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Gabor Analysis: Beethoven Piano Sonata
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Groups in Fourier Analysis: Hints

It maybe worthwhile noticing, that certain practical conventions,
which influence e.g. the choice of formats for digital displays, can
be also explained using group theory:
Why do we have a standard HiFi sampling rate of N = 44100?
First of all because we have to obeye the Nyquist criterion (with
some oversamplig), so ca. 40.000 ∗ (1 + δ) would be fine.
Looking for numbers in this range, which are also rich in divisors
(resp. subgroups of ZN) you will find that there are 81 of them,
because

44100 = 22 · 32 · 52 · 72

has many different small prime factors.
Similar arguments apply to most display formats for your
electronic devices, just test them! (e.g. 1366× 768).
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Aspects of Gabor Analysis

Gabor analysis is concerned with a very intuitive way of
representing signals, also allowing to realize time-variant filtering
(i.e. to do the computational analogue of the action of an audio
engineer).
The classical literature emphasizes the functional-analytic
subtleties of such non-orthogonal expansions. Describing Gabor
Analysis from a Numerical Linear Algebra and Harmonic Analysis
point of view however helps to separate the points to be observed
and allows to also explain the right view-point to the “continuous
case”.
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Aspects of Gabor Analysis II

There is a variety of application areas of Gabor Analysis (similar
and sometimes in competition with wavelets or shearlets,curvelets).
Let us mention project related topics:

audio signal processing (e.g. for electro-cars);

image processing (see our contribution to the hand-book of
image processing, [2], based on S. Paukner’s master thesis);

mobile communication (Gabor Riesz bases, ADSL, OFDM,...).

A short survey of the subject is given in
Encyclopedia Applied Mathematics (see [3]).
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AGENDA (for home-reading)

We would like to address the following questions:

What is Gabor analysis (motivation, problems, applications)?

What are the numerical challenges arising from this theory?

In which sense provides a combination of arguments from
numerical linear algebra combined with concepts from
(abstract) harmonic analysis the foundation for the
DEVELOPMENT OF EFFICIENT ALGORITHMS
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Harmonic Analysis and Algorithms

(?) Abstract versus(?) Computational Harmonic Analysis 1 ??

1 Abstract Harmonic Analysis provides a unified terminology for
Fourier Analysis over general LCA2 groups G, be they
continuous or discrete, compact or non-compact, finite or
infinite, one- or high-dimensional;

2 Not only Fourier Analysis has its natural analogue over finite
Abelian groups, but even all the ingredients of time-frequency
analysis have their natural meaning for finite groups;

3 In contrast to the valid analogy of concepts harmonic analysis
provides only little support from an approximation theoretic
view-point, e.g. quantitative error estimations.

1I like to call their combination conceptual harmonic analysis.
2Locally Compact Abelian!
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Functional Analytic Aspects

From a modeling point of view real world signals are analogue
while their representation in the computer are digital. Sound
signals are sampled at 44.1kHz , digital cameras turn images in the
optical lens into (stacks of 3) matrices (R-G-B).

Ignoring the (non-linear) problem of appropriate quantization a
good recording device (and then a system to perform digital signal
processing on the recorded signal) we realize that we are facing an
approximation theoretical problem, which in turn brings us to
functional analysis (measuring the errors by some norms) and
function spaces.
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Functional Analytic Aspects II

Analyzing more carefully what the typical situation is we are facing
various steps:

1 Describe according to which measure (norm) the result should
be “optimal” (e.g. forming a simulation routine should provide
good approximation of the “real output” up to a given error,
in some norm, and e.g. stochastically);

2 Approximation theory provides general possibilities,
constructive approximation theory is outlining a concrete
method, but at the end realization on a given computer has
to be carried out!

3 Ideally one should try to demonstrate that the chosen
strategy is close to optimal.
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Functional Analytic Aspects III

Without going into details let us mention that the classical
repertoire of function spaces is by no means satisfactory. Within
the large zoo of possible function space norms the most popular
ones in “hard analysis”, namely the spaces

(
Lp(Rd), ‖ · ‖p

)
are not

really important for applications, except of course p = 1, 2,∞.

While there is a variety of norms which describe the smoothness of
functions only the classical Sobolev spaces Hs(Rd) are really
important for PDE applications. For s ∈ N they can be described
as L2-functions with s (distributional) derivatives in L2(Rd).
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Function spaces based on TF-analysis

Function spaces resulting from TF-analysis3 turn out to be more
useful for a variety of applications, among them the Segal algebra(
S0(Rd), ‖ · ‖S0

)
(functions from L1 ∩ L∞(Rd) with a STFT

Vg (f ) ∈ L1(R2d)), which is the smallest Banach space of functions
with an isometrically translation invariant norm and also Fourier
invariant.

Together with the Hilbert space L2(Rd) and its dual space S0
′(Rd),

which can be characterized as the space of all (tempered)
distributions with uniformly bounded spectrogram
one obtains the Banach Gelfand triple (S0,L

2,S0
′), which is

naturally isomorphic (via Wilson bases), to the BGTriple
(`1, `2, `∞), endowed with three types of norm convergence
plus also w∗ = coordinatewise convergence in `∞.

3i.e. analyzing a distribution by looking at its Short-time Fourier transform
or spectrogram, which is a continuous function over phase-space anyway!
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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LINEAR ALGEBRA: Gilbert Strang’s FOUR SPACES

Let us now take a LINEAR ALGEBRA POINT OF VIEW!
We recall the standard linear algebra situation. We view a given
m × n matrix A either as a collection of column or as a collection
of row vectors, generating Col(A) and Row(A). We have:

row-rank(A) = column-rank(A)
Each homogeneous linear system of equations can be expressed in
the form of scalar products4 we find that

Null(A) = Rowspace(A)⊥

and of course (by reasons of symmetry) for A′ := conj(At):

Null(A′) = Colspace(A)⊥

4Think of 3x + 4y + 5z = 0 is just another way to say that the vector
x = [x , y , z] satisfies 〈x, [3, 4, 5]〉 = 0.
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Geometric interpretation of matrix multiplication

Since clearly the restriction of the linear mapping x 7→ A ∗ x is
injective we get an isomorphism T̃ between Row(A) and Col(A).

Rn

Row(A) Col(A) ⊆ Rm-
T̃ = T|row(A)

R

?

PRow

@
@
@
@
@
@
@@R

T : x → A ∗ x
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
@@R

T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Four spaces and the SVD

The SVD (the so-called Singular Value Decomposition) of a
matrix, described in the MATLAB helpful as a way to write A as

A = U ∗ S ∗ V ′

, where the columns of U form an ON-Basis in Rm and the columns
of V form an ON-basis for Rn, and S is a (rectangular) diagonal
matrix containing the non-negative singular values (σk) of A. We
have σ1 ≥ σ2 . . . σr > 0, for r = rank(A), while σs = 0 for s > r .
In standard description we have for A and pinv(A) = A+:

A ∗ x =
r∑

k=1

σk〈x , vk〉uk , A+ ∗ y =
r∑

k=1

1

σk
〈y , uk〉vk .
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Generally known facts in this situation

The Four Spaces are well known from LINEAR ALGEBRA, e.g. in
the dimension formulas:

ROW-Rank of A equals COLUMN-Rank of A.

The defect (i.e. the dimension of the Null-space of A) plus the
dimension of the range space of A (i.e. the column space of A)
equals the dimension of the domain space Rn. Or in terms of
linear, homogeneous equations: The dimension of set of all
solution to the homogeneous linear equations equals the number of
variables minus the dimension of the column space of A.

The SVD also shows, that the isomorphism T̃ between the
Row-space and the Column-space can be described by a
diagonal matrix, if suitable orthonormal bases are used.
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Consequences of the SVD

We can describe the quality of the isomorphism T̃ by looking at its
condition number, which is σ1/σr , the so-called Kato-condition
number of T .
It is not surprising that for normal matrices with A′ ∗ A = A ∗ A′

one can even have diagonalization, i.e. one can choose U = V ,
using to following simple argument:

Null(A) =always Null(A′ ∗ A) = Null(A ∗ A′) = Null(A′).

The most interesting cases appear if a matrix has maximal rank,
i.e. if rank(A) = min(m, n), or equivalently if one of the two
Null-spaces is trivial. Then we have either linear independent
columns of A (injectivity of T >> RIESZ BASIS for
subspaces) or the columns of A span all of Rm ( i.e.
surjectivity, resp. Null(A′) = {0}): >> FRAME SETTING!
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Geometric interpretation: linear independent set > R.B.

Row(A) = Rn Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ ) = pinv(A)

T ′

Rm ⊇ Null(A′)

?
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PCol
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?
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Geometric interpretation: generating set > FRAME

Null(A) ⊆ Rn

Row(A) Col(A) = Rm
-

T̃ = T|row(A)

inv(T̃ ) = A′

?
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The frame diagram for Hilbert spaces:

If we consider A as a collection of column vectors, then the role of
A′ is that of a coefficient mapping: f 7→ (〈f , fi 〉).

`2(I )

H C(H)-
C

� R ?

P

�
�

�
�

�
�	

R

This diagram is fully equivalent to the frame inequalities (??).
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Riesz basic sequences in Hilbert spaces:

The diagram for a Riesz basis (for a subspace), nowadays called a
Riesz basic sequence (RBS) looks quite the same ([1]).
In fact, from an abstract sequence there is no! difference, just like
there is no difference (from an abstract viewpoint) between a
matrix A and the transpose matrix A′.
In this way in the RBS case one has the synthesis mapping
c 7→

∑
i cigi from `2(I ) into the Hilbert space H is injective, while

in the frame case the analysis mapping f 7→ (〈f , gi 〉) from H into
`2(I ) is injective (with bounded inverse).
Of course one can consider a RBS as a Riesz basis for the closed
linear span of its elements, establishing an isomorphism between
`2(I ) and H.
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Algebraic Properties of Gabor Frames

The algebraic properties allowing to use appropriate
(non-commutative) Banach algebras of sparse matrices can thus be
explained in the context of linear algebra and finite groups.
In a second step the transition to the infinite-dimensional situation
can be done using functional analytic arguments (some new
questions arise) and the proper function space setting (namely
modulation spaces, which contain ordinary Sobolev spaces and
Shubin classes, arising in the study of the harmonic oscillator).
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The Gabor Frame Operator for (g ,Λ)

Main properties of the Gabor frame operator

Sf =
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g =
∑
λ∈Λ

〈f , gλ〉gλ, f ∈ L2(Rd).

A typical example: every point of the left lattice below (Λ)
corresponds to one “atom centered at λ ∈ Rd × R̂d”:
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Commutation Rules in a Non-Comm. Setting

The commutation relation

S ◦ π(λ) = π(λ) ◦ S , ∀λ∈Λ.

implies that the matrix/operator can be written as a superposition
of TF-shift operators from the adjoint lattice. This is called the
Janssen representation of the Gabor frame operator.

Sg ,γ,Λ = red(Λ) ·
∑
λ◦∈Λ◦

Vγg(λ◦)π(λ◦).

Note the explicit form of the coefficients. Good decay and
smoothness imply that for γ = g the invertibility of Sg ,Λ

follows from concentration of Vg (g) around zero.
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The Ron-Shen Principle

From the Janssen criterion one finds that (g ,Λ) generates a Gabor
frame (i.e. S is invertible on L2(Rd)) if and only if there exists
γ ∈ L2(Rd) such that Vgγ(λ◦) = δ0,λ◦ . In fact, if g is normalized
with ‖g‖2 = 1 the zero-element π(0, 0) = Id takes a dominant role
within the Janssen expansions and guarantees invertibility (not
only over

(
L2(Rd), ‖ · ‖2

)
).

In particular, invertibility is granted if Λ◦ is coarse enough or
equivalently if Λ is dense enough.

Theorem

G (g ,Λ) is a frame if and only if the Gabor system G (g ,Λ◦) is a
Riesz basis for its linear span. Moreover, the condition number of
the frame operator for G (g ,Λ) coincides with the condition
number for the Gramian matrix for the system G (g ,Λ◦).
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Solving the Biorthogonality Problem

The Ron-Shen principle shows that one can replace the inversion of
the frame operator S by the inversion of the Gram matrix for the
system (gλ◦)λ◦∈Λ◦ , which is smaller.
For the finite setting, e.g. n = 480, red = 3/2 we have 720 Gabor
atoms for the space Cn, and the Gram-matrix has only size
320× 320.
The invariance properties mentioned allow to solve the problem to
solve the equation

S(h) = g

for h ∈ L2(Rd). In fact one obtains the canonical dual atom
by inverting the positive definite and sparse matrix.
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Signal Representation and Mobile Communication

The Ron-Shen principle also says that the stability of the two
related families, namely the Gabor frame (gλ)λ∈Λ , expressed by
the condition number of the Gabor frame operator S is exactly the
same as the quality of the (linear independent) Riesz basic
sequence (gλ◦)λ◦∈Λ◦ (for its closed linear span), i.e. the condition
number of the corresponding Gram matrix.
While frames are good for the representation of “arbitrary signals”
(functions or even tempered distributions) the good stability of
Gaborian Riesz bases, which provide approximate eigenvectors to
slowly variant channels (linear operators).
Our patents concern efficient algorithms to identify such operators
(from the received pilot tones) and to do a fast approximate
inversion (channel identification and decoding).
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Further Numerical Issues

In addition to the general structural properties of Gaborian families
(frame resp. Riesz basic sequences) we have studied and
implemented methods considering:

1 preconditioners, double preconditioners (obtained by inverting
e.g. the diagonal or circulant “component” of S , resp.
commutative subalgebras!)

2 functional analytic (spectral - Banach algebra methods) allow
to show good properties of the atom g (decay at infinity and
smoothness) imply corresponding properties for the dual atom
g̃ = h (as above), which indicates that a local biorthogonality
problem will/can give good approximate dual window;

3 Locality allows to go for a theory where regularity is
only valid locally (but not globally).
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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SOGTr-results in Banach Triple terminology

In the setting of (S0,L
2,S0

′) a quite similar results is due to
Gröchenig and coauthors:

Theorem

Assume that for some g ∈ S0 the Gabor frame operator
S : f 7→

∑
λ∈Λ〈f , gλ〉gλ is invertible at the Hilbert space level, then

S defines automatically an automorphism of the BGT (S0,L
2,S0

′).
Equivalently, when g ∈ S0 generates a Gabor frame (gλ), then the
dual frame (of the form (g̃λ)) is also generated by the element
g̃ = S−1(g) ∈ S0.

The first version of this result has been based on matrix-valued
versions of Wiener’s inversion theorem, while the final result
(due to Gröchenig and Leinert, see [4]) makes use of
the symmetry in Banach algebras and Hulanicki’s Lemma.
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Finally some Applications

Gabor multipliers are just time-variant filterbanks:
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Applications to Image Processing
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Applications to Image Processing 2
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Applications to Image Processing 3
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The Gabor Coefficients of the Zebra
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2D Gabor transform, filtering
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2D Gabor transform, Foveation
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Some Group Theoretical Questions
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Gabor and Spline-type Spaces

Due to the fact that efficient Gabor expansions also allow to realize
Gabor multipliers one may ask, whether a given operator can be
optimally approximated by a Gabor multiplier, resp. whether a
given matrix can be best approximated by the action of a Gabor
multiplier for a given Gabor frame generated by (g ,Λ), measured
in the Frobenius norm.
For that purpose it is of course optimal if the trivial multiplier by
m(λ) ≡ 1 provides the identity. Gabor atoms h with Sh,Λ = Id are
called tight Gabor atoms, and they can be obtained from a general
Gabor atom by computing S−1/2g .
Using the so-called Kohn-Nirenberg symbol for general operators
this problem can be equivalently expressed as a best approxi-
mation of a given L2(R2d)-function by a spline-like function.
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