behind is an
extension of the ideal recovery system. The collection of
shifted SINC-function is an ONB for the space of band-limited
L2-functions with spec(f) C [~1/2,1/2]. So what kind of
problem do we get: it the fact that SINC ¢ L*(R9)!! (which
causes the problem and even prohibits a proper recovery for
p = 1 because finite partial sums are not in L}(R)).

@ In the second case on makes use of the slight redundancy and
replaces F{SINC), i.e. the box-function, by a smooth version
of a box-function g , thus buying some decay, hence
integrability of g, and getting the second theorem.
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Generalizations done properly

Doing Generalizations properly V

The wish to have a uniform statement for families of function
spaces (here the family of LP-spaces for p € [1, 0] requires to
pay a price (allow a bit or redundancy), but if properly handled
this redundancy implies a variety of beneficial properties):

@ Better robustness with respect jitter- or aliasing errors;

@ validity of the recovery not only for LP-spaces, but families of
(moderately) weighted space L”,(R9), as long as

m(x +y) < (L+|x])*-m(y) Vx,y € R%.

© as well as locality of the representation: Having only local
data one is still able to recover the underlying function f
using the relevant partial sums; up to boundary effects
the reconstruction error is small for the region covered
by the available sampling points!
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Generalizations done properly

Doing Generalizations properly VI

Summarizing we argue, that a variation of the classical approach
suggests to look out for linear recovery methods which apply
universally to families of functions of a particular type (e.g.
band-limited functions) an a well-chosen family of function spaces
(such as polynomially weighted LP-spaces over RY, up to some
order sp).

Such methods (whether they are obtained by direct methods, such
as local regression etc. and/or iteratively) should be (and often are
automatically by their very nature) local and robust with respect to
the natural errors, such as noisy data, jitter or aliasing error (which
can be viewed as mild deviation from the signal model).
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Generalizations done properly

The settings

So far we have discussed the case of band-limited functions, of
you want over LCA (locally compact Abelian) groups, but most of
the constructive (often iterative) methods are of the type:
Assuming some density (typically a reasonable fraction of the
Nyquist rate) one is able to guarantee (uniformly over the said
family of function spaces) uniform rates of convergence (e.g.
geometrical rate of convergence).

The key argument in many of the existing proofs is based on the
consideration of the smoothness of the underlying function and the
fact, that it cannot vary too strongly over the Voronoi-regions of
each point, implying that the Voronoi step-function is not far
from the original function if the point density is high enough!

In many case the oscillation of f is estimated using some form

of Bernstein’s theorem.
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Generalizations done properly

The settings |l

The early papers on iterative methods (first generation methods)
consist in building any form of (quasi)- interpolation to the original
function of the form ,_, f(x;)1i(x) which is then “projected”
back to the space of band-limited functions.

Such an approach however requires only (as reported at the Loen
conference) three things:

@ Control of the oscillation and the size of the sampling values;

@ The solidity of the function spaces, because only pointwise
error estimates can be obtained (providing norm estimates);

@ Some (kind of) projection operators from the ambient
LP-space into the subspace under consideration (e.g.
band-limited functions).
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Generalizations done properly

The settings Ill: Spline-Type Spaces

Technically speaking Wiener amalgam spaces are well suited to
handle such problems and describe them properly, specifically the
spaces W(G, £5,)(RY).

An important family where such principles apply is the family of
what | call spline-type spaces, called (principal) shift-invariant or
wavelet spaces elsewhere. The prototype is of course the family of
cubic spline functions, which thanks to the good properties of
B-splines have the nice property that they are in LY if and only if
their coefficients (with respect to the basis of shifted cubic
B-splines) is in the corresponding sequence space /i, .

Properties of the dual generator, i.e. the function in the spline-
type space whose translates are a biorthogonal basis to the
generating system (they are also in W(C, £1)) play a role.
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Generalizations done properly

The settings Ill: Spline-Type Spaces
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Generalizations done properly

The settings IV

Algorithmically the change from band-limited functions to
spline-type functions was quite easy (and that is how it started!),
for the first generation algorithm. One just has to replace the
filtering step by a projection onto the space under consideration,
making use of the fact that this is a bounded operator (uniform
with respect to the family under consideration).

Of course such considerations can be carried out over LCA groups
and with rather general kernels. Let us just mention the
reproducing kernel of Sobolev space (if w is the weight on the FT
side it is o = F~1(1/w?)). It follows that minimal norm
interpolation of equidistant £2-data is by means of the

spline-type space generated by .
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Frame Theory

The settings V

These considerations bring us already close to two important
further topics/connections

The first one is the connection to RKH, i.e. the theory of
reproducing Hilbert spaces. In some sense the irregular sampling
problem for spaces of band-limited functions is equivalent to the
stable representation of signals as series of shifted SINC-functions,
with £2-coefficients.

Here the notion of “stable generators for a Hilbert space” comes
into game. We all know, that this is just the other side of the
medal of frame theory, in fact the slightly less well known.

So let us shortly discuss some aspects of the theory of frames
(and Riesz basic sequences).
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Frame Theory

Frames and Riesz Bases |

Almost every mathematics student is starting her/his career with
some course in analysis and basic concepts of linear algebra.
From the concept of a vector space it is just two steps away to
that of a linear independent resp. generating set of vectors, and in
the ideal case on has both properties, i.e. one has a basis.

Every finite-dimensional vector-space has such a basis and
consequently all linear mappings between such spaces can be
described by matrix. The composition law of linear mappings
enforces a specific for of matrix multiplication resp. matrix
inversion, and e.g. the determinant is the standard way to check
the invertibility of a square matrix. We also learn that orthono
basis (resp. unitary matrices) are the best thing we can get,
because one obtains U~! simply by forming U’ = conj(U?).
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Frame Theory

Frames and Riesz Bases ||

Although we have learned in our functional analysis courses that
the concept of orthonormal bases is still available for abstract
Hilbert spaces H (and this is OK, they behave as in the linear
algebra situation), we are falsely indoctrinated that one should

@ linear independence carries over by just looking at arbitrary
finite subsets;
@ the concept of a generating set has to be replaced by the

concept of a total family M , which means that # concides
with the closed linear span of such a family M.
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Frame Theory

Frames and Riesz Bases Il|

But can we then transfer basic observations from linear algebra
into this setting.

Maybe you may think of the critical Gabor family of shifted
Gaussians along the Neumann lattice Z2, which was suggested by
Denis Gabor. It IS linear independent (in the classical sense), and
it is total, but is far from being a basis of any kind. One can even
remove one of those vectors (but not two of them!) and still have
a total family. But on the other hand there is no stable way of
representing elements from H = L?(R) using £?-coefficients!
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Frame Theory

Frames and Riesz Bases IV

We all know that the correct replacement of these two concepts
are injective mappings between the Hilbert space and some £2(/)
spaces. If we consider the stable variant of linear independence,
then we assume that the mapping from £2(/) into H which assigns
to ¢ = (¢j)ies the vector 3, cip;i (forming infinite linear
combinations, which is the natural analogue of matrix
multiplication) defines an imbedding of £2(/) into .

This can be characterized by a well-known pair of inequalities, and
we are talking about a Riesz basic family.

Quite analogously a family (g;);cs is a frame if the mapping
f — ((f,&))ics defines an embedding from H into £3(1).
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Frame Theory

Frames and Riesz Bases V

Although not with this (by now well established) terminology these
two fundamental questions had found already considerable
attention in the community of colleagues interested in Hilbert
spaces resp. Banach spaces of analytic functions, on the plane (e.g.
Fock-spaces) or on the (open) unit disk.

There the corresponding terminology describes results concerning
sets of sampling and sets of interpolation. In the first case stable
recovery from the samples is guaranteed, using series expansions
with £2-coefficients (resp. frames of reproducing kernels). In the
second case the Riesz basis situation is described by the fact, that
for arbitrary £?-data a function f can be provided which takes
those given values at the given positions.
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Frame Theory

Frames and Riesz Bases VI

Many of those transformations arise form irreducible and (square)
integrable (projective) representations of certain (non-Abelian)
groups:
@ coherent states (resp. time-frequency analysis), using the
Schrodinger representation of the reduced Heisenberg group;
@ poly-analytic functions (using Hermite atoms);
@ ax + b group leading to the continuous wavelet transform,
defined on the upper half-plane (identified with this group);
@ shearlet transform, allowing to describe shearlet frames via
sets of stable sampling in that domain;
@ Blaschke group, with a corresponding voice-transform;
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Frame Theory

Frames and Riesz Bases VII

It is clear that this is the point where strong relationships between
harmonic and complex analysis play an important role, which is
still gaining momentum.

Typically hard analysis methods and function space methods allow
to prove qualitative results in much greater generality (meaning
transform need not be analytic, but still interesting sampling
results can be shown), but under stronger assumptions concerning
the density, while complex analysis methods allow to prove optimal
results in terms of density.

The classic here is the sampling of the STFT with Gaussian
windows. Complex analysis methods provides the optimal

answer for regular lattices of the STFT: any lattice of the

form aZ x bZ with ab < 1 is a set of sampling.

But real analysis methods allow to verify that for

a = b < 0.99 the situation is OK!
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Frame Theory

Frames and Riesz Bases VIII

There is an interesting connection between sampling the STFT
with respect to higher order Hermite functions (the Gauss function
is considered as the Hermite function with index zero!) and the
theory of polyanalytic functions which has found great attention
very recently, leading to yet another bridge between sampling
theory, coorbit theory and complex analysis methods.

Another large branch of science very close to sampling theory
which cannot be presented here is learning theory. We had invited
talks in that direction at earlier SampTA conferences, and e.g.
generalized sampling, already seen at this conference.

Also on non-Abelian groups or manifolds it is possible to defin
band-limited functions via the spectral decomposition of the
Laplacian operator.
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Density Considerations

Density of Sampling Sets |

One of the universal questions arising in sampling theory is the
question of the existence of something like a Nyquist rate. This
means (e.g. in the band-limited case) that one hope for a Riesz
basis, or ideally an ONB for the Hilbert space under consideration,
such as T,(SINC),n € Z.

As already mentioned this setting is not extending to the case of
band-limited functions in L(RY), so somehow if one is interested
in uniform claims for the families of band-limited function in

{LP(RY) | p € [1,00]}

the answer is quite different. We have sets of sampling (resp.
frames) for regular sampling below the Nyquist rate and
sets of interpolation above the Nyquist rate.
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Density Considerations

Density of Sampling Sets Il

This will of course remind many of you of the well-known
Balian-Low phenomenon: there is no well Gabor-like Riesz basis for
L?(R) generated from an atom/window which is well-localized in
the TF-sense.

We also remind the audience that Yves Meyer was trying to show
that a similar claim is also valid in the case of the CWT, and the
failure of his assumption was due to his own construction of an
orthonormal wavelet system

Recall that the search of coherent frames (such as Gabor or
wavelet frames) is equivalent to the search for sets of sampling for
the corresponding continuous transform, with the atoms being
called windows in the transform setting. Correspondingly we

are looking for sets of interpolation when we search for

coherent Riesz basic sequences.
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Density Considerations

Density of Sampling Sets Il

While Balian-Low is seen as a deficiency it can also be seen as a
natural consequence of “good properties’ of Gabor systems with
respect to dilations: It is known for a while that any regular Gabor
system (i.e. a system (m(A\)g)ren, with a lattice A < R? x RY)
generating a Gabor frame with a “decent window” (with

g € M}(RY), e.g. g € S(RY)) allows some small perturbation by
some matrix, as long as that matrix is close to the identity matrix.
In particular, it is always possible to apply a mild stretching, which
in fact changes the density of the family. More recently the same
has been proved for non-regular Gabor families.

On the other hand it is known that for point sets with subcritical
density one cannot have a Gabor frame. Combining these
observations one reaches the fact that a Gabor frame must

have some redundancy, while a Riesz basis must have

at least critical density.
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Density Considerations

Density of Sampling Sets IV

Overall there are, depending on the setting and scenario different

types of density descriptions for sets of sampling, often directly or
indirectly based on the ideas laid in the early work of Beurling and
Landau.

Moreover it may not be surprising that similar are not available in
the case of the affine group, and even the proper concept of
density is not completely clear. In any case no stability with
respect to density changing transformations in conjunction with
the existence of a kind of Nyquist density (whatever it may be) can
be valid, otherwise we would not have (plenty of) nice
orthonormal wavelet bases.
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Density Considerations

Density of Sampling Sets V

The TF-context also allowed to formulate quite strong results in
the following spirit: If we have a Gabor frame of some redundancy,
then it is always possible to remove a certain percentage of points
as long as there is still some redundancy left over. Although in this
way the condition number grows with decreasing redundancy it is
still possible to reach a given level of (low) redundancy.

This raises of course the question: In which other context can one
play such games. Is it something very specifically to the
Weyl-Heisenberg setting. Most likely it applies to many more
settings, but perhaps not to all of the cases where sampling has its
natural place!? There are more open questions than answers

if we ask the question in this generality.
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A CONJECTURE

A Conjecture based on Sampling Sets

We have many cases where any set of sampling is well spread, in
the sense of having an upper limit on the local density. Since it is
also often not too difficult (using e.g. the concentration of a family
of reproducing kernel elements) to show that sufficiently separated
define sets of interpolation, it was not so courageous to hope that
CONJECTURE: Every frame in a Hilbert space is a finite
union of Riesz basic sequences.

While only few weeks ago | would have said that one can gain high
reputation by answering this question (negatively or positively),
one can now say that the Kadison-Singer conjecture and hence the
above CONJECTURE has been verified affirmatively:

Interlacing Families II: Mixed Characteristic Polynomials and

the Kadison-Singer Problem, by Adam Marcus, Daniel

A. Spielman, Nikhil Srivastava (Arxiv, June 2013).
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Localization |

Another topic within sampling theory where | see substantial
progress in the last decade is the so-called localization theory.
Similar to the scenario described in the context of Shannon's
theorem with the chance for better localized building blocks one
can formulate the following question (in the most abstract setting):

PROBLEM: Given a sufficiently dense subset from a RKH
producing a frame of some redundancy, hence many possible dual
frame families. What is the most concentrated dual family, resp.
what can one say about the concentration of the canonical dual
frame (with respect to the centers).

Especially in the context of Gabor analysis the uniform
concentration of dual Gabor families (also in the irregular case
related also to the so-called HAP (homog. approximation)
property, has been carefully investigated.
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Localization |l

This newly established localization theory provides concepts of
localization of a frame with respect to a fixed orthonormal basis
(could be a localized Fourier basis for TF-applications), or intrinsic
or mutual localization of frames.

Technically it amounts to the question of spectral invariance in
suitably chosen Banach algebras of operators or infinite matrices,
describing good off-diagonal decay in the sense of the underlying
group.

Clearly the positive answers to such questions (often viewed as
generalizations of Wiener's inversion theorem) provide insight into
the locality of reconstruction, i.e. the guaranteed quality of
reconstruction in certain regions (up to some boundary effects

if only local data are available.
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FURTHER TOPICS |

Areas where we have seen substantial progress in the two last
decades are (without claiming completeness of the list):

@ random sampling is now much better understood, but it may
still worthwhile to view irregular sampling algorithms from a
more probabilistic point of view; in fact, most of the analysis
is still going into worst case analysis;

@ Sampling in the context of finite rate of innovation has found
some attention;

@ The principle of consistent sampling has been developed and
is by now well established (if perfect recovery is impossible);

@ The effect of quantization, in particular the possibility of
good recovery of a signal from densely sampled but
coarsely quantified signals has bee studied (see
Sigma-Delta Quantization);
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FURTHER TOPICS Il

Of course one of the really blooming (not to say hot) topics which
may be considered an offspring of sampling theory is

@ compressive sensing resp. compressive sampling, with the
astonishing idea that may not be necessary to fully recover a
signal in order to extract certain features from it;

In combination with convex optimization algorithms there is
by now a wide range of applications, we see books coming up
in the field and lots of workshops and conferences;

@ also highly relevant for various application areas is the phase
retrieval problem: when and how can we recover a signal from
the absolute values of the samples only ;

@ new mathematical foundations of superresolution, there
will be a full session at SampTA13;

Hans G. Feichtinger Sampling theory and applications: developments in the last 2



FURTHER TOPICS Il

The above mentioned topics are already well established, but we
see other questions coming up, and at least | find them quite
interesting and see them as challenges for the future:

e distributed processing of sampling (local regression,
independent fusion centers, fusion frames, etc.);
algorithmically this is of course also related to the question of
parallel algorithms for scattered data approximation, e.g. in
the context of higher dimensions (GPU implementations?);

@ real time processing does not only require fast algorithms and
good hardware, but in the analysis of such algorithm one has
to observe that parts of the data are not yet available
when the processing starts, and a continuous flow of
output may have to be created!
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OUTLOOK |

Even with such good progress and many interesting new topics
developing into well-founded small theories with nice applications |
would like to express some wishes/challenges for the future:

@ We have strong theory and in some cases even better
performance of algorithms. But have we systematically
verified using numerical methods that our theoretical
estimates are close to optimal? Maybe in some cases one can
even justify the rates of convergence (and even constants) are
(at least qualitatively) optimal!

@ When we talk to applied people we can tell them a lot about
a huge variety of ideas and methods, but can we provide them
with a reliable consumer report, indicating which method
is the best in which situation? Maybe “grand challenges”
put together in order to identify best practice could be
helpful in this respect;
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ADVERTISEMENT!

Thank you for your attention. At www.nuhag.eu/strobl14 you find
information about our upcoming conference in Strobl (June 2014):
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