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OVERVIEW

The GOAL of this presentation is to provide a basic understanding
of Gabor Analysis, which is an important branch of
time-frequency analysis.
We will indicate what kind of problems have to be addressed,
which operators are of interest (e.g. Gabor multipliers) and which
function spaces play a role in this context (namely modulation

spaces, and in particular the Segal algebra
(
S0(Rd), ‖ · ‖S0

)
).

We also have to talk about Gabor frames and
Gabor Riesz sequences (bases for closed subspaces), i.e.
not-so-usual concepts of functional analysis. Finally we will
mention the corresponding numerical and computational questions
and their realization in MATLAB, and the questions (about
approximation quality) arising from the simulations.
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Personal Background

I was doing first Abstract Harmonic Analysis for many years
(advisor Hans Reiter, in Vienna), working with function spaces over
locally compact (Abelian) groups, convolution, Fourier transforms
(A. Weil, H. Triebel, J. Peetre,...)
Later I realized the close connections to signal processing, mostly
through P. Butzer (sampling, Shannon’s theorem, etc.) and also
got interested in doing actualy numerical work (starting in 1989,
J.J. Benedetto’s group), which lead in 1992 to NuHAG.
In the 80th I got into contact with communication engineers
(F. Hlawatsch, W. Kozek) who pointed out to me many
connections between the abstract world and applications (filter
banks). In particular: I had done “atomic decompositions” for
the function space

(
S0(Rd), ‖ · ‖S0

)
, which can be interpreted

as a simple form of Gabor expansions (D. Gabor, 1946, [4]).
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How to present Gabor Analysis?

There are certainly many ways of presenting Gabor Analysis:

1 We could present it in the framework of Hilbert spaces
(really: I am talking about “frames for

(
L

2(Rd), ‖ · ‖2

)
!);

2 We could talk about Gabor analysis for discrete signals or
pixel images first, avoiding some some troubles arising with
continuous signals;

3 We could/will even reduce it further to finite Abelian groups,
where we have unit vectors (instead of Dirac measures), and
matrices instead of linear operators;

4 We can first provide some intuition via examples and pictures

5 We could give a course on the function spaces needed
and the available results;

Since this is all to much we will mix these aspects!
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT
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Demonstration using GEOGEBRA (very easy to use!!)
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Spectrogramm versus Gabor Analysis

Assuming that we use as a “window” a Schwartz function
g ∈ S(Rd), or even the Gauss function g0(t) = exp(−π|t|2), we
can define the spectrogram for general tempered distributions
f ∈ S ′(Rd)! It is a continuous function over phase space.

In fact, for the case of the Gauss function it is analytic and in fact
a member of the Fock space, of interest within complex analysis.

Both from a pratical point of view and in view of this good
smoothness one may expect that it is enough to sample this
spectrogram, denoted by Vg (f ) and still be able to reconstruct f
(in analogy to the reconstruction of a band-limited signal from
regular samples, according to Shannon’s theorem).
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A series of questions

1 Which windows are useful for which purpose?

2 How dense does one have to sample, in order to reconstruct
approximately/perfectly the signal f from the spectrogram?

3 What are the numerical procedures for perfect reconstruction?

4 What are the properties of general Gabor systems at all:
G = (π(λ)g)λ∈Λ, for some Λ = A(Z2d), with det(A) 6= 0?

In a “modern interpretation” of his paper of 1946 D. Gabor was
expressing the hope that for Λ = Z2d the system could be a Riesz
basis, with unique expansions of every f ∈ L2(Rd), thus giving
the coefficients a particular meaning. They (would) describe
the time-frequency content of f at the points of Λ.
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The critical case: shortcomings!

As a more detailed mathematical analysis showed (only in the
80th, mostly by A.J.E.M. Janssen, [7]) the situation cannot be
“saved”, even in the context of distribution theory. There are
various problems (which in fact have obscured the use of Gabor
analysis for a long time, both practically and theoretically).
So let us describe the main problems of Gabor’s system (g0,Z2d):

1 Although the finite linear combinations are dense in L2(Rd) it
is not possible to have a series representation of arbitrary
f ∈ L2(Rd). Better approximation of f may require new sets
of coefficients, or larger `2(Z2d)-norm.

2 Even allowing just bounded coefficients in `∞(Z2d) would
not allow (distributional) series expansions of all the
L

2(Rd)-functions, but already create non-uniqueness of
representation! (chess-board signs represent zero).
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So let us start from the continuous spectrogram

The spectrogram Vg (f ), with g , f ∈ L2(Rd) is well defined and
has a number of good properties. Cauchy-Schwarz implies:

‖Vg (f )‖∞ ≤ ‖f ‖2‖g‖2, f , g ∈ L2(Rd),

in fact Vg (f ) ∈ C0(Rd × R̂d). Plancherel’s Theorem gives

‖Vg (f )‖2 = ‖g‖2‖f ‖2, g , f ∈ L2(Rd).

Since assuming that g is normalized in L2(Rd), or ‖g‖2 is no
problem we will assume this from now on.
Note: Vg (f ) is a complex-valued function, so we usually look
at |Vg (f )|, or perhaps better |Vg (f )|2, which can be viewed as

a probability distribution over Rd × R̂d if ‖f ‖2 = 1 = ‖g‖2.
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The continuous reconstruction formula

Now we can apply a simple abstract principle: Given an isometric
embedding T of H1 into H2 the inverse (in the range) is given by
the adjoint operator T ∗ : H2 → H1, simply because

〈h, h〉H1 = ‖h‖2
H1

= (!) ‖Th‖2
H2

= 〈Th,Th〉H2 = 〈h,T ∗Th〉H1 , ∀h ∈ H1,

and thus by the polarization principle T ∗T = Id
In our setting we have (assuming ‖g‖2 = 1) H1 = L

2(Rd) and
H2 = L

2(Rd × R̂d), and T = Vg . It is easy to check that

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)g dλ, F ∈ L2(Rd × R̂d), (1)

understood in the weak sense, i.e. for h ∈ L2(Rd) we expect:

〈V ∗g (F ), h〉
L

2(Rd ) =

∫
Rd×R̂d

F (x) · 〈π(λ)g , h〉
L

2(Rd )dλ. (2)
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Continuous reconstruction formula II

Putting things together we have

〈f , h〉 = 〈V ∗g (Vg (f )), h〉 =

∫
Rd×R̂d

Vg (f )(λ) · Vg (h)(λ) dλ. (3)

A more suggestive presentation uses the symbol gλ := π(λ)g and
describes the inversion formula for ‖g‖2 = 1 as:

f =

∫
Rd×R̂d

〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (4)

This is quite analogous to the situation of the Fourier transform

f =

∫
Rd

〈f , χs〉χs ds, f ∈ L2(Rd), (5)

with χs(t) = exp(2πi〈s, t〉), t, s ∈ Rd , describing the “pure
frequencies” (plane waves, resp. characters of Rd).
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Discretizing the continuous reconstruction formula

Note the crucial difference between the classical formula (5)
(Fourier inversion) and the new formula formula (4). While the
building blocks gλ belong to the Hilbert space L2(Rd), in contrast
to the characters χs . Hence finite partial sums cannot approximate
the functions f ∈ L2(Rd) in the Fourier case, but they can (and in
fact do) approximate f in the L2(Rd)-sense.
The continuous reconstruction formula suggests that sufficiently
fine (and extended) Riemannian-sum-type expressions approximate
f . This is a valid view-point, at least for nice windows g (any
Schwartz function, or any classical summability kernel is OK:
see for example [8]).
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A number of questions

So we have a number of questions:

What is the maximal grid size for a given
(e.g. Gaussian window)?

Which windows are ‘good windows’?

How can one stably reconstruct f from the sampled STFT
(Vg (f )(λ))λ∈Λ.

Furthermore: How can one operate on the Gabor coefficients,
i.e. the study of so-called Gabor multipliers!

The first answer can be given right away: For Λ = aZd × bZd ,
with 0 < ab < 1 one has stable reconstruction. Similar statements
have been found only very recently (K. Gröchenig, J. Stöckler)
for a class of totally positive functions ([6]).

Hans G. Feichtinger GABOR ANALYSIS: Mathematical Overview with some Computational Aspects



A schematic description of the situation: Lisp, Ltsp

L1

L2

C0

FL1

the classical Fourier situation
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A better schematic description of the situation

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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A better schematic description of the situation

The domain of the Fourier inversion formula: L1 ∩ FL1:

L1

FL1

S0
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A better schematic description of the situation
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
There are many other independent characterization of this space,
spread out in the literature since 1980, e.g. atomic decompo-
sitions using `1-coefficients, or as W (FL1, `1) = M

0
1,1(Rd).
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Basic properties of M∞(Rd) = S0
′(Rd)

It is probably no surprise to learn that the dual space of(
S0(Rd), ‖ · ‖S0

)
, i.e. S0

′(Rd) is the largest (reasonable) Banach
space of distributions (in fact local pseudo-measures) which is
isometrically invariant under time-frequency shifts π(λ),
λ ∈ Rd × R̂d . As an amalgam space one has
S0
′(Rd) = W (FL1, `1)

′
= W (FL∞, `∞)(Rd), the space of

translation bounded quasi-measures, however it is much better to
think of it as the modulation space M∞(Rd), i.e. the space of all
tempered distributions on Rd with bounded Short-time Fourier
transform (for an arbitrary 0 6= g ∈ S0(Rd)).
Consequently norm convergence in S0

′(Rd) is just uniform
convergence of the STFT, while certain atomic characterizations of(
S0(Rd), ‖ · ‖S0

)
imply that w∗-convergence is in fact equivalent to

locally uniform convergence of the STFT. – Hifi recordings!
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Important messages concerning
(
S0(Rd), ‖ · ‖S0

)
The space (of test functions) has all the good properties one
knows from S(Rd), but it is a Banach space.
It is Fourier invariant (even under the fractional Fourier transform),
it is contained in all the Lp-spaces, for 1 ≤ p ≤ ∞ (and contains
S(Rd) as a dense subspace).
All the classical summability kernels (used for the Fourier inversion
theorem) are in this class (this is why they are useful), and also
Poisson’s formula is valid in the strict sense∑

k∈Zd

f (k) =
∑
n∈Zd

f̂ (n), ∀f ∈ S0(Rd). (6)
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Important messages concerning (S0
′(Rd), ‖ · ‖S0

′)

The Banach space (S0
′(Rd), ‖ · ‖S0

′) is the largest Banach space of
distributions which is isometric under TF-shifts, hence contains all
the Lp-spaces. It is Fourier invariant via σ̂(f ) := σ(f̂ ), f ∈ S0(Rd).

It also contains any Haar measure of a subgroup, in particular
ttΛ =

∑
λ∈Λ δλ, for an arbitrary discrete subgroup Λ C Rd (often

called Dirac Comb). Moreover F(ttΛ) = CΛ · ttΛ⊥ .

Since pointwise multiplication goes to convolution this provides a
proof of the fact that “sampling on the time side” (f 7→ f ttΛ)
corresponds to periodization of f̂ on the Fourier transform side
(f̂ 7→ ttΛ⊥ ∗ f̂ ).
It allows to define spec(f ), for f ∈ L∞, as supp(f̂ ).
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Further properties of (S0
′(Rd), ‖ · ‖S0

′) II

A tempered distribution σ ∈ S ′(Rd) belongs to S0
′(Rd) if and only

its spectrogram for one non-zero window/atom g ∈ S0(Rd) is
bounded (and then for all such windows, due to the atomic
characterizations of S0(Rd)).

Norm convergence in (S0
′(Rd), ‖ · ‖S0

′) corresponds to uniform
convergence of the spectrograms.

The w∗-convergence in S0
′(Rd) corresponds to uniform

convergence over compact subsets of the TF plane. A good HiFi
recording covers the range of 0− 20kHz for the duration of a song!

Elements of S0
′(Rd) have a support and a Fourier transform.

Spectral synthesis implies that a distribution supported by a
subgroup “comes from the subgroup” (adjoint of restriction).
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Analogies to the Schwartz space

For most applications (!!except for PDEs, see Hörmander Theory)
S0(G ) is a more simple space than the Schwartz-Bruhat space,
also defined over general LCA (locally compact Abelian groups).

First of all it is Fourier invariant, resp. F(S0(G )) = S0
′(G̃ ) for LCA

groups.
One can regularize distributions from S0

′(Rd) using Wiener
amalgam convolution and pointwise multiplier results:

S0 · (S0
′ ∗ S0) ⊆ S0, S0 ∗ (S0

′ · S0) ⊆ S0 (7)

Although it is NOT a nuclear Frechet space there is a kernel
theorem, which extends the usual kernel theorem for Hilbert
Schmidt operators (which are exactly the operators on L2(Rd)
with integral kernels in L2(R2d)!
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Matrix-representation and kernels

We know also from linear algebra, that any linear mapping can be
expressed by a matrix (once two bases are fixed). We have a
similar situation through the so-called kernel theorem. It uses
B = L(S0

′,S0).

Theorem

There is a natural BGT-isomorphism between (B,H,B ′) and
(S0,L

2,S0
′)(R2d). This in turn is isomorphic via the spreading and

the Kohn-Nirenberg symbol to (S0,L
2,S0

′)(Rd × R̂d). Moreover,
the spreading mapping is uniquely determined as the
BGT-isomorphism, which established a correspondence between
TF-shift operators π(λ) and the corresponding point masses δλ.
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism
between H1 and H2.

3 A extends to norm-to-norm continuous isomorphism between
B
′
1 and B ′2 which is then automatically w∗-w∗--continuous!
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Various Gelfand Triples
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Banach Gelfand Triples, ctc.

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(U), the space of absolutely continuous Fourier series.
It is also not surprising in retrospect to see that the dual space
PM(U) = A(U)′ is space of pseudo-measures. One can extend the
classical Fourier transform to this space, and in fact interpret this
extended mapping, in conjunction with the classical Plancherel
theorem as the first unitary Banach Gelfand triple isomorphism,
between (A,L2,PM)(U) and (`1, `2, `∞)(Z).
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The BGT (S0,L
2,S0

′) and Wilson Bases

Among the many different orthonormal bases the wavelet bases
turn out to be exactly the ones which are well suited to
characterize the distributions by their membership in the classical
Besov-Triebel-Lizorkin spaces.
For the analogue situation (using the modulation operator instead
of the dilation, resp. the Heisenberg group instead of the
“ax+b”-group) on finds that local Fourier bases resp. the so-called
Wilson-bases are the right tool. They are formed from tight Gabor
frames of redundancy 2 by a particular way of combining complex
exponential functions (using Euler’s formula) to cos and sin
functions in order to build a Wilson ONB for L2(Rd).
In this way another BGT-isomorphism between (S0,L

2,S0
′)

and (`1, `2, `∞) is given, for each concrete Wilson basis.
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Guide to the literature

Most of our relevant papers at NuHAG are found at

www.nuhag.eu/bibtex

A good survey about the state of the art in Gabor analysis around
2000 is given in Charly Gröchenig’s book [5], or [3].
The purely algebraic part of Gabor analysis is described in the
paper [2]. The linear algebra aspects (overcomplete systems, etc.)
is fully described in [1].
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The role of S0(Rd) for Gabor Analysis

We will call (π(λ)g)λ∈Λ a Gabor family with Gabor atom g .

Theorem

Given g ∈ S0(Rd). Then there exists γ > 0 such that any γ-dense
lattice Λ (i.e. with ∪λ∈ΛBγ(λ) = Rd) the Gabor family (π(λ)g)λ∈Λ

is a Gabor frame. Hence there exists a linear mapping (the unique
MNLSQ solution) f 7→ (cλ) = 〈f , g̃λ〉, λ∈Λ, for a uniquely
determined function g̃ ∈ S0(Rd), thus

f =
∑
λ∈Λ

〈f , g̃λ〉gλ, ∀f ∈ L2(Rd).

In other words, the minimal norm representation of any
f ∈ L2(Rd) can be obtained by just sampling the STFT with
respect to the dual window g̃ .
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The role of S0(Rd) for Gabor Analysis

The dual Gabor atom g̃ ∈ S0(Rd) provides not only the minimal
norm coefficients, but also `1(Λ)-coefficients for f ∈ S0(Rd) and is
well defined on S0, σ 7→ σ(g̃λ) and defines representation
coefficients in `∞(Λ).
So in fact f 7→ (〈f , g̃λ〉) defines a Banach Gelfand triple morphism
from the triple (S0,L

2,S0
′)(Rd) to (`1, `2, `∞). The (left) inverse

mapping is the synthesis mapping

(cλ) 7→
∑
λ∈Λ

cλgλ,

with norm convergence for c ∈ `1 or `2, and still w∗-sense in
S0
′(Rd) for c ∈ `∞(Λ).
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The role of S0(Rd) for Gabor Analysis

The good properties of g and g̃ also imply that not only is the
range of spaces to which the Gabor expansions can be applied
(more generally one could talk about the modulation spaces
M

p,q(Rd)), but also a certain robustness with respect to the
choice of the Gabor atom.
Similar (in the sense of

(
S0(Rd), ‖ · ‖S0

)
) atoms g have similar

dual windows, but we also have a continuous dependence of g̃ on
the lattice: If (g ,Λ) with g ∈ S0(Rd) and Λ = A(Z2d) define a
Gabor frame with dual atom g̃ , then for all lattice Λ′ = B(Z2d)
with |‖A− B|‖ < δ the families (g ,Λ′) also define Gabor frames
and g̃ ′ (dual with respect to Λ′) are close to g̃ .
This principle is important for the approximation of irrational
lattices by rational lattices, because these are better suited for
discrete and finite-dimensional approximation.
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The role of S0(Rd) for Gabor Analysis

As one changes the lattices one observes the following fact:
As one approximates the continuous case (the density of the lattice
is getting higher and higher, in a uniform way), the (a normalized)
version of g̃ tends (in the S0-norm) to g , i.e. for the highly
redundant case one does not have to make any distinction between
g̃ and g . Acoustic experiments speak of a redundancy of ca. 5− 6
as the change-point.
As the density (size of the fundamental domain of Λ, or det(A),
i.e. ab for the case Λ = aZ× bZ) tends to the critical case, the
quality of g̃ deteriorates and we know a lot about the speed of
deterioration.
For the case a = 1 = b (Gabor’s case) no such g̃ exists, not
even in all of L2(Rd).
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The role of S0(Rd) for Gabor Analysis

An important property of S0(Rd) is the fact that one can compute
an S0-approximation of g̃ for q1Z× q2Z, q1, q2 ∈ Q, using just
(fine regular) samples of g , by solving a positive definite operator
equation of the form S(g̃) = g , where now g , gd are the sampled
version of the true continuous Gabor atom g and gd respectively
(at least up to some small error, which tends to zero, as the
sampling rate tends to zero!)
Having the approximate samples of g̃ over grid it suffices to apply
piecewise linear interpolation (or better quasi-interpolation, using
cubic B-splines, i.e. form

∑
n∈Z f (αn)Tαnψ).

REMARK: The same is true for computing f̂ from the samples
of f using just the discrete version of the Fourier transform,
namely the FFT, followed by piecewise linear interpolation!
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S0(Rd) and Generalized Stochastic Processes

The joint generalization of stochastic processes (mapping from
points to a Hilbert space H of probability measures) and
distribution theory (linear mappings from a space of test functions
to the complex numbers H = C) is of course the concept of
Generalized Stochastic Processes, viewed as linear operators from(
S0(G ), ‖ · ‖S0

)
to a Hilbert Space (H, ‖ · ‖H).

Such a theory has been developed together with my PhD student
Wolfgang Hörmann a while ago.
Key points are the existence of a Fourier transform of a process
(the spectral process), a spectral representation, the existence of
an autocorrelation distribution in S0

′(G × G ). The autocorrelation
of the spectral process is the 2D-Fourier transform (in the
S0
′-sense) of the autocorrelation of the process.
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Matrix-representation and kernels

We know also from linear algebra, that any linear mapping can be
expressed by a matrix (once two bases are fixed). We have a
similar situation through the so-called kernel theorem. It uses
B = L(S0

′,S0) and B ′ coincides with L(S0,S0
′) (correctly: the

linear operators which are w∗ to norm continuous!).

Theorem

There is a natural BGT-isomorphism between (B,H,B ′) and
(S0,L

2,S0
′)(R2d). This in turn is isomorphic via the spreading and

the Kohn-Nirenberg symbol to (S0,L
2,S0

′)(Rd × R̂d). Moreover,
the spreading mapping is uniquely determined as the
BGT-isomorphism, which established a correspondence between
TF-shift operators π(λ) and the corresponding point masses δλ.
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Some Illustrations
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Real World Gabor Multipliers
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Further information, reading material

The NuHAG webpage offers a large amount of further information,
including talks and MATLAB code:

www.nuhag.eu

www.nuhag.eu/bibtex (all papers)

www.nuhag.eu/talks (all talks)

www.nuhag.eu/matlab (MATLAB code)

www.nuhag.eu/skripten (lecture notes)
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