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Function Spaces in General: FOURIER SERIES

Let us take a historical perspective (with Fourier Analysis in the
center of our considerations):
Fourier Series have been introduced around 1822
1822 Jean Baptiste Fourier published his famous Theorie
analytique de la Chaleur in 1922.
The problems arising from the theory of Fourier series caused
discussions about a suitable form of convergence (exceptional sets,
measure theory, etc.), even the concept of “functions” had to be
clarified.
After a period of using Riemann integrable functions and pointwise
convergence for piecewise continuous functions it was about 100
years later that Lebesgue introduced what is now known
as the proper form of integration (Thesis of 1902).
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Function Spaces and early Functional Analysis

He achieved convergence theorems which were general enough to
allow to prove the completeness of the spaces

(
Lp(Rd ), ‖ · ‖p

)
(as

prototypical examples), which turned quickly in to the basic
examples in S. Banach’s theory of what is now called Banach
spaces. The results of F. Riesz identifying the dual space of L2

with the space itself (Riesz representation theorem) as well as the
general duality theory form nowadays the basis for functional
analysis, which itself is indispensable for any kind of analysis (PDE,
Fourier Analysis, etc.).
Among the Banach spaces the family of Hilbert spaces plays a
distinguished role.
Later on the relevance of Frechet spaces and topological
vector spaces (of functions and operators) was recognized.
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What are Banach Space of Functions?

The terminology is not quite uniform.
I myself was very much influenced by the work of Hans Triebel
whose Theory of Function Spaces tried to encompass all the
then (around 1970) “classical spaces” from the point of view of
interpolation theory, that was developed very systematically by
himself and Jaak Peetre (who was in fact also interested in Banach
spaces of analytic functions).
Most of the spaces, including the Besov and the Triebel-Lizorkin
spaces or Bessel potential spaces can be found in E. Stein’s book
on “Differentiability properties of Functions”.
This development was almost independent of the path pursued
A. Zaanen and W.A.J. Luxemburg, who used the word
Banach function spaces for certain complete lattices of
measurable functions.
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Function Spaces and their Usefulness

When one asks for which purpose different function spaces have
been introduced, one finds a variety of different answers:

1 in order to describe smoothness
(Lipschitz spaces, Besov spaces, Bessel potentials)

2 in order to provide good domains of operators
(
(
L1(Rd ), ‖ · ‖1

)
for the Fourier transform, Sobolev spaces of

differential operators, Hardy space for the Hilbert transform);

3 BV (R) is the right space in order to describe general
Riemann-Stieltjes integrals;

OVERALL (citation Yves Meyer): Function spaces are good
in order to describe the mapping properties of operators.
So let us take a look at the Fourier transform: f 7→ f̂ .
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The Classical Setting: Lp-spaces

L1

L2

C0

FL1

the classical Fourier situation
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Function spaces and Schwartz spaces

Schw L1

Tempered Distr.

L2

C0

FL1
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Function Spaces of Generalized Functions

This last example already indicates, that one should not only
consider Banach spaces of “ordinary” functions (i.e. in reality
equivalence classes of measurable functions, modulo null-functions)
but also spaces of generalized functions or distributions.
These “objects” appear only as rather abstract and maybe difficult
objects if the concept of a function as a pointwise mapping has
been settled strongly (as it was historically), while - got example -
physics student don’t view it as a very abstract thing to consider
forces, and to add up e.g. the gravitational force and the
centrifugal force in order to determine the position of a
rotating object.
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Function Spaces of Generalized Functions

What I wanted to say, that already in the setting promoted by
Hans Triebel (or Jaak Peetre) the role of families of Banach spaces
of functions (in the work of A. Pietsch one finds Banach spaces of
operators) is clear.
Such families are typically closed under duality (if one excludes the
non-separable cases, typically associated with parameters
p, q =∞) and (real and complex) interpolation (of Banach
spaces). In each such family a Hilbert space, very often(
L2(Rd ), ‖ · ‖2

)
, is at the center of the family.

E.g. we have the Besov spaces Bs
p,q(Rd ), or the Triebel-Lizorkin

Fs
p,q(Rd ) spaces, where typically such results can be easily

described in terms of the relevant parameters.
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Function Spaces of Generalized Functions

Even during my thesis my interest was in such families of function
spaces, in construction principles which allow to obtain new
families from given ones and to understand the connection
(sometimes commutation relations) between construction
principles.
For example, one my produce from ordinary Lp-spaces also
weighed spaces Lp

w (Rd ), or one applied (say) complex interpolation
to pairs of such spaces. But can one interchange the order of these
construction steps and still get the same spaces (and equivalent
norms)? The answer in this case is of course YES, if suitable
weights are used.
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Modulation Spaces (over Euclidean spaces)

One of my early contributions to the theory of function spaces was
the introduction of what became known as modulation spaces.
This is a family of Banach spaces (of tempered distributions, in the
“classical setting”), demoted by

(
Ms

p,q(Rd ), ‖ · ‖Ms
p,q

)
. They are

characterized by the behaviour (in the sense of decay or
summability) of a uniform decomposition of their spectrum. In
other words, one can obtain them by replacing the dyadic
decomposition of a function in Lp(Rd ) by a uniform decomposition
(of some smoothness). They show decent behaviour (e.g.
translation and dilation invariance), and a smoothness parameter
s ∈ R which is playing almost the same role as in the
definition of Besov spaces Bs

p,q(Rd ). Especially, the spaces

Mp,p(Rd ) are Fourier invariant spaces for p ∈ [1,∞].
I use to write S0(Rd ) = M1,1

0 (Rd ) and S0
′(Rd ) = M∞(Rd ).
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The Banach Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2
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The FULL picture

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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Function Spaces and Coorbit Theory

One of the motivations for the establishment of coorbit theory
(joint work with K. Gröchenig, late 80th) was the wish to unify the
approach to different families of Banach spaces, among them the

Besov-Triebel-Lizorkin spaces (over Rd );

Modulation Spaces (over LCA groups);

Moebius invariant Banach spaces of analytic functions on the
disc;

by understanding them through the fact that the are all forming a
family of Banach spaces sharing joint invariance properties under
certain groups of operators. Although differen when it comes to
the concrete computations there is still a lot of common facts
which can be established at a fairly general level.
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Wavelets, Marseille and Jean Morlet

As most of you are aware Jean Morlet (the person to which the
named chair I am presently holding is dedicated) was the inventor
of wavelets. He had the idea of expanding signals into building
blocks of constant shape, which translates into the questions, how
one can expand arbitrary “signals” (i.e. elements from L2(R)) as a
superpositions (series) of functions arising from a given shape
(often called mother wavelet) by affine transformations of the form
f (x) 7→ f (ax + b), a > 0, b ∈ R.
It was certainly Alex Grossmann who emphasized the role of group
theory in this context and probably was the person to introduce
what we then also called the voice transform.
The analogy between results in wavelet theory (continuous wavelet
transforms, atomic decompositions, etc.) and modulation space
theory (the sliding window Fourier transform or STFT) and Gabor
expansions the motivated the search for a general structure.
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THE END of the SLIDE SHOW

The rest is material from an earlier presentation and will only be
used to a small extent during the opening talk of the CIRM
conference.
http://www.univie.ac.at/nuhag-php/dateien/talks/
2453-SPIETALK13fei.pdf
HGFei (26. October 2014)
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Abstract

The purpose of this talk is to give a historical perspective on some
aspects of the theory of function spaces, i.e. Banach spaces of
functions (or distributions, when one looks at the dual spaces).
The first approach to smoothness resulting in the definition of
Sobolev spaces and Besov spaces (Besov, Taibleson, Stein) came
from the idea of generalized smoothness, expressed by (higher
order) difference expression and the corresponding moduli of
continuity, e.g. describing smoothness by the decay of the modulus
of continuity (via the membership in certain weighted Lq-spaces on
(0,1]). Alternatively there is the line described in the book of
S.Nikolksii characterizing smoothness (equivalently) by the degree
of approximation using band-limited functions (S. M. Nikol’skij
[9]). Fractional order Sobolev spaces can be expressed in
terms of weighted Fourier transforms.
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The second and third age

The second age is characterized by the Paley-Littlewood
characterizations of Besov or Triebel-Lizorkin spaces using dyadic
decompositions on the Fourier transform side, as used in the work
of J.Peetre ([10]) and H.Triebel ([17, 18, 16, 12, 19]) , the masters
of interpolation theory. Their contribution was to show that these
families of function spaces are stable under (real and complex)
interpolation methods.
The third age is - from our point of view - the characterization of
function spaces in the context of coorbit spaces, using irreducible
integrable group representations of locally compact groups.
Let us also remind that the concept of retracts plays an important
role in the context of interpolation theory (see the book of
Bergh-Loefstroem), and can be used to characterize Banach
frames and Riesz projection bases.
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Modulus of continuity

Definition

Assume that
(
B, ‖ · ‖B

)
is an isometrically translation invariant

Banach space of locally integrable functions (i.e.(
B, ‖ · ‖B

)
↪→ L1

loc (Rd )) with

‖Tx f ‖B = ‖f ‖B ∀f ∈ B.

In this situation we can define for every f ∈ B its modulus of
continuity with respect to ‖ · ‖B via

ωδ(f ) = sup|x |≤δ {‖Tx f − f ‖B}.

In most cases ω is considered a function of δ for fixed f ∈ B,
but the notation is following the traditional one.

Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



Modulus of continuity 2

For each such space it is easy to show that the elements with
limδ→0 ωδ(f ) = 0 are those for which x → Tx f is (uniformly)
continuous from Rd into

(
B, ‖ · ‖B

)
. They form a closed subspace

of
(
B, ‖ · ‖B

)
, which we denote by Bcs

1.
Within this class we can identify functions which have a higher
degree of “smoothness”, i.e. which are not just uniformly
continuous, but behave better than the general function in
Cub(Rd ), because ωδ tends to zero for δ → 0 at a given rate.
The so-called Lipschitz spaces Lip (α) are characterized by the
property that there exists some constant C > 0 such that

sup
δ>0

δ−αωδ(f ) = C <∞. (1)

There are also so-called “small Lipschitz spaces” characterized by

lim
δ→0

δ−αωδ(f ) = 0. (2)

1“cs” standing for “continuous shift”. for the case
(
L∞(Rd ), ‖ · ‖∞

)
we

find that L∞
cs = Cub(Rd ), the space of uniformly continuous bounded functions.Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



Classical Lipschitz spaces

It is an easy exercise to show that Lip (α) is a Banach space with
the norm

‖f ‖Lip (α) := ‖f ‖∞ + sup
δ>0

δ−αωδ(f ), (3)

and that (lipa, ‖ · ‖Lip (α)) is a closed subspace of Lip (α), in fact
Lip (α)cs = lipa.
This construction makes only sense for α ∈ (0, 1], because the
class becomes trivial for α > 12.
There are two ways out, which turn out to be equivalent: Either
one assumes that f is continuously differentiable and f ′ satisfies a
Lipschitz condition, or one makes use of higher order difference
operators e.g. for k = 2 one expects decay of the sup-norm of the
function f (x − h)− 2f (x) + f (x + h) as h→ 0, with some
order of h, up to order < 2 (also higher order differences).

2Only constant functions: because the assumption implies that the function
is differentiable everywhere and that f ′(x) ≡ 0.
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Generalized Lipschitz spaces Lip(p, α)

Replacing in this traditional the sup-norm by an Lp-norms and the
corresponding modulus of continuity one arrives at the concept of
the Lipschitz spaces Lip(p, α) arise.
The next step towards a general theory of smoothness spaces was
taken by Besov. Instead of considering just decay of a given order
for the modulus of continuity (as a function on (0, 1] or R+) he
was making use of weighted Lq-spaces with respect to the (natural
= Haar) measure dt/t on R+?
The corresponding norms (on R+ or (0, 1]) are of the form[∫ 1

0
(|H(t)|t−s)qdt/t

]1/q

. (4)

Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



Besov spaces

Note that the natural (say exponential function) isomorphism of
(R,+) with (R+, ·) via the exponential function transports
functions H on R+ back into functions h(t) := H(exp(t)), so that
the condition (4) is equivalent to the membership of h in the usual
(polynomial) weighted Lq-space,

Lq
ws

(R) := {f | fws ∈ Lq(Rd )}, with ws(t) := (1 + |t|)s . (5)

which is a Banach space with its natural norm ‖f ‖q,ws := ‖fws‖q.
The resulting family of spaces is then just the family of Besov
spaces Bs

p,q(Rd ).
In the work of S. Nikolskij (still alive!? at age of 102?) the Besov
spaces have been characterized by their approximation behaviour
with respect to band-limited functions (in his work: entire
functions of exponential type, ).
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Sobolev spaces, fractional derivatives

On the other hand there was the idea of describing smoothness in
the sense of differentiability in terms of the Fourier transform. The
classical Sobolev spaces Wk (Rd ) or Hs(Rd ) or L2

s are defined as
the function having a derivative up to order k in L2(Rd ).
Of course it requires some care to explain in which sense this
existence is to be interpreted. There are various natural options:

assuming the existence of the classical (partial) derivatives
a.e. and assuming that they define L2-functions;

taking the derivative in the distributional sense and assume
that those derivatives are regular distributions, i.e. can be
represented by L2-functions;

use Plancherel’s theorem and make use of the fact that the
differentiation corresponds to pointwise multiplication with
polynomials on the Fourier transform side;

Fortunately these conditions are all equivalent!!
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The Fourier and Littlewood-Paley age

To my knowledge it have been mostly the two pioneers in
interpolation theory, namely Jaak Peetre and Hans Triebel.
The most important alternative description of Besov (and also
Bessel potential spaces Hs(Rd ), which are special cases of the
more general Triebel-Lizorkin spaces) is through dyadic partitions
of unity, typically in the form of dilation of a fixed function ψ which
is assumed to be such that one can control all of its derivatives.
The classical description of Besov spaces in the books of Triebel
makes use of terms such as

‖F−1[f̂ · ψ(2k ·)]‖p (6)

Since we are working with Banach spaces (such as Lp(Rd ) etc.)
within the tempered distributions S ′(Rd ) anyway, I prefer to rather
take the Lp-norm over to the Fourier transform side, rather than
jumping between time- and frequency side all the time.
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The Fourier age

This means, that I prefer to use dilation operators

[Dρh](z) = h(ρz), ρ > 0 (7)

and define for h = f̂ , with f ∈ Lp(Rd ):

‖h‖FLp := ‖f ‖p. (8)

Dilation on the Fourier transform side using Dρ corresponds to
L1-norm preserving dilation on the time side using:

Stρf (z) = ρ−d f (z/ρ), forρ 6= 0, (9)

we find that ‖Dρf ‖FL1 = ‖f ‖FL1 for ρ 6= 0.
Consequently (6) is equivalent to

‖f̂ · D2kψ‖FLp (10)

with the side condition that
∑

k∈Z D2kψ(x) ≡ 1 on Rd \ {0}. This
is what we call a dyadic decomposition of unity.

Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



NEXT

In fact, the smoothness assumptions on ψ can easily be translated
into an uniform boundedness condition of the family
(ψk ) := (D2kψ)k∈Z in

(
FL1(Rd ), ‖ · ‖FL1

)
.

There is a deep result from analysis which helps to also
characterize the Triebel-Lizorkin spaces (recall, you have among
them the Lp-potential spaces, obtained by applying the Fourier
multiplier w−s(ξ) = (1 + |ξ|2)−s/2 to FLp, are among them) using
also the sequence of functions (F−1f̂ · D2kψ)k∈Z, using the
so-called Paley-Littlewood decomposition. It allows to express the
Lp-norm equivalently by the Lp-norm of the function

h(t) =

(∑
k∈Z
| F−1(f̂ · ψk )(t)|2

)−1/2

(11)
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continued ..

Putting weights into the sum, i.e. using the functions

hs(t) =

(∑
k∈Z
|ws(2−k ) · F−1(f · ψk )(t)|2

)−1/2

(12)

we find (cf. work of E.Stein, Triebel etc.) that the p-Bessel
potential norm or order s of f is equivalent to ‖hs‖p.
At first sight it looks that the difference between the two types
(Sobolev or Besov spaces) consists in the order in which the
continuous Lp-norm resp. the discrete `q-norm are applied.
However, there are also other mixtures, e.g. a completely
continuous characterization, where finally only the order in which
the summation is realized is relevant. For p = 2 = q we just
have the classical L2 Sobolev spaces.
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The method of Frazier-Jawerth: atomic decompositions

The approach taken by Frazier and Jawerth (certainly heavily
influenced by the work of Jaak Peetre) established a connection
between the characterization of the different function spaces (to
use Triebel’s terminology) with dyadic decompositions in order to
arrive at atomic decomposition of these spaces resp.
characterizations of function spaces by the coefficients.
In a nutshell the dyadic decompositions allow to decompose a
function (or tempered distribution) into contributions sitting in
dyadic frequency bands which in turn can expanded into series of
shifted atoms (suitably chosen) making use of (dilated versions) of
Shannon’s sampling theorem (for each of the blocks).
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Comments on those early atomic decompositions

The atomic decompositions proposed in the work of
Frazier-Jawerth claim that there are function spaces (in fact pairs
of functions, matching well to each other, but different from each
other) such that one could be used for analysis, i.e. in order to
generate a set of coefficients, while the other is used for synthesis.
An important point is the fact that these atoms (used for analysis
and synthesis) are transformed jointly (using dyadic dilations and
essentially integer translations), and make sure that for each of the
classical function spaces there is an appropriate (solid) Banach
space of sequences, allowing to characterize the distributions by
the coefficients arising in the decomposition.
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Connection to Wavelet Theory

With the advent of wavelet theory it was found, that all those
function spaces (Besov-Triebel-Lizorkin spaces) have a
characterization in terms of the CWT (continuous wavelet
transform), which is defined over the upper half-plan
(parameterized by the parameters a > 0, b ∈ R), better viewed as
the “ax+b”-group G , which is a locally compact group with left
(and different from it) right Haar measure.
The correct characterization of function spaces is in terms of mixed
norm spaces (mixed Lp − Lq-norms over G ), with a weight
depending only on the scale variable a > 0 in a natural way.
Anisotropic and weighted spaces can be characterized by
alternative weight functions depending on a and b as well.
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Calderon’s reproducing formula

Reinterpretation of older results in the light of wavelet theory
shows that the characterization of function spaces by higher order
differences is more or less using a wavelet transform with respect
to some very “rough” wavelet, namely a weighted sum of
Dirac-measures (e.g. δ−1 − 2δ0 + δ1 or its convolution powers),
which are however satisfying the admissibility by having the correct
behaviour of their Fourier transform near the origin.
The role of the partition of unity property (only valid for specific
Schwartz functions) for dyadic partitions on the FT-side is taken
by the more flexible continuous analogue, the so-called Calderon
Reproducing formula, which can be seen as a direct consequence of
the fact that the CWT is isometric from H = L2(Rd ) into L2(G ).
Hence the inverse operator on the range of the CWT is
just its adjoint. This allows to characterize all those function
spaces using arbitrary admissible wavelets in S(Rd ).
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Orthonormal Wavelet Bases

One of the important developments in wavelet theory has been the
construction of orthonormal wavelet basis due to Yves Meyer,
Lemarie, and above all Ingrid Daubechies, who was the first to
construct orthonormal wavelet bases with compact support and a
given degree of smoothness. They cannot be used to characterize
all the function spaces, but e.g. Besov spaces Bs

p,q(Rd ) up to some
order |s| ≤ s0.
It was certainly an important property of wavelets (aside from the
fact that they came early on together with efficient algorithms)
that they could be used to characterize most of the important
function spaces known at that time, using the wavelet coefficients.
Again, the quality of the atoms g (typically a combination of decay
and smoothness conditions) are relevant for the range of
parameters they could handle.
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Coorbit Theory: the third age

Coorbit theory gives a group theoretical framework to all those
statements, using a group theoretical point of view.
It started out as an attempt to understand the similarities between
known results in the theory of function spaces, wavelet transforms,
including orthonormal expansions.
The analogy between Besov spaces and modulation spaces
(introduced in the early 80s, imitating the definition of Bs

p,q by
replacing the dyadic BAPUs by uniform partitions of unity
(BUPUs) in order to get to the Ms

p,q-family) was quite obvious and
motivated the search for their common properties and analogies.
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Coorbit Theory, group representation theory

The insight was, that one only needs an integrable group
representation of some locally compact group (such as the “ax+b”
or the reduced Heisenberg group), say π(x) on some Hilbert space
H, in order to come up with a continuous voice transform

Vg f (x) = 〈f , π(x)g〉H, x ∈ G . (13)

Then one can use Moyal’s formula (a kind of Plancherel theorem
for non-commutative groups) in order to come up with (the weak
form) of a reproducing formula, allowing to write any element
f ∈ H as a “continuous” superposition of elements of the form
π(x)g , for suitable (admissible) atoms g ∈ H. There is an
abundance of such situations, shearlet theory being the most
recent one. Margit Pap is studying the Moebius group.
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Function spaces from the Coorbit point of view

Already a first step towards a continuous characterization is the
reinterpretation of the Calderon reproducing formula which - in a
modern interpretation - shows that the family π(x)g , x ∈ G defines
a continuous frame (at least for admissible atoms g ∈ H).
Coorbit theory unifies various aspects and exhibits analogies
between different families of spaces, such as modulation spaces
(linked to the Schrödinger representation of the (reduced)
Heisenberg group) or Besov-Triebel-Lizorkin spaces, linked to the
affine group (“ax+b”-group).
While it is possible to have wavelet orthonormal bases (i.e.
orthonormal bases of the form (π(λi )g)i∈I , where (λi ) is a
discrete set in ′′ax + b′′ nothing similar is possible in the case of
modulation spaces (despite D. Gabor’s original hope and
suggestion).
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END OF THE PRESENTATION in Marburg

Question (A) from the audience: Where did the name modulation
space come from:
Answer: While Besov spaces and other function spaces can be
characterized by the rate of convergence by which the solution of
the heat equation approaches the initial value f , i.e. by

‖(Stρh) ∗ f − f ‖Lp = ‖[Stρ(h − δ0)] ∗ f ‖Lp

(where h is the Gauss function, with
∫
Rd h(x)dx = 1), we can

reformulate the growth conditions of Vg (f ) over Rd × R̂d

equivalently by looking at the decay of ‖Mtg ∗ f ‖Lp for t →∞
(which can be seen as a kind of quantitative variant of the
Riemann-Lebesgue Lemma, according to which f̂ ∈ C0(Rd ) for
f ∈ L1(Rd )). The name is based on the fact that Mtg is a
modulated version of g .
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END OF THE PRESENTATION in Marburg

Question B from the audience: Where does the name coorbit
space come from.
Answer: This is related to terminology already used in a more
general setting by Jaak Peetre in his paper [11]:
Jaak Peetre [pe85] Paracommutators and minimal spaces. In
“Operators and Function Theory”, Proc. NATO Adv Study Inst,
Lancaster/Engl 1984, NATO ASI Ser, Ser C 153, 163-224, (1985)
There are certainly motivations coming from the two equivalent
descriptions of the real interpolation method, namely the K - and
the J-method, which are also kind of dual to each other.
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END OF THE PRESENTATION in Marburg

THANK you very much for your
attention!
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REST FROM OLD TALK: there is an implicit message:

Aside from the various technical terms coming up I hope to convey
implicitly a few other messages:

staying with Banach spaces and their duals one can do
amazing things (without touching the full theory of
topological vector spaces, Lebesgue integration, or usual
distribution theory);

alongside with the norm topology just the very natural
w∗-topology, just in the form of pointwise convergence of
functionals, for the dual space has to be kept in mind
(allowing thus among other to handle non-reflexive Banach
spaces);

diagrams and operator descriptions allow to naturally
generalize concepts from finite dimensional theory up to the
category of Banach Gelfand triples.
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) pictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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compared to musical score ...
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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The Schrödinger Representation

For people in representation theory I could explain the spectrogram
is just displaying to you a typical representation coefficient of the
(projective) Schrödinger Representation of the (reduced)
Heisenberg Group Hd (for d = 1).
According to Roger Howe this group has the phantastic “hinduistic
multiplicity in one” property of allowing a variety of different
looking but in fact mathematically equivalent representations (due
to the von-Neumann uniqueness theorem), which indicates the
connection to quantum mechanics, the theory of coherent states,
and related topics (where e.g. rigged Hilbert spaces, the bras and
kets appear already), where concepts as described below are in fact
also helpful (to put expressions such as continuous integral
representations on a firm mathematical ground); but we will start
from known grounds...
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
@@R

T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Matrices of maximal rank

We will be mostly interested (as models for Banach Frames and
Riesz projection bases) in the situation of matrices of maximal
ranks, i.e. in the situation where r = rank(A) = max(m, n), where
A = (a1, · · · , ak ).
Then either the synthesis mapping x 7→ A ∗ x =

∑
k xk ak has

trivial kernel (i.e. the column vectors of A are a
linear independent set, spanning the column-space of which is of
dimension r = n), or the analysis mapping y 7→ A′ ∗ y = (〈y , ak〉)
has trivial kernel, hence the column spaces equals the target space
(or r = m), or the column vectors are a spanning set for Rm.
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............... continued

For Riesz basic sequences we have the following diagram:

X

X0 Y-C�
R

P

?

@
@
@
@@R

C

Definition

A sequence (hk ) in a separable Hilbert space H is a Riesz basis for
its closed linear span (sometimes also called a Riesz basic
sequence) if for two constants 0 < D1 ≤ D2 <∞,

D1‖c‖2
`2 ≤

∥∥∥∑
k

ck hk

∥∥∥2

H
≤ D2‖c‖2

`2 , ∀c ∈ `2 (14)

A detail description of the concept of Riesz basis can be found in
([20]) where the more general concept of Riesz projection bases is
explained.
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Reflect also for a moment about daily actions:

We are calculating with all kind of numbers in our daily life. But
just recall the most beautiful equation

e2πi = 1.

It uses the exponential function, with a (purely) imaginary
exponent to get a nice result, more appealing than (the equivalent)

cos(2π) + i ∗ sin(2π) = 1 in C.

But actual computation are done for rational numbers only!! Recall

Q ⊂ R ⊂ C
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Existing examples of Gelfand Triples

So-called Gelfand Triples are already widely used in various fields of
analysis. The prototypical example in the theory of PDE is
certainly the Schwartz Gelfand triple, consisting of the space of
test functions S(Rd ) of rapidly decreasing functions, densely
sitting inside of

(
L2(Rd ), ‖ · ‖2

)
, which in turn is embedded into

the space of tempered distributions S ′(Rd ).

S(Rd ) ↪→ L2(Rd ) ↪→ S ′(Rd ). (15)

Alternatively (e.g. for elliptic PDE) one used

Hs(Rd ) ↪→ L2(Rd ) ↪→ H′s(Rd ). (16)

It is obtained via the Fourier transform form

L2
w (Rd ) ↪→ L2(Rd ) ↪→ L2

w (Rd )
′
. (17)

Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



What is a generating set in a Hilbert space

We teach in our linear algebra courses that the following properties
are equivalent for a set of vectors (fi )i∈I in V:

1 The only vector perpendicular to a set of vectors is ∅;
2 Every v ∈ V is a linear combination of these vectors.

An attempt to transfer these ideas to the setting of Hilbert spaces
one comes up with several different generalizations:

a family is total if its linear combinations are dense;

a family is a frame if there is a bounded linear mapping from
H into `2(I ) f 7→ c = c(f ) = (ci )i∈I such that

f =
∑
i∈I

ci fi ∀f ∈ H. (18)
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The usual definition of frames

There is another, equivalent characterization of frames. First, it is
an obvious consequence of the characterization given above, that

f =
∑
i∈I

ci fi ∀f ∈ H. (19)

implies that there exists C ,D > 0 such that

C‖f ‖2 ≤
∑
i∈I

|〈f , fi 〉|2 ≤ D‖f ‖2 ∀f ∈ H. (20)

For the converse observe that Sf :=
∑

i∈I 〈f , fi 〉fi is a strictly

positive definite operator and the dual frame (f̃i ) satisfies

f =
∑
i∈I

〈f , f̃i 〉fi =
∑
i∈I

〈f , fi 〉f̃i
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Dennis Gabor’s suggestion of 1946

There is one very interesting example (the prototypical problem
going back to D. Gabor, 1946): Consider the family of all
time-frequency shifted copies of a standard Gauss function
g0(t) = e−π|t|

2
(which is invariant under the Fourier transform),

and shifted along Z (Tnf (z) = f (z − n)) and shifted also in time
along Z (the modulation operator is given by
Mk h(z) = χk (z) · h(z), where χk (z) = e2πikz ).
Although D. Gabor gave some heuristic arguments suggesting to
expand every signal from L2(R) in a unique way into a (double)
series of such “Gabor atoms”, a deeper mathematical analysis
shows that we have the following problems (the basic analysis
has been undertaken e.g. by A.J.E.M. Janssen in the early 80s):
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TF-shifted Gaussians: Gabor families
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Problems with the original suggestion

Even if one allows to replace the time shifts from along Z by
time-shifts along aZ and accordingly frequency shifts along bZ one
faces the following problems:

1 for a · b = 1 (in particular a = 1 = b) one finds a total subset,
which is not a frame nor Riesz-basis for L2(R), which is
redundant in the sense: after removing one element it is still
total in L2(R), while it is not total anymore after removal of
more than one such element;

2 for a · b > 1 one does not have anymore totalness, but a Riesz
basic sequence for its closed linear span ( $ L2(R));

3 for a · b < 1 one finds that the corresponding Gabor
family is a Gabor frame: it is a redundant family
allowing to expand f ∈ L2(R) using `2-coefficients (but
one can remove infinitely many elements and still have
this property!);
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Rethinking shortly the Fourier Transform

Since the Fourier transform is one of the central transforms, both
for abstract harmonic analysis, engineering applications and
pseudo-differential operators let us take a look at it first. People
(and books) approach it in different ways and flavours:

It is defined as integral transform (Lebesgue!?);

It is computed using the FFT (what is the connection);

Should engineers learn about tempered distributions?

How can we reconcile mathematical rigor and still stay in
touch with applied people (physics, engineering).
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency
(FFT algorithms of signals of length N run in Nlog(N) time, for
N = 2k , due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd ), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (21)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (22)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd ). One often speaks of
Fourier analysis followed by Fourier inversion as a method to
build f from the pure frequencies ( Fourier synthesis).
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd ) we have f̂ ∈ C0(Rd ) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd ));

2 The Fourier transform f on L1(Rd ) ∩ L2(Rd ) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 Lp-spaces have traditionally a high reputation among
function spaces, but tell us little about f̂ .
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A schematic description of the situation

L1

L2

C0

FL1

the classical Fourier situation
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The way out: Test Functions and Generalized Functions

The usual way out of this problem zone is to introduce generalized
functions. In order to do so one has to introduce test functions,
and give them a reasonable topology (family of seminorms), so
that it makes sense to separate the continuous linear functionals
from the pathological ones. The “good ones” are admitted and
called generalized functions, since most reasonable ordinary
functions can be identified (uniquely) with a generalized function
(much as 5/7 is a complex number!).
If one wants to have Fourier invariance of the space of
distributions, one must Fourier invariance of the space of test
functions (such as S(Rd )). If one wants to have - in addition -
also closedness with respect to differentiation one has to take more
or less S(Rd ). BUT THERE IS MORE!
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A schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Banach space
(
S0(Rd ), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd ), ‖ · ‖S0

)
or (M1(Rd ), ‖ · ‖M1)), which will serve our

purpose. Its dual space (S0
′(Rd ), ‖ · ‖S0

′) is correspondingly the
largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd )), we
will restrict ourselves to the situation of Banach Gelfand Triples,
mostly related to (S0,L

2,S0
′)(Rd ).
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The S0-Banach Gelfand Triple

 The S
0
 Gelfand triple

S0

S0’

L2
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd ) is in the subspace S0(Rd ) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd )

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd ), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd )), and different windows g define the same
space and equivalent norms. Since S0(Rd ) contains the Schwartz
space S(Rd ), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd )

Lemma

Let f ∈ S0(Rd ), then the following holds:

(1) π(u, η)f ∈ S0(Rd ) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd ), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd ), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.
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OVERVIEW old

The GOAL of this presentation is to convey the
concepts of modulation spaces, Banach frames and
Banach Gelfand Triples by describing them and show
their usefulness in the context of mathematical
analysis, in particular time-frequency analysis

Recall some concepts from linear algebra, especially that of a
generating system, a linear independent set of vectors, and
that of the dual vector space;

already in the context of Hilbert spaces the question arises:
what is a correct generalization of these concepts?

Banach Gelfand Triple (comparable to rigged Hilbert
spaces) are one way out;
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L2([0, 1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(U), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(U) = A(U)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(U) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd ) to S0(R̂d ),

2 F is a unitary map between L2(Rd ) and L2(R̂d ),

3 F is a weak* (and norm-to-norm) continuous bijection from
S0
′(Rd ) onto S0

′(R̂d ).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (23)

is valid for (f , g) ∈ S0(Rd )× S0
′(Rd ), and therefore on each level

of the Gelfand triple (S0,L
2,S0

′)(Rd ).
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FACTS

Gröchenig and Leinert have shown (J. Amer. Math. Soc., 2004):

Theorem

Assume that for g ∈ S0(Rd ) the Gabor frame operator

S : f 7→
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd ), then it is also invertible on
S0(Rd ) and in fact on S0

′(Rd ).
In other words: Invertibility at the level of the Hilbert space
automatically !! implies that S is (resp. extends to ) an
isomorphism of the Gelfand triple automorphism for
(S0,L

2,S0
′)(Rd ).
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd )
correspond to norm convergence in (L1,L2,L∞)(R2d ).
The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
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Fames and Riesz Bases: the Diagram

P = C ◦R is a projection in Y onto the range Y0 of C, thus we
have the following commutative diagram.

Y

X Y0-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces:

`2(I )

H C(H)-
C

� R ?

P

�
�

�
��	

R
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The frame diagram for Hilbert spaces (S0,L
2,S0

′):

(`1, `2, `∞)

(S0,L
2,S0

′) C((S0,L
2,S0

′))-
C

� R ?

P

�
�

�
��	

R
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Verbal Description of the Situation

Assume that g ∈ S0(Rd ) is given and some lattice Λ. Then (g ,Λ)
generates a Gabor frame for H = L2(Rd ) if and only if the
coefficient mapping C from (S0,L

2,S0
′)(Rd ) into (`1, `2, `∞)(Λ) as

a left inverse R (i.e. R ◦ C = IdH ), which is also a
GTR-homomorphism back from (`1, `2, `∞) to (S0,L

2,S0
′).

In practice it means, that the dual Gabor atom g̃ is also in S0(Rd ),
and also the canonical tight atom S−1/2, and therefore the whole
procedure of taking coefficients, perhaps multiplying them with
some sequence (to obtain a Gabor multiplier) and resynthesis is
well defined and a BGT-morphism for any such pair.
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Summability of sequences and quality of operators

One can however also fix the Gabor system, with both analysis and
synthesis window in S0(Rd ) (typically one will take g and g̃
respectively, or even more symmetrically a tight Gabor window).
Then one can take the multiplier sequence in different sequence
spaces, e.g. in (`1, `2, `∞)(Λ).

Lemma

Then the mapping from multiplier sequences to Gabor multipliers
is a Banach Gelfand triple homomorphism into Banach Gelfand
triple of operator ideals, consisting of the Schatten classe S1 =
trace class operators, H = HS, the Hilbert Schmidt operators, and
the class of all bounded operators (with the norm and strong
operator topology).
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Automatic continuity (> Balian-Low)

In contrast to the pure Hilbert space case (the box-function is an
ideal orthonormal system on the real line, but does NOT allow for
any deformation, without loosing the property of being even a
Riesz basis):

Theorem (Fei/Kaiblinger, TAMS)

Assume that a pair (g ,Λ), with g ∈ S0(Rd ) defines a Gabor frame
or a Gabor Riesz basis respectively [note that by Wexler/Raz and
Ron/Shen these to situations are equivalent modulo taking adjoint
subgroups!], then the same is true for slightly perturbed atoms or
lattices, and the corresponding dual atoms (biorthogonal
generators) depend continuously in the

(
S0(Rd ), ‖ · ‖S0

)
-sense on

both parameters.
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Invertibility, Surjectivity and Injectivity

In another, very recent paper, Charly Groechenig has discovered
that there is another analogy to the finite dimensional case: There
one has: A square matrix is invertible if and only if it is surjective
or injective (the other property then follows automatically).
We have a similar situation here (systematically describe in
Charly’s paper):
K.Groechenig: Gabor frames without inequalities,

Int. Math. Res. Not. IMRN, No.23, (2007).
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Matrix-representation and kernels

We know also from linear algebra, that any linear mapping can be
expressed by a matrix (once two bases are fixed). We have a
similar situation through the so-called kernel theorem. It uses
B = L(S0

′,S0).

Theorem

There is a natural BGT-isomorphism between (B,H,B′) and
(S0,L

2,S0
′)(R2d ). This in turn is isomorphic via the spreading and

the Kohn-Nirenberg symbol to (S0,L
2,S0

′)(Rd × R̂d ). Moreover,
the spreading mapping is uniquely determined as the
BGT-isomorphism, which established a correspondence between
TF-shift operators π(λ) and the corresponding point masses δλ.
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S0

′)(Rd )
correspond to norm convergence in (L1,L2,L∞)(R2d ).
Therefore it is interesting to check what the w∗-convergence looks
like:

Lemma

For any g ∈ S0(Rd ) a sequence σn is w∗-convergent to σ0 if and
only the spectrograms Vg (σn) converge uniformly over compact
sets to the spectrogram Vg (σ0).

The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies onto
the corresponding point measures δω.
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The w ∗− topology: dense subfamilies

From the practical point of view this means, that one has to look
at the spectrograms of the sequence σn and verify whether they
look closer and closer the spectrogram of the limit distribution
Vg (σ0) over compact sets.
The approximation of elements from S0

′(Rd ) takes place by a
bounded sequence.
Since any Banach-Gelfand triple homomorphism preserves this
property (by definition) one can reduce many problems to
w∗-dense subsets of

(
S0(Rd ), ‖ · ‖S0

)
.

Let us look at some concrete examples: Test-functions, finite
discrete measures µ =

∑
i ciδti , trigonometric polynomials

q(t) =
∑

i ai e
2πiωi t , or discrete AND periodic measures

(this class is invariant under the generalized Fourier transform
and can be realized computationally using the FFT).
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The w ∗− topology: approximation strategies

How to approximate general distributions by test functions:
Regularization procedures via product convolution operators,
hα(gβ ∗ σ)→ σ or TF-localization operators: multiply the
STFT with a 2D-summability kernel before resynthesis (e.g.
partial sums for Hermite expansion);

how to approximate an L1-Fourier transform by test functions:
and classical summability

how to approximate a test function by a finite disrete
sequence using quasi-interpolation (N. Kaiblinger):
QΨf (x) =

∑
i f (xi )ψi (x).

Hans G. Feichtinger Function Spaces in Harmonic Analysis and Coorbit Theory



Selection of bibliographic items, see www.nuhag.eu

I. Daubechies, A. Grossmann, and Y. Meyer.

Painless nonorthogonal expansions.
J. Math. Phys., 27(5):1271–1283, May 1986.

H. G. Feichtinger and K. Gröchenig.
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