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Abstract for readers, orientation

Although the theory of Gabor Analysis, i.e. the decomposition of
distributions over locally compact groups in terms of TF-shifted
copies of a Gabor atom along a lattice is theoretically well
understood there are still many interesting open questions
concerning the practical realization of such a program.
Aside from the classical case, where one-dimensional signals on the
real line are expanded, using a separable TF-lattice of the form
aZxbZ there is no easily applicable and computationally realizable
approach to the actual determination of Gabor coefficients for
more general lattices, or for multi-dimensional signals.
The talk will address computational issues, the theoretical
justification of numerical approximations to the continuous
problem, and mention a list of open problems in the field which
would be relevant for further progress and real-world applications
of Gabor analysis. We will also discuss aspects of the question,
what makes a Gabor frame a good one.
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Let us call it Computational Gabor Analysis

Although “we are doing it for quite a while” (e.g. at NuHAG) the
term is almost inexistent. I was pleased to find it in Peter
Sondergaards PhD Thesis (in 2007, at DTU, under Ole
Christensen), which became the starting point for the socalled
LTFAT: The Linear Time Frequency Toolbox (as opposed to the
one promoted by P. Flandrin, containing quadratic
TF-representations).
Meanwhile the community has to be grateful to Peter Balazs and
his team at ARI for the promotion and continuation of the now
Large Time-Frequency Toolbox!

DOWNLOAD at:

http://ltfat.sourceforge.net/download.php
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What are the benefits of computational Gabor analysis

There are various reasons, why I am sitting down [as a matter of
fact very regularly] in order to start e.g. MATLAB (or sometimes
GEOGEBRA), when thinking about Gabor analysis:

Visualization tasks; illustrate situations;

Test hypothesis on a discrete model;

Carry out some simulations;

Compute actual figure (like the frame bounds);

Formulate conjectures, based on numerical evidence;
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Vizualization: the different classical spaces
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Figure: The classical setting, with Schwartz spaces
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L
1(Rd) and the Fourier Algebra FL1(Rd)
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Figure: L1(Rd),FL1(Rd) with S0(Rd) inside
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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TF-shifted Gaussians
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Figure: presentation using f2sp, rot, and rotmod

Hans G. Feichtinger Gabor expansions of signals: Computational aspects and open questions



So let us start from the continuous spectrogram

The spectrogram Vg (f ), with g , f ∈ L2(Rd) is well defined and
has a number of good properties. Cauchy-Schwarz implies:

‖Vg (f )‖∞ ≤ ‖f ‖2‖g‖2, f , g ∈ L2(Rd),

in fact Vg (f ) ∈ C0(Rd × R̂d). Plancherel’s Theorem gives

‖Vg (f )‖2 = ‖g‖2‖f ‖2, g , f ∈ L2(Rd).

Since assuming that g is normalized in L
2(Rd), i.e. that ‖g‖2 = 1

is no problem we will assume this from now on.
Note: Vg (f ) is a complex-valued function, so we usually look
at |Vg (f )|, or perhaps better |Vg (f )|2, which can be viewed as

a probability distribution over Rd × R̂d if ‖f ‖2 = 1 = ‖g‖2.
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The continuous reconstruction formula

Now we can apply a simple abstract principle: Given an isometric
embedding T of H1 into H2 the inverse (in the range) is given by
the adjoint operator T ∗ : H2 → H1, simply because

〈h, h〉H1 = ‖h‖2
H1

= (!) ‖Th‖2
H2

= 〈Th,Th〉H2 = 〈h,T ∗Th〉H1 , ∀h ∈ H1,

and thus by the polarization principle T ∗T = Id
In our setting we have (assuming ‖g‖2 = 1) H1 = L

2(Rd) and
H2 = L

2(Rd × R̂d), and T = Vg . It is easy to check that

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)g dλ, F ∈ L2(Rd × R̂d), (1)

understood in the weak sense, i.e. for h ∈ L2(Rd) we expect:

〈V ∗g (F ), h〉
L

2(Rd ) =

∫
Rd×R̂d

F (x) · 〈π(λ)g , h〉
L

2(Rd )dλ. (2)
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Continuous reconstruction formula II

Putting things together we have

〈f , h〉 = 〈V ∗g (Vg (f )), h〉 =

∫
Rd×R̂d

Vg (f )(λ) · Vg (h)(λ) dλ. (3)

A more suggestive presentation uses the symbol gλ := π(λ)g and
describes the inversion formula for ‖g‖2 = 1 as:

f =

∫
Rd×R̂d

〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (4)

This is quite analogous to the situation of the Fourier transform

f =

∫
Rd

〈f , χs〉χs ds, f ∈ L2(Rd), (5)

with χs(t) = exp(2πi〈s, t〉), t, s ∈ Rd , describing the “pure
frequencies” plane waves, resp. characters of Rd).
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Discrete reconstruction: Gabor Analysis

The continuous reconstruction formula suggests that the
Riemannian sums to those reconstructing integrals provide a good
approximation.
So instead of working with the full STFT Vg (f ) we work with a
sampled version. A regular Gabor family is a family of the form
(π(λ)g)λ∈Λ, where Λ C Rd × R̂d is a lattice (a discrete subgroup).
Gabor analysis tells us that in the frame case there exists some g̃
(canonical dual Gabor atom) such that despite the discretization
we still have perfect reconstruction:

f =
∑
λ∈Λ

〈f , g̃λ〉gλ =
∑
λ∈Λ

〈f , gλ〉g̃λ. (6)
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STFT-multiliers or Anti-Wick operators

The above reconstruction formula 4 suggests to define linear
operators by applying a pointwise multiplication operator on the
transform side (similar to Fourier multipliers). We denote by GMm

the Gabor (or STFT-) multiplier with the multiplier (or upper
symbol) m, typically a real-valued function on Rd × R̂d :

GMm(f ) =

∫
Rd×R̂d

m(λ)〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (7)

and in the discrete version we have Gabor multipliers

GMm(f ) =
∑
λ∈Λ

m(λ)〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (8)
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Gabor Analyis: General Setting

Gabor Analysis is built on the use of time- and frequency shifts,
thus we can do Gabor analysis over general LCA groups, not just
Rd ,Zd or finite groups.

Abstract Harmonic Analysis is teaching us how to transfer ideas
understood in one setting to the other setting. There is always a
commutative group G (of translation operators) and a dual group
Ĝ of “pure frequencies” (or e.g. plane waves).

For Finite Abelian groups, such as ZN or ZM × ZN (for image
processing) can be treated exactly in a computer, while for the
continuous, non-periodic setting a number of issues arise.
Note that Gabor systems are typically non-orthogonal etc.
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Standard Gaussian window, n=480, a=20, b=16
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Figure: A separable Gabor lattice of redundancy 3/2
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Window, tight window and dual window, time & frequency
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Figure: Showing the window, the tight Gabor window and dual Gabor
window, for a = 20, b = 16, n = 480.
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Canonical tight Gabor atoms for sheared lattices

The underlying lattices are obtained by applying to LAM =

lattp(n,a,b) = lattp(480,20,16); the automorphism (of
Zn × Zn) sidedigm (reshuffling cyclic diagonals to row vectors).

Figure: The last lattice is symmetric with respect to x-axis.
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What are our goals? and state of the art

Often the following question is addressed as the key question
of Gabor Analysis: Given a TF-lattice Λ C G × Ĝ and a Gabor
atom g ∈ L2(G ). Can one show that the Gabor family
(π(λ)g)λ∈Λ is a frame for

(
L

2(G ), ‖ · ‖2

)
? (in view of Balian-

Low asking for a Riesz basis would be asking too much!).

Typically the discrete finite setting is studied in analogy, i.e.
given a discrete Gauss-like function, and a pair of lattice
constants we want to compute the dual Gabor atom, expand a
test signal, invert a Gabor multiplier, etc.

We might study the effect of an Anti-Wick operator
(STFT-multiplier) either by effectively realizing it on some
test signals, or by forming the matrix describing this
operator and studying it then (e.g. from the point of
view of spectral theory)
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Some hints about pitfalls and tricks

Before going on with general considerations on Computational
Gabor Analysis let me just share a few thoughts concerning
elementary conventions which help to avoid Pitfalls, see

Isaac Amidror: Mastering the Discrete Fourier Transform

in One, Two or Several Dimensions: Pitfalls and Artifacts

London: Springer, Vol.43 (2013).

It all starts with the correct matching of finite vectors in CN with
function on ZN .
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Convolution of box-functions

triang = real(ifft(fft(box).*fft(b0x));

Figure: boxtriang1.jpg
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Displayed more properly using PLOTC.M

Figure: boxtriang2.jpg
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How to plot a Fourier transform?
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Figure: plotgaus1.eps
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Problems with naive use of FFT
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Figure: FFTproblems2.eps
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Diagnosis of the previous examples

1 The first example: blue plot is a result of plotting in the
complex plane! The second row shows that the Gauss
function (with 512 samples) is far to broad, and even
FFTSHIFT putting the spectrum in the middle does not show
Gaussian shape!

2 In some applied books the readers are warned, that
convolution using the FFT requires an FFTSHIFT, but this is
just due to bad data structure (choice of origin in ZN);

3 The last example indicates that symmetric (FLIPLR) signals
need not have real-valued DFT. So why does this happen!?
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John Daugman’s experiment

Figure: LENA256P.jpg: Gabor representation at critical density
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John Daugman’s experiment

John Daugman, one of the pioneers of Gabor Analysis (connecting
Gabor Analysis with the human visual system) was one of the early
pioneers of Computational Gabor Analysis, because he was -
despite the non-orthogonality, actually computing Gabor
expansions.
His explanatin for the missing information was the unfortunate
numerical stability of the Gabor system, while in effect (this is how
the simulation of his work has been realized) we have in fact a
rank deficiency.
The Gabor system with Gaussian window of length 256 and critical
density a = b = 16 has in fact only rank 255.
This is related to the zero of the Zak-transform of this Gauss
function.
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John Daugman’s good luck

There was one factor that probably helped John Daugman to
actually compute something between the “correct” case and
perfect reconstruction. If one takes a “perfectly” (flip!)-symmetric
Gaussian window one can find that the rank of the corresponding
Gabor system with a = 16 = b is now 256, and the condition
number is not worse than 12.
One can even compute the dual Gabor window, which then looks as
follows: Experts will easily see the similarity to the Bastiaans dual
γ-function, which is not in L

p(R) for any p <∞, but in L
∞(Rd).
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John Daugman’s good luck
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Gabor Analysis: Theoretical Aspects

The idea behind the term “Conceptual Harmonic Analysis”
which I try to promote now for some time is to raise awareness for
the fact that we do not just want to make use of the analogies
between the different settings, in the spirit of Abstract
Harmonic Analysis, but that we should take care of the connections
between the continuous and the discrete case. Thus we enable
ourselves to draw reliable conclusions concerning the continuous
limiting case by carrying out computations using sufficiently “fine”
discrete (but still finite) situations, which can be realized (finite
time and finite precision) using appropriate mathematical software.

In this spirit we are thinking of the finite dimensional problems
as constructive but also computable approximations to the
continuous situation, but with a priori control of errors.
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Gabor Analysis: Theoretical Aspects

This idea requires various considerations:

What is the finite/discrete analogue of the continuous
situation (e.g. use of FFT)?

Which norms and which function spaces can be used to
measure the distance and ensure correct approximation of the
continuous situation (often not the L2-norm!)?

Can we derive qualitative results at the most general level
which allow us to show that for any required level of precision
we can find a constructive (and realizable!) approximation?

Once we have understood the general principle we
should go for efficient numerical schemes and arguments
showing optimality (up to constants).
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Constructive Approximation Theory

Already a while ago people working in approximation theory
started to make a difference between general approximation
theoretic results and constructive ones.
The classical example is the Weierstrass approximation Theorem.
It guarantees the uniform approximation of a continuous function
over a compact interval [a, b] without telling the user how to
program it. A possible way out are Bernstein’s polynomials.
Or, look at the approximation of continuous, periodic functions by
Fourier series, and ask yourself when is it enough to know
sufficiently many equidistant samples in order to compute (via
FFT?) a good approximating trigonometric polynomial?
Constructive Approximation theory asks for a constructive
description, which may however require an uncountable
number of arithmetic steps!
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Constructive Realizable Approximation

We propose a more realistic approach to approximation problems,
requiring in fact Constructive Realizability.

In the current talk we will not discuss this issue, which is a separate
topic, because it involves certain robustness considerations,
function spaces, distributional convergence and other issues.

Instead we rather concentrate on the needs of the computational
part for this concept, and the possible benefits that we can draw
from e.g. computational experiments, even before the
corresponding theoretical details are established. For example we
can create conjectures or gain experience what favourable
conditions might for the existence of a stable solution to a
given problem.
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Computational Challenges for Gabor Analysis

There is a number of issues that one has to take into account when
one is thinking of Computational Gabor Analysis. In fact, concerns
that I have been very well aware of during the last 25 years.

It is not enough to have code that works for rather small
problems, or that takes far to long to be used more frequently;

in other words, we need fast and reliable code for the standard
situations; and alternative code for special cases;

software should be open and accessible within the community,
which requires some standards (like the LTFAT toolbox) and
shared conventions;

not only computational costs are important, but also
memory requirements;

and many other issues, you name them .......
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Gabor Analysis: Computational Aspects 2

Let us look more into the psychological side of
Computational Gabor Analysis:

We are doing it because we want to get numbers;

We want to find numerical values for frame bounds;

We want to invert the Gabor frame operator;

We want to determine the dual Gabor atom;

We want to apply a Gabor multiplier;

We want to find the best approximation of
a matrix by a Gabor multiplier;

We want to know what a good Gabor system is!

We look (?) for the best lattice for a given atom!?

We want to teach Gabor analysis, visualize things
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Recall the S0(Rd)-norm

The Segal algebra S0(Rd) is defined as

S0(Rd) := {f ∈ L2(Rd) |Vg (f ) ∈ L1(R2d)}

with
‖f ‖S0 := ‖Vg (f )‖

L
1(R2d ).

Usually one chooses g(t) = e−pi |t|
2
, with ‖g‖2 = 1.

This space is isometrically invariant under the Fourier transform
and the TF-shifts.
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Gabor Analysis: Computational Aspects

Even if we do not have theoretical results we can do a plausibility
test, using finite dimensional computations only. For example we
can carry out “analogous” experiments for different settings, which
are related to the same continuous setting. Let us just compute
the S0(R)-norm of a Gauss function (for n = 480 and then for
n = 4 ∗ 480 = 1920) or the condition number of the frame
operator (for a = 20,b = 16, or redundancy 3/2).

>> format long; >> sonorm(gaussnk(n))

ans = 1.999999999999982

>> sonorm(gaussnk(n*4))

ans = 1.999999999999960

>> cond(gabfrmat(gaussnk(n),a,b))

ans = 1.945436338386356

>> cond(gabfrmat(gaussnk(4*n),a*2,b*2))

ans = 1.945436338386379
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Four different ways of describing an operator

Figure: The orthogonal projection on the the third power of the Fourier
invariant Gaussian, i.e. g3 = g .3, P = g3(:) ∗ g3(:)′, viewed in the four
different domains.
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Double preconditioning viewed in the spreading domain

Figure: Looking closer into the difference between identiy operator and
the spreading function of the Gabor frame operator, which according to
the Janssen representation is concentrated on the lattice with lattice
constants (n/b, n/a). Hence only these contributions are presented!
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Sorting a list of lattices according to Janssen test
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condjans.m

Figure: condjansdemo02.pdf: The green line represents the `1(Λ◦)-norm
of Vg (g)(λc), with Vg (g)(0) = ‖g‖1

2 = 1, thus all the lattices with the
blue line below the red threshold of 1 are good lattices
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Comparing different figures of merit

When asking the question, what a good Gabor frames is, we can
give a number of different answers:

the condition number of the Gabor frame operator;

the concentration of the dual Gabor atom g̃ ;

the S0-norm of the dual atom;

the covering properties of the lattice Λ adapted to
contour-lines of Vg (g);

etc. etc. etc.
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Illustrating the covering properties
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Illustrating the covering properties
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MATLAB commands
A=[1 0.5;0 0.866];

warp=z.*(1+abs(z)).^0.4;
dil=1.4;

covellrd(A,warp,dil);

 dilation = 1.4;    ratio long/short axis = 1;    warp function ... f(z) = z.*(1+abs(z)).^0.4
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Comparing different figures of merit
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Figure: The covariant behavior if the different figures of merit as
encouraging and suggest to use the most simple ones
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The landscape of separable lattices for n = 450

Separable TF−lattices for signal length 450
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Figure: The landscape of separable lattices
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Visualization of figures of merit

Figure: demojans003.jpg
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Sampling and periodization

One of the test, whether ideas concerning the “convergence” of a
sequence of finite discrete models being convergent to some
continuous limit is the following consideration:
Assume that we are sampling periodized versions of a continuous
function at a given sampling rate, and then we take a multiple of
the period, and a multiple of the sampling rate, then of course
some of the old (more coarse) samples also belong to the new
sampling set, and thus we can verify whether these values are
convergent at adjacent levels.
We have seen this happen in many concrete cases.
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Sampling and periodization II

-200 -100 0 100 200
0

0.1

0.2

Gaussian

-200 -100 0 100 200
0

0.1

0.2

FT of Gaussian

-200 -100 0 100 200
0

0.1

0.2

periodized sampled Gaussian

-200 -100 0 100 200
0

0.1

0.2

FT of per. sampled Gaussian

Figure: demsampfour1.eps
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Sampling and periodization: TF picture

Figure: demsampfour1.jpg
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Some of the findings during the UnlocX project (EU)

It was one of the main goals of WP3 (workpackage 3) of the FET
network funded by the European Commission to describe “optimal
Gabor families”.
Since it is easy the verify that there is a positive correlation
between a good condition number of the Gabor frame operator
S =

∑
λ∈Λ Pgλ with the redundancy of the underlying lattice it is

easy to verify (at least experimentally) that for e.g. a Gaussian the
optimal choice, for a given redundancy red > 1 is the choice
a =

√
n/red .

But there is another issue, namely the stability of approximation of
slowly varying system (so-called underspread operators by Gabor
multipliers, and here the high redundancy regime does no
provide effectively better approximability, but rather more
We are going to discuss this question in detail below.
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The influence of the NABS-parameter s

The most compact description of all possible lattices is the NABS
format, which is [n, a, b, s], where [n, a, b] describe the usual
lattices with lattice parameters (a, b) and signal length n. The
s-parameter (shift!) tells us how much the columns at distance a
move down in, going from one to the next nonzero column.
The MATLAB commnad nabstolam.m gives output like this

>> nabstolam(6,3,2,1); ans =

1 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 1 0 0
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Illustration of different subgroups
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A collection of good adjoint lattices
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A collection of OK adjoint lattices
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Union of all good adjoint lattices!
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Estimating the density of point sets

Figure: gaudens002.jpg
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’Computational Gabor Analysis: Work ahead’

Although we know quite a bit, there is still much to be done, e.g.

1 2D Gabor-analysis, non-separable case; in particular
information about non-symplectic lattices?

2 slowly varying lattices or& and slowly varying atoms: find
constructive methods via good approximate dual frames;

3 multiwindow setting, also in 2D, etc.

4 computing norms of functions or operators

5 deal with pseudo-differential and Fourier integral operators

6 go into numerical work concerning,
e.g. the Schrödinger’s equation
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Gabor frames and vector fields
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Gabor frames and vector fields II
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Gabor frames and vector fields III
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’And sometimes we just get a nice picture!’
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