
Numerical Harmonic Analysis Group

An Alternative Approach to
Convolution and the Fourier Transform

Hans G. Feichtinger
.

currently Otto Mønsted Professor at DTU Copenhagen
hans.feichtinger@univie.ac.at

.

WEBPAGE: www.nuhag.eu

Line University, Växjö, Oct 19th, 2016
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We are living in a time of changes!

I think it is easy to agree that we are living in a time of changes,
be it our mode of work (using the internet via various devices), our
mobility, our communication behaviour.
And how much has sience/mathematics changed? Should it
change at all?? Why and how could it change to OUR best???

Think of mobility. Being mobile meant for a long time “owning a
car”. One had the choice between Otto motor and Diesel engine.
But what it is now. We have (e.g. here in Copenhagen) bikes,
E-bikes, good public transportation, and above all E-Cars
(TESLA), without a central motor and all the technicalities (gears,
etc.) required by this, but with completely new possibilities
(and challenges, e.g. battery life, etc.).
We have seen automobile industry going to high standards,
no question, but do we need it in this form, in the long run?
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Historical Perspective

Fourier Analysis (FA) has a long history (J.B. Fourier, 1822).

1 FA 1.0: (19th century): What are functions, what is an
integral, how should convergence be described?
Culminating in Lebesgues Theory of Integrals;

2 FA 2.0: (first half of 20th century) is closely related to the
raise of Functional analysis, Hilbert and Banach spaces,
leading e.g. to Gelfand’s Theory (and A. Weil’s approach,
using LCA groups), Abstract Harmonic Analysis;

3 FA 3.0: second half of 20th century: “Modern Analysis”,
BOURBAKI, L. Schwartz Distribution Theory, Hörmander’s
PDE approach, Cooley-Tukey FFT, Engineering Applications.

4 FA 4.0: 21st century: Conceptual Harmonic Analysis,
anach Gelfand Triples, etc.
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Major Research Topics in Harmonic Analysis

A word of orientation!

Central questions in Harmonic Analysis are connected with
properties of a variety of Banach spaces of (generalized) functions,
bounded operators between them, but also Banach algebras, e.g.(
L

1(G ), ‖ · ‖1

)
with respect to convolution, or intertwining

operators. In many cases one has by now rather good knowledge
concerning unconditional bases for such spaces, or at least Banach
frames or atomic decompositions.
Having a sufficiently broad basis in this field allows to ask
(and answer!) more interesting questions (sometimes with
less effort) compared to a mindset where “classical spaces
are given and sacrosanct” (e.g. Lp-spaces only), see [1, 3].
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The Landscape of Function Space Theory

The territory of “function spaces” is vast, and even the term
itself is subject to quite different interpretations. We would like to
understand it in the spirit of Hans Triebel’s “Theory of Function
Spaces”, which means Banach spaces of functions or (usually
tempered) distributions (maybe ultra-distributions). Many of these
function spaces have been introduced to allow a clean description
of certain operators.
Function spaces are prototypical objects in functional analysis and
many general principles have been first developed in the context of
function spaces, while on the other hand the abstract principles of
linear functional analysis can be quite nicely illustrated by
applying them to (new and old) function spaces.

A listing of examples would be another talk.
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The Landscape of Function Space Theory, II

Over the years I have developed a “symbolic language” for the
different function spaces which should help to better understand
the relative inclusion relations.

Schw L1

Tempered Distr.

L2

C0

FL1
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Choice of Spaces and Criteria

In my article [1] entitled “Choosing function spaces...” I argue,
that - similar to real life - those function spaces which serve a
purpose, which can be shown to be useful in different situations,
the ones which are easy to use and/or help to derive strong results
will gain popularity, should be taught and studied more properly,
then those who are just “fancy” or which “can be constructed”,
because at the end the possible gain of using a very complicated
function space to derive a statement which in practice is almost
impossible to be applied is very modest.
Of course it is a long way from the suggestion to discuss criteria of
usefulness comparable to what is in real-life a consumer report, but
I am convinced that such an approach is important for a
healthy development of the community. It will help us to keep
contact with any kind of applications, and reduces the risk of
abstract and finally complicated but close to useless theorems.

Hans G. Feichtinger An Alternative Approach to Convolution and the Fourier Transform



Good reasons to introduce the Lebesgue integral

Remember, that
(
L

1(Rd), ‖ · ‖1

)
is the Banach space of all

Lebesgue integrable function with the norm

‖f ‖1 :=

∫
Rd

|f (x)|dx

.
Well, strictly speaking we have to talk about equivalence classes of
measurable functions modulo functions vanishing only outside of
some set of measure zeros! We also “need it” in order to define
the convolution of two functions via

f ∗ g(x) :=

∫
Rd

g(x − y)f (y)dy , f , g ∈ L1(Rd).

Well, f ∗ g is defined in L1(Rd), since the integral only needs
to exist a.e., but fine. We have ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.
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Good reasons to introduce the Lebesgue integral II

Obviously one need Lebesgue integrability of |f (t)e−2πiω·t = |f (t)|
in order to define the (forward) Fourier tranasform

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (1)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (2)

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd), which is not satifsied for
arbitrary functions f ∈ L1(Rd). In the general case (f ∈ L1)
one can obtain f from f̂ using classical summability methods,
convergent in the L1-norm. (cf. for example Chap. 1 of [5]).
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Good reasons to introduce the Lebesgue integral III

Of course, the good properties of the Lebesgue integral help to
introduce the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
of “signals of finite

energy”, and is the basis to show the validity of Plancherel’s
Theorem which states:

Theorem

The Fourier transform can be adapted (in a way to be explained
separately) to a unitary automorphism of

(
L

2(Rd), ‖ · ‖2

)
, i.e. a

linear and isometric bijection.

The trouble here is, that in both directions one may have problems
with the idea of a pointwise (a.e.) existing integral transform,
because there are (important) functions in L2(Rd) \ L1(Rd),
as the SINC-function (Fourier transform of box-car function).
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Goals of my presentation

In this talk I would like to indicate that it is possible to start
Harmonic Analyis (even Abstract Harmonic Analysis over LCA =
Locally Compact Abelian groups) from scratch without Lebesgue
integration, and get surprisingly far with such an approach, which
is in fact inspired by engineering terminology and thinking.

The separation of existing literature on Fourier Analysis into
mathematical literature (using Lebesgue integration and proper
version of distribution theory, specifically the Schwartz space) and
the engineering literature, with similar words, but a completely
different way of thinking and arguing is striking and could
be the topic of another presentation!
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Goals of my presentation

Quick recall of notations:
The translation operator Tz defined on arbitrary functions over
an arbitrary locally compact Abelian (LCA) group G , mostly
G = Rd for us, is defined by

Tz f (x) := f (x − z), x , z ∈ G .

Of course supp(Tz f ) = z + supp(f ), i.e. for positive z ∈ R the
movement is to the right, and for negative z ∈ R to the left.
Also for continuous functions the functional δv is the point
evaluation: f 7→ f (u). Usually it is called the Dirac measure or
Dirac impuls at u, engineers would often speak of the Dirac
“function” (but we definitely try to avoid this view-point)!
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Translation invariant linear systems

The main motivation to study convolution and the Fourier
transforms for engineering applications comes from the study of
so-called “translation invariant systems” via an impulse response
function (orconvolution kernel) and the so-called transfer function.
Here T is a translation invariant operator iff it commutes with all
time shifts T ◦ Tx = Tx ◦ T , for all x ∈ G .
Thanks to Plancherel’s theorem one can prove this result:

Theorem

A bounded linear operator on
(
L

2(Rd), ‖ · ‖2

)
which commutes

with all translation operators Tx , x ∈ Rd is of the form

T̂f = h · f̂ , ∀f ∈ L2(Rd) or? Tf = σ ∗ f , σ = F−1(h)?

for a uniquely determined h ∈ L∞(Rd).
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Translation invariant linear systems II

Most of the time the domain of such operators is not really
specified, and one can argue that the most natural choice is
L

2(Rd). In this case the Fourier characterization is possible in an
exact way, but what is the inverse Fourier transform on L∞(Rd)
and in which sense is T (f ) “represented” by the convolution?
In other cases there is also a clear answer.

Theorem (Wendel’s Theorem)

A bounded linear operator on
(
L

1(Rd), ‖ · ‖1

)
which commutes

with all translation operators Tx , x ∈ Rd is of the form

T (f ) = µ ∗ f , ∀f ∈ L1(Rd),

for a uniquely determined (impulse response) µ ∈Mb(Rd), i.e. a
bounded, regular Borel measure µ on Rd (and with a suitable
definition of µ ∗ k , at least for k ∈ Cc(Rd)).
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Impulse response by pictures

It is this (and only) this situation where the usual argument shown
in engineering books, can be applied. Given a smooth
(complex-valued) input signal one approximates it by step
functions. OBSERVING that the output of T to the box functions
(normalized to area one!) have a limit on can show that this is
some bounded measure µ (a w∗-limit in Mb(Rd)):
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Impulse response by pictures: comments

Unfortunately such presentation of the topic practically never make
the assumption explicit that go into this explanation:

how are the approximations by the step functions determined

for which input signals can one assume that one has
convergence, and in which norm: we could argue: local
averages converge in the L1- to f ∈ L1(Rd).

The assumption, that the operator preserves this kind of
convergence is also never justified or made explicit. We could
justify it for bounded operators on

(
L

1(Rd), ‖ · ‖1

)
.

How can the “observed” fact be justified, that the output
sequence to a Dirac sequence (e.g. a sequence of
“compressed box-car functions”, converging (in the
w∗-sense) to the “impulse response”, i.e. a Dirac delta
δ0) is also convergent, to “some”, call it µ;

And finally why (and how) is T (f ) = µ ∗ f .
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The scandal in linear system theory

Not describing the problem in the way I have done above Irving
Sandberg describes the so-called “scandal in system theory” in a
series of papers, which I also mention in more detail in my paper
[2], e.g. [6, 7].
He models translation invariant linear systems (so-called TILS) as
bounded linear operators on

(
Cb(Rd), ‖ · ‖∞

)
(with the

sup-norm), the space of (complex-valued) bounded and continuous
function on Rd (of course the scandal appears in all dimensions)
and demonstrates (using the axiom of choice resp. Hausdorff’s
maximality principle, implying the existence of translation invariant
means) that there are bounded linear operators which cannot be
represented by convolution operators with a bounded measure,
in fact not even with any distribution!
But (as we all know)

(
Cb(Rd), ‖ · ‖∞

)
is NOT a separable

Banach space. Hence I suggest to use
(
C0(Rd), ‖ · ‖∞

)
!
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Translation invariant operators are convolution operators A

I can now follow roughly the key points of my script.
First the definitions:

Definition

Cc(Rd) := {f : Rd → C, continuous and with compact support}

Definition

The support of a continuous (!) function, in symbols supp(f ), is
defined as the closure of the set of “relevant points”: a

supp(f ) := {x | f (x) 6= 0}−

aThe superscript bar stands for “closure” of a set. Hence supp(f ) is by
definition a closed set.
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Translation invariant operators are convolution operators B

Definition

Cb(Rd) := {f : Rd 7→ C, continuous and bounded,}

endowed with norm

‖f ‖∞ = supx∈Rd |f (x)|

The closure of Cc(Rd) in
(
Cb(Rd), ‖ · ‖∞

)
is just C0(Rd) which

can be defined as

C0(Rd) := {f ∈ Cb(Rd), lim|x |→∞|f (x)| = 0}.

Obviously this is a separable space, because the piecewise linear
functions over nodes of the form 2−kZ, k ∈ N with rational
coefficients are dense in

(
C0(R), ‖ · ‖∞

)
(similar for d > 1).
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Translation invariant operators are convolution operators B

As “convolution kernels” we will need bounded measures, which
can be defined easily in a purely functional analytic way.

Definition

We denote the dual space of
(
C0(Rd), ‖ · ‖∞

)
with

(M(Rd), ‖ · ‖M). Sometimes the symbol Mb(Rd) is used in order
to emphasize that one has “bounded” (regular Borel) measures.
As a dual space M(Rd) carries the natural functional norm

‖µ‖M := sup
‖f ‖∞≤1

|µ(f )| = sup
‖f ‖∞=1

|µ(f )|.

Of course discrete measures are important special case, i.e.
µ =

∑∞
k=1 ckδxk with

∑∞
k=1 |ck | <∞. They form a closed (!)

subspace of (M(Rd), ‖ · ‖M).
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Translation invariant operators are convolution operators C

Definition

A (countable) family Φ = (Tλϕ)λ∈Λ, where ϕ is a compactly
supported function (i.e. ϕ ∈ Cc(Rd)), and Λ = A(Zd) a lattice in
Rd (with det(A) 6= 0) is called a regular BUPU if∑

λ

ϕ(x − λ) ≡ 1.

We say that diam(Φ) ≤ γ if supp(ϕ) ⊂ Bγ(0).
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Different BUPUs of B-spline type

B-spline BUPUs of order 1 (pcw. linear),2, 3 (cubic), and 4.
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Translation invariant operators are convolution operators D

Two important ways to make use of such BUPUs are crucial for
our approach. The first one is a replacement for the σ−additivity
important in the context of measure theory. We formulate it for
more general BUPUs Ψ = (ψi )ii∈I .
We also use the usual convention

µ · h(f ) := µ(h · f ), h ∈ Cb(Rd), f ∈ C0(Rd), µ ∈M(Rd).

Lemma

Let Ψ = (ψi )i∈I be any non-negative BUPU, then∑
i∈I
‖µ · ψi‖M(Rd ) = ‖µ‖M(Rd ), µ ∈M(Rd).
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Translation invariant operators as convolution operators E1

BUPUs allow also to approximate bounded measures by discrete
measures, in the vague or w∗-sense. Recall:

Definition

A bounded sequence (or also net) (µγ)γ∈Γ of bounded measures is
convergent to µ0 ∈M(Rd) in the w∗-sense if and only if

lim
γ
µγ(f ) = µ0(f ), ∀f ∈ C0(Rd).

Definition

Given µ ∈M(Rd) and a BUPU Ψ with supp(ψi ) ⊆ Bγ(xi ) we
define the discretization operator DΨ as follows

DΨ(µ) :=
∑
i∈I

µ(ψi )δxi .
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Translation invariant operators as convolution operators E1

Remark: This method of discretization is by far not as abstract as
it may look. If we would choose a regular B-spline BUPU of of
order zero, i.e. a sequence of indicator functions (1α[k,k+1))k∈Zst

the visual representation of DΨ(µ) would be nothing else but a
histogram. Just on our setting one has to think of a slightly
smoothed version of a histogram, because we can apply measures
only to continuous functions.
Remark: If one describes a probability measure in terms of a
distribution function, i.e. an monotonously increasing function F ,
with limx→−∞F (x) = 0 and limx→∞F (x) = 1, then the kind of
approximation we are looking at is a (pointwise, perhaps a.e.)
approximation by increasing step functions.
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Translation invariant operators are convolution operators F

Lemma

The net DΨ(µ) is uniformly bounded, with

‖DΨ(µ)‖M(Rd ) ≤ ‖µ‖M(Rd )

and w∗-convergent to µ for any µ ∈M(Rd), i.e. Given
f ∈ C0(Rd) and ε > 0 there exists γ0 > 0 such that for
0 < γ ≤ γ0 any BUPU Ψ with diam(Ψ) ≤ γ satisfies

|DΨµ(f )− µ(f )| < ε.

The net is uniformly tight i.e. for any ε > 0 there exists
p ∈ Cc(Rd), with 0 ≤ p(x) ≤ 1 such that

sup
diam(Ψ)≤1

‖(1− p) · DΨµ‖M(Rd ) ≤ ε.
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Translation invariant operators are convolution operators H

Definition

The Banach space of all “translation invariant linear systems”
(TLIS) on C0(Rd) is denoted by

HRd (C0(Rd)) = {T : C0(Rd)→ C0(Rd), T◦Tz = Tz◦T , ∀z ∈ Rd}.

It is easy to show that HRd (C0(Rd)) is a closed subalgebra of the
Banach algebra of L(C0(Rd)) (in fact it is even closed with respect
to the strong operator topology), hence it is a Banach algebra of
its own right (with respect to composition as multiplication). We
will see later that it is in fact a commutative Banach algebra.
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Translation invariant operators are convolution operators G

Theorem

There is a natural isometric isomorphism between the Banach
space HRd (C0(Rd)), endowed with the operator norm, and
(M(Rd), ‖ · ‖M), the dual of

(
C0(Rd), ‖ · ‖∞

)
, by means of the

following pair of mutually inverse linear mappings:

1 Given a bounded measure µ ∈M(Rd) we define the operator
Cµ ( convolution operator with kernel µ) via:

Cµf (x) = µ(Tx f
X). (3)

2 Conversely we define T ∈ HRd (C0(Rd)) the linear functional
µ = µT by

µT (f ) = [Tf X](0). (4)
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Translation invariant operators are convolution operators J

The claim is that both of these mappings: C : µ 7→ Cµ and the
mapping T 7→ µT are linear, non-expansive, and inverse to each
other. Consequently they establish an isometric isomorphism
between the two Banach spaces with

‖µT‖M = ‖T‖L(C0(Rd )) and ‖Cµ‖L(C0(Rd )) = ‖µ‖M . (5)

Definition

Recall the notion of a FLIP operator: f̌ (z) = f X(z) = f (−z)
We can also extend this operator to measures by setting

µX(f ) = µ(f X), µ ∈M(Rd), f ∈ C0(Rd).
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INTRODUCING CONVOLUTION for measures

Since the space HRd (C0(Rd)) is not only a Banach space, but also
a Banach algebra (under composition, which is obviously
associative) and (M(Rd), ‖ · ‖M) is isometrically isomorphic, one
can transfer the algebra structure to M(Rd) by declaring:

Definition

The (new) measure, to be denoted by µ1 ∗ µ2 (a NEW, internal
multiplication for M(Rd)) is the unique functional on(
C0(Rd), ‖ · ‖∞

)
which generates the composite TILS Cµ1 ◦ Cµ2 .

‖µ1 ∗ µ2‖M(Rd ) ≤ ‖µ1‖M(Rd ) · ‖µ2‖M(Rd ).

Also the associative (mixing internal and external action)

µ1 ∗ (µ2 ∗ f ) = (µ1 ∗ µ2) ∗ f , f ∈ C0(Rd)

requires NO PROOF but has been turned into a definition.
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Convolution with discrete measures: translation operators

In the correspondence of the main theorem it is important to see,
what discrete measure do, and it is easy to verify that Dirac
measures δz correspond to the translation operators, in other words
(usual symbols) one has

δz ∗ f = Tz f , f ∈ C0(Rd), z ∈ Rd .

This makes the following result even more useful, showing the
approximation of a general TILS on C0(Rd) by finite sums of
translation operators.

Theorem

Let T = Cµ be a TILS on
(
C0(Rd), ‖ · ‖∞

)
.

DΨµ ∗ f → µ ∗ f , for diam(Ψ)→ 0, ∀f ∈ C0(Rd). (6)
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Approximation of convolution by discrete convolution

Lemma

Assume that (µn)n≥1 is a bounded and tight sequence in
(M(Rd), ‖ · ‖M). Then µ0 = w∗ − limn µn if and only if

µn ∗ f → µ0 ∗ f , ∀f ∈ Cb(Rd),

uniformly over compact sets. The statement is equally valid if the
convergence is valid for all f ∈ C0(Rd) only.

It is also possible to show that in this situation (µ1, µ2) 7→ µ1 ∗ µ2

is continuous in the w∗-topology, and in particular

DΨµ1 ∗ DΨµ2 → µ1 ∗ µ2

and consequently discrete convolution (the group law) dictates
the form of convolution in (Mb(G ), ‖ · ‖Mb

) as defined (in
particular commuitativity).
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Commutativity of convolution, Fourier Stieltjes transform

This fact also allows to establish commutativity of convolution:

µ1 ∗ µ2 = µ2 ∗ µ1.

The next topic is the definition of the Fourier (Stieltjes) transform
which in the usual setting would be

µ̂(s) :=

∫
Rd

e−2πi〈s,t〉dµ(t),

giving a bounded on continuous function in the frequency domain,
with ‖µ̂‖∞ ≤ ‖µ‖M(Rd ).

Denoting the characters of Rd by

χs(t) := e2πi〈s,t〉, t ∈ Rd ,

we would naturally define µ̂(χ) := µ(χ), χ ∈ Ĝ , but this is not
directly possible, because a priori µ is only defined on(
C0(G ), ‖ · ‖∞

)
, and not (yet) on all of

(
Cb(G ), ‖ · ‖∞

)
.
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Extending the action to
(
Cb(Rd), ‖ · ‖∞

)
Another variation of this result is provided by the next proposition.
The absolute convergence of the splitting µ =

∑
i∈I µψi based on

any given BUPU with
∑

i∈I ‖µψi‖M = ‖µ‖M allows to define for
any h (in a way which is independent of the BUPU Ψ!)

µ(h) :=
∑
i∈I

µψi (h) =
∑
i∈I

µ(ψi · h),

obtaining in this way the unique (and norm-preserving) extension
of the functional µ ∈

(
C0(Rd), ‖ · ‖∞

)′
which respects uniform

convergence over compact sets (for bounded sequences).
The injectivity of the linear mapping µ 7→ µ̂ is then not at all
trivial (requiring a form of Stone Weierstrass theorem), but we can
prove the convolution theorem on this basis (cf. [2]).
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The convolution theorem for bounded measures

Theorem

The Fourier (Stieltjes) transform maps the Banach convolution
algebra (M(Rd), ‖ · ‖M) into the pointwise Banach algebra(
Cb(Rd), ‖ · ‖∞

)
, i.e.

µ̂1 ∗ µ2 = µ̂1 · µ̂2, µ1, µ2 ∈M(Rd).

The extension of the action of course also allows to extend the
convolution operators to all of

(
Cb(Rd), ‖ · ‖∞

)
and then obtain a

TILS (but not! all possible TILS!) on
(
Cb(Rd), ‖ · ‖∞

)
.

Theorem

The extended convolution operator Cµ : h 7→ µ ∗ h, h ∈ Cb(Rd) has
the same norm as the operator on C0(Rd). One the has only
DΨµ ∗ h→ µ ∗ h, uniformly over compact set.
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Characters as eigenvectors for convolution operators

But now one can express the fact that the characters (pure
frequencies) are joint eigenvectors to all of these (commuting!)
convolution operators, with

µ ∗ χ = µ̂(χ)χ, χ ∈ Ĝ .

In this sense one can see the Fourier transform as the natural (and
in the sense of the Gelfand transform, applied to the convolution
algebra

(
L

1(G ), ‖ · ‖1

)
) joint diagonalization or spectral

representation of this Banach algebra.
The verification of the convolution theorem combines the fact that
it is almost trivial (by the defining properties of characters):

χ(x + y) = χ(x)χ(y), x , y ∈ G ,

for discrete measuresn and can be pushed to general
statements by the convergence just mentioned (for h = χ).
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How to introduce
(
L

1(G ), ‖ · ‖1

)
in this setting ?

Note: For k ∈ Cc(G ) on can prove that µk : f 7→
∫
G f (x)k(x)dx is

an element of (Mb(G ), ‖ · ‖Mb
) and that

‖µk‖M = ‖k‖1 =

∫
G
|k(x)|dx .

Hence
(
L

1(Rd), ‖ · ‖1

)
“is” the closure of µCc (G) in M(Rd).

Theorem(
L

1(G ), ‖ · ‖1

)
can be characterized within (Mb(G ), ‖ · ‖Mb

) as the
subspace of elements with continuous shift, i.e.
µ ∈ (M(Rd), ‖ · ‖M) belongs to L1(Rd) if it satisfies

lim
x→0
‖Txµ− µ‖M = 0.

In particular, L1(G ) is a closed ideal within (Mb(G ), ‖ · ‖Mb
), and

the restriction of the Fourier transform to L1(G ) maps L1(G )
injectively into

(
C0(Ĝ ), ‖ · ‖∞

)
(Lemma of Riemann-Lebesgue).Hans G. Feichtinger An Alternative Approach to Convolution and the Fourier Transform



Practical remarks

The approach presented also allows to show, avoiding the theory of
integration with values in a Banach space (i.e. Bochner
integration) that M(Rd) ∗ B ⊂ B, for any so-called homogeneous
Banach space B (such as Lp, for 1 ≤ p <∞).
It allows allows to explain how to otain the integrated group
representation on a Banach space from an isometric, strongly
continuous group representation or even projective representation
of this type!
The approach presented here has been tested already few times in
courses (for master students) at the University Vienna in the last
years and I was mostly satisfied with the (oral) exams with the
students, see

http://www.univie.ac.at/nuhag-php/login/skripten/data/AngAnal15Skript.pdf
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