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Abstract

This talks gives a personal account of my experiences in the field
of Fourier Analysis, starting in 1970 (course by L. Schmetterer) as
a third semester student at this university, and ending with an
outlook about the future of the field in the years to come, and my
plans for further contributing to the subject.
Trained under H. Reiter in Abstract Harmonic Analysis I decided to
turn towards applications after my habilitation in 1979, which
finally led me to time-frequency analysis, computational harmonic
analysis, and the use of MATLAB for the development of efficient
algorithms based on principles of Harmonic Analysis.
Nowadays I see myself as an application oriented harmonic analyst,
i.e. as a mathematician interested in mathematical structures
which allow to provide the correct description of applied
problems. More recently I have developed some general ideas
concerning the way how Fourier Analysis could and should be
thought, both to Engineering and Mathematics Students.
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Personalities in Fourier Analysis

Joseph B. Fourier (1768 1830), franz. Mathematiker

Peter G. Lejeune Dirichlet (1805 to 1859), deutsch.

Bernhard Riemann (1826 to 1866), deutsch.

Henri L. Lebesgue (1875 to 1941), franz.

Jacques Hadamard (8.Dez.1865; to 1963), franz.

Alfred Haar (1885 to 1933), ungar.

Johann Radon (!16.Dez.1887 in Tetschen; to 1956)

Norbert Wiener (1894 to 1964), amer.

Antoni Zygmund (1900 to 1992), US-amer.

Israel M. Gelfand (1913 to 2009), russ.

Andre Weil (1906 to 1998), franz.

Alberto Calderon (1920 to 1998), arg.

Hans Reiter (Mathematiker) (1921 to 1992), öster.

Lennart Carleson (1928...), schwed. Mathematiker.
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Abbreviated History of Fourier Analysis

1 19-th century: Dirichlet (pointwise convergence),
Riemann integral;

2 early 20-th century: Lebesgue integral, Hilbert spaces,
Banach spaces, Plancherel theorem;

3 mid 20th: Haar integral, LCA groups, Gelfand-theory;

4 mid 20th: L. Schwartz theory of tempered distributions,
applications to PDE (Hörmander), Sobolev spaces;

5 20th: Lp-spaces, BV-norm: Riesz representation theory;
Wiener: A(U), Besov: Bs

p,q: Functional Analysis;

6 Cooley-Tukey: 1965: the FFT algorithm;

7 late 20th century: time-frequency analysis,
wavelet theory (late 80th).
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Books on Fourier Analysis

At the time of my early studies (beginning 1970) a number of
books had been of relevance the spirit of BOURBAKI and:

1 Hans Reiter’s: Classical Harmonic Analysis and Locally
Compact Groups (1968, Oxford, [10, 12]);

2 Walter Rudin: Fourier Analysis on Groups (1962,[13]);

3 E.Hewitt and K.A.Ross: Abstract Harmonic Analysis
(1963, 1970; [6, 7]) [the forbidden book!];

4 A.Zygmund: Trigonometric series.Vols. I, II 1959, [16];

5 I.Gelfand, G.Shilov, D.Raikov: Commutative Normed Rings;

6 Nina Bari: Trigonometrische Reihen (1958);

7 Y.Katznelson: An Introduction to Harmonic Analysis
(1968, [8]);

8 Andre Weil, L’integration dans les Groupes Topologiques
et ses Applications ([15]).
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My teachers at that time:

L.Schmetterer was teaching us:

1 Analysis course: Banach spaces, Lebesgue integral, BV (R);

2 Fourier series course (1970): Lp(U), Fourier series, conjugate
Fourier series;

3 basic principles of Functional Analysis (spring 1971);

4 Seminar: Fourier Analysis on Groups (W.Rudin books);

J.Cigler was teaching “distribution theory” around that time, and
when H.Reiter arrived (Sept.1971) his book was already out of
print, and there had been new lecture notes on Segal Algbras
([11]); he had a course and a seminar in that year on topics
of harmonic analysis on groups.
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Schmetterer’s Classical Fourier Analysis

Schmetterer was providing us (after the Fourier Analysis class)
with a quite modern summary of functional analysis, but his course
on Fourier series was very classical in style.
Instead of the complex exponential function he was still using the
representation of a function by it’s Fourier series as a series, using
the terms cos(kx) and sin(kx), k ≥ 0, using appropriate
normalization.
What was really puzzling was the fact that he kept emphasizing
that the function f (x) is somehow only “formally represented” by
its Fourier series (while we just had learned that a seris is the limit
of its partial sums!).
There was no convolution (equally it is not found in Zygmund’s
monumental treatise), but a lot of explicit computations, and
applications of Hoelder’s inequality.
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Convolution and the Fourier Transform

Hans Reiter kept emphasizing, that the main purpose of Fourier
Analysis over LCA groups (the setting suggested by A.Weil, [15])
was to study the Banach algebra

(
L

1(G ), ‖ · ‖1

)
, with convolution

as multiplication

f ∗ g(x) =

∫
G
g(x − y)f (y)dy , f , g ∈ L1(G ).

Thanks to the convolution theorem: F(f ∗ g) = F(f ) · F(g),
it appeared that the Fourier transform is the next important tool
to study

(
L

1(G ), ‖ · ‖1

)
, which is defined via

F(f )(s) = f̂ (s) =

∫
Rd

f (t)e−2πis•tdt,

where s • t :=
∑d

k=1 sktk is the usual scalar product.
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Convolution and the Fourier Transform II

More precisely, the main goal appeared to be the study of closed
ideals in L1(G ), or equivalently, closed translation invariant
subspaces, which where studied by functional analytic methods,
using the duality L1(G )

′
= L

∞(G ).
It was somehow related to the question of spectral synthesis, which
can be described in the following way:
Given a closed ideal I C L1(G ) we define cosp(I ) as

{s | f̂ (s) = 0, ∀f ∈ I}.

The question arising now is: If cosp(I ) = cosp(J), or in other
words. Given E = cosp(I ), does this imply

I := {f ∈ L1(Rd), f̂ (s) = 0, ∀s ∈ E}?
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Famous Results at that time:

Some of the result which were communicated as important and
“extremly deep” at that time, also appreciated somehow by the
students, have been:

the non-spectral synthesis of L.Schwartz (1948) for R3 and
the generalization by P.Malliavian (1959) ([9, 14]);

Lennart Carleson’s result about the almost everywhere
convergence of Fourier series in L2(U) in 1966 ([1]);

Charles Fefferman: The Fourier multiplier problem for the ball
(on Lp(Rd)), published in Ann.Math. 1971 ([3]);

Per Enflos ([2]) result, that not every Banach space has a
basis (1973)

Hans G. Feichtinger 45 Years of Fourier Analysis in Vienna: Changes during an Academic Life Time



Segal Algebras

One of the aspects that was brought in by H. Reiter was the study
of alternative Banach convolution algebras (BCA), always with the
view-point that by their similarity to L1(G ) one could learn more
about this Banach algebra. There have been mainly two types of
BCAs which are similar in a different way:

1 So called Segal algebras (S , ‖ · ‖S), which are dense in are
complete with another norm, which is more “sensible” than
the ordinary L1-norm, or with

‖f ‖1 ≤ C‖f ‖1, ∀f ∈ S .

More precisely, they are Banach ideals in
(
L

1(G ), ‖ · ‖1

)
,

satisfying

‖g ∗ f ‖S ≤ ‖g‖1‖f ‖S , ∀g ∈ L1(G ), f ∈ S .
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Beurling Algebras

On the other hand we have the so-called Beurling algebras which
are weighted L1(G )-algebras, with respect to submultiplicative
weights w , with w(x) > 0 and

w(x + y) ≤ w(x)w(y), x , y ∈ Rd ,

e.g ws(x) = (1 + |x |)s , s ≥ 0. Such a Beurling algebra is then
defined (together with the natural norm) via:

L
1
w (G ) := {f | fw ∈ L1(G )} with ‖f ‖1,w := ‖fw‖1.

They are not ideals in L1(Rd), but they contain also bounded
approximate identities (so-called bounded Dirac sequences).
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Open Problems at that time?

Although I was not really prepared for doing research I must say
that I did not get the impression that there had been many open
questions in Fourier analysis at that time, rather some “left over”
question that had to be settled, but no “big goal” or “theory
building to be developed”.
Also Jean Dieudonné, when visiting our institute was explaining
that “Abstract Harmonic Analysis” is “off-stream” mathematics,
not quite encouraging for a young researcher (although I did not
accept his statement, but I shared his view that some of the
extremly finetuned questions were just “difficult” but not relevant,
e.g. Rider-sets, Helson-sets, whatever you name it...).
There were a few problems about (Fourier) multipliers, but
H.Reiter himself did not continue to work on Segal algebras!
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Banach spaces of Functions and Distributions

I found it natural to work out general principles for more general
Banach spaces of functions (or their duals: Banach spaces of
distributions), including weighted Lp-spaces which are BCAs, or
intersections of Segal algebras with Beurling algebras, Banach
spaces obtained by decomposition methods (so-called Wiener
amalgam spaces have been developed in the early 80th, just after
my habilitation), they where in turn the basis for the development
of so-called modulation spaces, which can be defined over LCA
groups (in analogy to Besov spaces).
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The Fourier Transform and Function Spaces

Schw L1

Tempered Distr.

L2

C0

FL1
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The new view on the Fourier Transform

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Banach Gelfand Triple (S0,L
2,S0

′)

SO=M(1,1)

L2

SO−dual = M−infty
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The New Setting developed via Time-Frequency Analysis

Aside from the various technical terms coming up I hope to convey
implicitly a few other messages:

staying with Banach spaces and their duals one can do
amazing things (without touching the full theory of
topological vector spaces, Lebesgue integration, or usual
distribution theory);

alongside with the norm topology just the very natural
w∗-topology, just in the form of pointwise convergence of
functionals, for the dual space has to be kept in mind
(allowing thus among other to handle non-reflexive Banach
spaces);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) pictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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compared to musical score ...
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(U), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(U) = A(U)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(U) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S0
′(Rd) onto S0

′(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (1)

is valid for (f , g) ∈ S0(Rd)× S0
′(Rd), and therefore on each level

of the Gelfand triple (S0,L
2,S0

′)(Rd).
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A schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Kernel Theorem

Theorem

If K is a bounded operator from S0(Rd) to S0
′(Rd), then there

exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉

for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S0

′(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .

This result is the “outer shell” of the Gelfand triple isomorphism.
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Kernel Theorem II

The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L

2(R2d)-kernels. The complete picture can be expressed by a
unitary Gelfand triple isomorphism.

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if
the corresponding operator K maps S0

′(Rd) into S0(Rd), but not
only in a bounded way, but also continuously from w∗−topology
into the norm topology of S0(Rd).
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Representations of translation invariant Systems

For applications so-called TILS (translation invariant linear
systems) are of great importance. Engineers use very vague
arguments to convince their students that any such system “is a
convolution operator” by some impulse response, described
(equivalently) as a Fourier multiplier (by the transfer function, the
Fourier transform of the impulse response).

Theorem

Every bounded linear operator T from S0(Rd) to S0
′(Rd) which

commutes with translations, i.e. with T ◦ Tz = Tz ◦ T , is a
convolution operator by some σ ∈ S0

′(Rd). In other words, one has

Tf (x) = σ(Tx f
X), x ∈ Rd , f ∈ S0(Rd),

where f X(x) = f (−x).
Moreover, there is norm equivalence between the two spaces, with
the operator norm for T and the norm in S0

′(Rd) for σ.
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Dennis Gabor’s suggestion of 1946

There is one very interesting example (the prototypical problem
going back to D. Gabor, 1946): Consider the family of all
time-frequency shifted copies of a standard Gauss function
g0(t) = e−π|t|

2
(which is invariant under the Fourier transform),

and shifted along Z (Tnf (z) = f (z − n)) and shifted also in time
along Z (the modulation operator is given by
Mkh(z) = χk(z) · h(z), where χk(z) = e2πikz).
Although D. Gabor gave some heuristic arguments suggesting to
expand every signal from L

2(R) in a unique way into a (double)
series of such “Gabor atoms”, a deeper mathematical analysis
shows that we have the following problems (the basic analysis
has been undertaken e.g. by A.J.E.M. Janssen in the early 80s):
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TF-shifted Gaussians: Gabor families
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Problems with the original suggestion

Even if one allows to replace the time shifts from along Z by
time-shifts along aZ and accordingly frequency shifts along bZ one
faces the following problems:

1 for a · b = 1 (in particular a = 1 = b) one finds a total subset,
which is not a frame nor Riesz-basis for L2(R), which is
redundant in the sense: after removing one element it is still
total in L2(R), while it is not total anymore after removal of
more than one such element;

2 for a · b > 1 one does not have anymore totalness, but a Riesz
basic sequence for its closed linear span ( $ L

2(R));

3 for a · b < 1 one finds that the corresponding Gabor
family is a Gabor frame: it is a redundant family
allowing to expand f ∈ L2(R) using `2-coefficients (but
one can remove infinitely many elements and still have
this property!);
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Rethinking shortly the Fourier Transform

Since the Fourier transform is one of the central transforms, both
for abstract harmonic analysis, engineering applications and
pseudo-differential operators let us take a look at it first. People
(and books) approach it in different ways and flavours:

It is defined as integral transform (Lebesgue!?);

It is computed using the FFT (what is the connection);

Should engineers learn about tempered distributions?

How can we reconcile mathematical rigor and still stay in
touch with applied people (physics, engineering).
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The finite Fourier transform (and FFT)

For practical applications the discrete (finite) Fourier transform is
of upmost importance, because of its algebraic properties [joint
diagonalization of circulant matrices, hence fast multiplication of
polynomials, etc.] and its computational efficiency
(FFT algorithms of signals of length N run in Nlog(N) time, for
N = 2k , due to recursive arguments).
It maps a vector of length n onto the values of the polynomial
generated by this set of coefficients, over the unit roots of order n
on the unit circle (hence it is a Vandermonde matrix). It is a
unitary matrix (up to the factor 1/

√
n) and maps pure frequencies

onto unit vectors (engineers talk of energy preservation).
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The Fourier Integral and Inversion

If we define the Fourier transform for functions on Rd using an
integral transform, then it is useful to assume that f ∈ L1(Rd), i.e.
that f belongs to the space of Lebesgues integrable functions.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (2)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (3)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd). One often speaks of
Fourier analysis followed by Fourier inversion as a method to
build f from the pure frequencies ( Fourier synthesis).
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The classical situation with Fourier

Unfortunately the Fourier transform does not behave well with
respect to L1, and a lot of functional analysis went into fighting
the problems (or should we say symptoms?)

1 For f ∈ L1(Rd) we have f̂ ∈ C0(Rd) (but not conversely, nor
can we guarantee f̂ ∈ L1(Rd));

2 The Fourier transform f on L1(Rd) ∩ L2(Rd) is isometric in
the L2-sense, but the Fourier integral cannot be written
anymore;

3 Convolution and pointwise multiplication correspond to each
other, but sometimes the convolution may have to be taken as
improper integral, or using summability methods;

4 L
p-spaces have traditionally a high reputation among

function spaces, but tell us little about f̂ .
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Basic properties of S0(Rd) resp. S0(G )

THEOREM:

For any automorphism α of G the mapping f 7→ α∗(f ) is an
isomorphism on So(G ); [with(α∗f )(x) = f (α(x))], x ∈ G .

FSo(G ) = So(Ĝ ); (Invariance under the Fourier Transform)

THSo(G ) = So(G/H); (Integration along subgroups)

RHSo(G ) = So(H); (Restriction to subgroups)

So(G1)⊗̂So(G2) = So(G1 × G2). (tensor product stability);
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Basic properties of dual space S0(Rd)
′

THEOREM: (Consequences for the dual space)

S ′o(G ) is a Banach space with a translation invariant norm;

S ′o(G ) ⊆ S ′(G ), i.e. S ′o(G ) consists of tempered distributions;

P(G ) ⊆ S ′o(G ) ⊆ Q(G ); (sits between pseudo- and
quasimeasures)

T (G ) = W (G )′ ⊆ S ′o(G ); (contains translation bounded
measures);

MT (G ) ⊆ S ′o(G ) (contains “transformable measures” by
Gil-de-Lamadrid).
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Basic properties of S0(Rd)
′

continued

THEOREM:

the Generalized Fourier Transforms, defined by transposition
〈σ̂, f 〉 = 〈σ, f̂ 〉,

for f ∈ So(Ĝ ), σ ∈ S ′o(G ), satisfies

F(S ′o(G )) = S ′o(Ĝ ).

σ ∈ S ′o(G ) is H-periodic, i.e. σ(f ) = σ(Thf ) for all h ∈ H, iff
there exists σ̇ ∈ S ′o(G/H) such that

〈σ, f 〉 = 〈σ,TH f 〉 .

S ′o(H) can be identified with a subspace of S ′o(G ), the
injection iH being given by

〈iHσ, f 〉 := 〈σ,RH f 〉.

For σ ∈ S ′o(G ) one has σ ∈ iH(S ′o(H)) iff supp(σ) ⊆ H.
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The Usefulness of S0(Rd)

Theorem

Poisson’s formula For f ∈ S0(Rd) and any discrete subgroup H
of Rd with compact quotient the following holds true: There is a
constant CH > 0 such that∑

h∈H
f (h) = CH

∑
s∈H⊥

f̂ (s). (4)

By duality one can express this situation as the fact that the
Comb-distribution µZd =

∑
k∈Zd δk , as an element of S0(Rd)

′
is

invariant under the (generalized) Fourier transform. This in turn
gives a correct mathematical argument for the fact that the
sampling over Z , which corresponds to the mapping
f 7→ f · µZd =

∑
k∈Zd f (k)δk corresponds to convolution with

µZd on the Fourier transform side gives periodization along
(Zd)⊥ = Zd of the Fourier transform f̂ .
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What has changed over the years?

There is a well-known joke about mathematics: A guy

has been frozen for 100 years, and when he comes back

to life ...but he still recognizes the mathematics

that he has learned at school.

Obviously life has changed dramatically in many respects,
especially in the last 25 years (1989 the internet just started, and I
was getting my first computer, a 386-machine, which was the
“strongest computer in the institute” until mid 1991!). But in
which way does it effect mathematics? How can new electronic
tools help us in our work as mathematicians?
I recall, that H. Reiter was complaining that I was wasting money
because I tried to collect papers by copying them from the library,
instead of having the few relevant volumes on my desk as he
used to have it. Currently the NuHAG database has
17154 entries, with many PDF files directly accessible.
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What are the Benefits of the new Opportunities?

Mathematical software (in my case MATLAB, OCTAVE,
GEOGEBRA) allow to present mathematical contents visually,
bringing back the (often convincing and easy to memorize)
geometric contents of linear algebra or signal processing;

Electronic databases give access to a huge pile of literature
(e.g. on wavelets), but information and experience are a
combination of availability of data plus methods to extract
valuable derived data from them! In fact, mathematics (!big
data) is playing more and more role here;

Simulations and experiments are done much easier, but have
to be done correctly (e.g. NuHAG TBs);

Internet platforms such as YOUTUBE or MOOC
platforms like COURSERA allow to share information
world-wide, to communicate best practice, etc..
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What are the Things to be observed in the Future?

Here are a few observations and recommendations, especially to
the younger colleagues:

While an ever increasing number of papers is written, more
and more mathematicians are active as researchers, one
sometimes has the feeling the orientation is lost; bare
feasibility in the technical sense may give a published paper,
but will it contribute to the overall body of knowledge?

We are used to continue research in well established
directions. But sometimes the answers come from the outside
world, from cross-over, by establishing connections between
distant fields (e.g. the theory of polynomials has allowed
to solve the Kadison-Singer conjecture, which implies the
Feichtinger Conjecture, and overall looking into
applications is often very fruitful (in the long run);
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What are the Things to be observed in the Future?

I like the view-point that all to often we are following a
producers view-point (ref. to J.Buhmann, ETH).
Pharmaceutical industry tells us how much better the new
drug is compared to the old one. But the problem of sick
people is to find out what their health problem is, and which
doctor could help them! (cf. [4] or [5]);

We have algorithms, function spaces, literature on operators
and operator algebras with more and more parameters, but is
there anything like a consumer report, helping us to find out,
which one of these results are helpful for applications, which
ones require just a lot of time to digest their content? Do we
have ideas of preparing something like consumer’s reports?

The same problem with algorithms and existing code in
whatever programming language (although the situation
is more mature in computer science).
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Further Resources from the NuHAG web-page

Our next conference takes place in June 2016 in Strobl:
www.nuhag.eu/strobl16

A number of talks describing the technical side of the idea of
CONCEPTUAL HARMONIC ANALYSIS can be found from the
NuHAG Talk-Server (search for “CONCEPTUAL” in the title).

Feedback on this presentation as well as the

NuHAG web-page etc. is very welcome.

I hope to see NuHAG providing a group providing a good
enviroment to its members, attracting good mathematicians
from all over the world, and produce interesting new
mathematics and results which help applied scientists
in their work.
I will certainly contribute my share, of course
a bit more from the background from now on.
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