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Key aspects of my talk

1 Browse the (long-standing) history of Fourier Analysis
2 Show large number of applications influencing our life
3 Discussing some of the mathematics behind it

(take away the touch of mystery?)
4 Describing time-frequency and Gabor analysis
5 Suggesting ways to teach Fourier Analysis
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Personal Background

Starting as a teacher student math/physics, Univ. Vienna

PhD and habilitation (1974/1979)
in Abstract Harmonic Analysis

Establishing NuHAG (Numerical Harmonic Analysis Group)

Reach out for applications (communication theory, image
processing, astronomy, medicine, musicology,...)

European projects (Marie Curie and EUCETIFA)

Main interest: Function spaces, Fourier Transform

Nowadays: formally retired, but teaching at ETH, DTU,
TUM, with the goal of supporting the applied sciences

As editor to JFAA also the perspective is sharpend.
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Functions, Distributions, Signal Expansions

As a unifying principle that allows me to explain the relevant
points in the historical development of Fourier Analysis in the last
200 years as well as for a better understanding of how we should
teach finally Fourier Analysis in the 21st century I want to focus on
the following aspects:

1 What is a function?

2 What does it mean to represent a function on the basis of its
Fourier coefficients (e.g. Fourier series expansion, ...)

3 How have these concepts changed over time and what was
the effect on the understanding of Fourier Analysis?

NOTE: Recall how the shape of cars is reflecting
the available technology and even mathematics of the time
(plaster model, CAD, Bezier,...).
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Fourier history of in a nut-shell

1 1822: J.B.Fourier proposes: Every periodic function can be
expanded into a Fourier series using only pure frequencies;

2 up to 1922: concept of functions developed, set theory,
Lebesgue integration,

(
L

2(R), ‖ · ‖2

)
;

3 first half of 20th century: Fourier transform for Rd ;

4 A. Weil: Fourier Analysis on Locally Compact Abelian Groups;

5 L. Schwartz: Theory of Tempered Distributions

6 Cooley-Tukey (1965): FFT, the Fast Fourier Transform

7 L. Hörmander: Fourier Analytic methods for PDE
(Partial Differential Equations);
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The Life of Fourier: 1768 - 1830

https://en.wikipedia.org/wiki/Joseph Fourier
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Classical Fourier Series

The classical approach to the theory of FOURIER SERIES appears
in the following form: Looking at the partial sums of the (formally
then infinite) Fourier series we expect them to approximate “any
periodic function” in some sense1:

sN(x) =
a0

2
+

N∑
n=1

[an cos(2πnx) + bn sin(2πnx)]. (1)

Assuming this is possible it is not so hard to find out, using the
properties of the building blocks (cos(x), sin(x), addition rules,
derivatives, integration) that one can expect for any z ∈ R:

an =

∫ z+1

z
f (x) cos(2πnx)dx , bn =

∫ z+1

z
f (x) sin(2πnx)dx . (2)

1For simplicity we assum period 1!
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What are the Ingredients and Questions 1

In my course on Fourier series I was taught (like many classical
talks) that the representation

f (x) ≈ a0

2
+
∞∑
n=1

[an cos(2πnx) + bn sin(2πnx)]. (3)

should be taken only as a “formal expression”, which has to be
formalized using various kinds of mysterious tricks!

But was does this mean?
What kind of concrete, mathematical questions should be asked?
Why and how are summability methods saving the situation,
and in which sense?

Until now Fourier series are seen as a mystery!
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What are the Ingredients 2

First of all we have to note that by the time (1822!!, which was at
the life-time of Carl Friedrich Gauss! [1777-1855]) the modern
concept of a function was not available as it is now. Thanks to
Leonhard Euler ([1707 - 1783]) the complex numbers and their
connection to trigonometric functions had been known

e ix = cos(x) + i sin(x), i =
√
−1. (4)

It was known what polynomials are and how to compute with
them, and even to take “polynomial of infinite degree” (power
series, with well defined regions of uniform convergence), hence
Taylor expansions were known (going back to the English
mathematician Brook Taylor [1685-1731]).

Hans G. Feichtinger Fourier Analysis in the 21st century



History Fourier Analysis in Real Life Modern Teaching Fourier Analysis

What are the Ingredients 3: the Integral

Of course the determination of the coefficients using integrals
(over the period of the involved functions) is one of the corner-
stones of the classical theory, raising some questions:

What is the meaning of an integral in the most general case?

What kind of functions can be integrated (over [a, b]?

What can be said about the Fourier coefficients
(an)n≥0 or (bn)n≥1?

While the foundations of “Calculus” had been laid down by Isaac
Newton [1642 - 1726] and Gottfried Wilhelm Leibniz [1646 - 1716]
long before Fourier it was Bernhard Riemann [1826 - 1866]
who gave a clean definition and showed that e.g. every
continuous function can be integrated over any interval [a, b].
He showed that the Fourier coefficients tend to zero (n→∞).
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What are the Ingredients 4: the Timeline

Another non-trivial part of the reasoning is the computation of the
formula. In fact, it is only a necessary condition on the coefficients
which can be easily obtained, using integrals
Isaac Newton [1642 - 1726]
Gottfried Wilhelm Leibniz [1646 - 1716]

AFTER FOURIER

Bernhard Riemann [1826 - 1866]
Karl Weierstrass [1815-1897]
Henri Leon Lebesgue [1875 - 1941]
Norbert Wiener [1894 - 1964]
Andre Weil [1906 1998]
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What are the Ingredients 5: Perfect Integrals

By the beginning of the 20th century Henri Leon Lebesgue had
developed his integral, and also given lectures on the application of
this new techniques to trigonometric series.
He published a number of important papers between 1904 and
1907 in this direction.
From a modern (functional analytic) view-point his integral, which
included the definition of the so-called Lebesgue spaces such as(
L

1(Rd), ‖ · ‖1

)
or
(
L

2(Rd), ‖ · ‖2

)
(and of course later the

L
p-theory, duality etc.) opened the way to the field of (linear)

functional analysis, which developed rapidly, the foundations
being lead by e.g. David Hilbert [1982 - 1943], Friedrich
Riesz [1880 - 1956] and Stefan Banach [1892 - 1945].
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Convergence Issues: Pointwise

So let us return to the question of convergence: The key question
being: In which sense do the partial sums converge?

In fact, it turned out that a more general problem appeared: What
does convergence mean, and can one form classes of functions
(nowadays Banach spaces or even topological vector spaces of such
objects) such that one can guarantee convergence in those space in
the corresponding norm (or topology).
The classical view-point was of course: Can one establish pointwise
convergence (Dirichlet-conditions, J.P. Lejeune-Dirichlet
[1805-1859])? Or uniform convergence at least for continuous
functions (no, according to A.N.Kolmogorov [1903-1987], already
in 1923 a found a counter-example and in 1926 he was able to
prove that the Fourier series of an L1-function can diverge
everywhere!).
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Convergence Issues: The idea of Summability

Of course one has to mention Lipolt Fejer [1880 - 1959] and a
long list of names pursuing the problems related to summability.

The idea is to change the question from the question of
convergence of the (partial sum) of the Fourier series to the
question of recovering a function from its Fourier coefficients. For
example, Fejer was suggesting to take (as a replacement for the
ordinary partial sums) the arithmetic means of the partial sums.

Fejer’s Theorem of 1900 states that for every continuous periodic
function f the (now known as) Fejer means of the Fourier series
converges uniformly to f .
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Gibb’s Phenomenon: Behaviour at Jumps

Looking at the behaviour of Fourier series of a simple box-function
one can also ask, how to best describe the convergence, noting
that the over/undershooting peaks are just getting narrower as the
number of terms increases.
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Still it is true that this is the best approximations in the
L

2-sense, i.e. in the quadratic mean.
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Dirichlet versus Fejer, zoom in
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Figure: Closeup on Dirichlet or Fejer approximation to box fctn.
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Fejer versus Dirichlet
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Fejer versus Dirichlet approximation

Figure: The box-car function and Gibbs phenomenon, compared .......
with the smoothed version based on Fejer’s summation.
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Convergence Issues: the advent of Hilbert Spaces

Whereas convergence was at the beginning a difficult question it
turned out that the setting of Hilbert space

(
L

2(T), ‖ · ‖2

)
with

the inner product

〈f , g〉 :=

∫ 1

0
f (t)g(t)dt, f , g ∈ L2(T), (5)

allows to formulate the Fourier series expansions in the spirit of an
orthonormal expansions. It became more convenient to use Euler’s
formula for a change of basis from trigonometric functions sin(x)
and cos(x) to the complex exponential functions.
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Orthogonal Expansions, ONBs in Hilbert Spaces

The pure frequencies χn(x) := exp(2πinx), n ∈ Z form a complete
orthonormal system for the Hilbert space H =

(
L

2(T), ‖ · ‖2

)
:

f =
∑
n∈Z
〈f , χn〉χn, f ∈ H, (6)

with unconditional convergence in the L2-norm

‖f ‖2 :=

√∫ 1

0
|f (x)|2.

The coefficients cn := 〈f , χn〉〉, n ∈ Z are uniquely determined and
satisfy Parseval’s equality:

‖f ‖2 =

√∑
n∈Z
|cn|2. (7)
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Almost everywhere convergence, Lusin’s Conjecture

The convergence issue, in the form of Lusin’s conjecture about the
convergence of Fourier series in the pointwise almost everywhere
sense was provided by Lennart in his famous Acta Mathematica
paper of 1966. He showed that for every f ∈ L2(T) the Fourier
series is almost everywhere convergent.

Lennart Carleson On convergence and growth of partial sums of
Fourier series. Acta Math., 116:135–157, 1966.
This result was of course the counterpoint to Kolmogorov’s
negative results in the L1-setting (Kolmogorov was a student of
Lusin).
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Fourier Transform over the Real Line

The work of H.L. Lebesgue paved the way to a clean definition of
the Fourier transform for “functions of a continuous variables” as
an integral transform naturally defined on

(
L

1(R), ‖ · ‖1

)
‖f ‖1 :=

∫
R
|f (x)|dx , f ∈ L1(R). (8)

The (continuous) Fourier transform for f ∈ L1(R) is given by:

f̂ (s) :=

∫
R

f (x)e−2πisxdx , s ∈ R. (9)

With this normalization the inverse Fourier transform looks similar,
just with the conjugate exponent, and thus, under the assumption
that f is continuous and f̂ ∈ L1(R) we have pointwise

f (t) =

∫
R

f̂ (s)e2πistds. (10)
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Plancherel’s Theorem: Unitarity Property of FT

Using the density of L1(R) ∩ L2(R) in
(
L

2(R), ‖ · ‖2

)
it can be

shown that the Fourier transform extends an a natural and unique
way to

(
L

2(R), ‖ · ‖2

)
:

Theorem

The Fourier (-Plancherel) transform establishes a unitary
automorphism of

(
L

2(R), ‖ · ‖2

)
, i.e. one has

‖f ‖2 = ‖f̂ ‖2, f ∈ L2(R),

〈f , g〉 = 〈f̂ , ĝ〉, f , g ∈ L2(R).

In some sense unitary transformations of a Hilbert transform
is like a change form one ONB to another ONB in Rn.
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The Continuous Superposition of Pure Frequencies

This impression is confirmed by the “continuous representation”
formula, using χs(x) = e2πisx , x , s ∈ R. Since we have

f̂ (s) = 〈f , χs〉, s ∈ R,

we can rewrite (formally) the Fourier inversion formula as

f =

∫
R
〈f , χs〉χs , f ∈ L2(R). (11)

This looks like a perfect orthogonal expansion, but unfortunately
the “building blocks” χs /∈ L2(R)!! (this requires f to be in
L

1(R)).
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Convolution and the Fourier Transform

Another important fact about the Fourier transform is the so-called
convolution theorem, i.e. the Fourier transform converts
convolution into pointwise multiplication.
Again it is natural to define convolution on

(
L

1(R), ‖ · ‖1

)
:

f ∗ g(x) =

∫
R

f (x − y)g(y)dy =

∫
R

g(x − y)f (y)dy xa.e.; (12)

‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1, f , g ∈ L1(R).

For positive functions f , g one even has equality. This is relevant
for the determination of probability distributions of a sum of
independent random variables. Assume X has density f and
Y has density g then the random variable X + Y has
probability density distribution f ∗ g = g ∗ f .
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Banach algebras

Theorem

Endowed with the bilinear mapping (f , g)→ f ∗ g the Banach
space

(
L

1(R), ‖ · ‖1

)
becomes a commutative Banach algebra with

respect to convolution.

The convolution theorem, usually formulated as the identity

f̂ ∗ g = f̂ · ĝ , f , g ∈ L1(R), (13)

implies

Theorem

The Fourier algebra, defined as FL1(R) := {f̂ | f ∈ L1(R)}, with
the norm ‖f̂ ‖FL1 := ‖f ‖1 is a Banach algebra, closed under
conjugation, and dense in

(
C0(R), ‖ · ‖∞

)
(continuous functions,

vanishing at infinity).
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Abstract Harmonic Analysis

Jumping into the 40th of the last century one can say that
Abstract Harmonic Analysis was created, with R replaced by a
general a general LCA (locally compact Abelian) group.
In engineering terminology this allows to discuss continuous and
discrete variables, but also periodic or non-periodic functions as
functions on different groups, such as G = Rd ,Zd ,ZN ,Tk etc.,
their product being called elementary groups.
The fundamental fact in all these cases is the existence of an
translation for functions, defined as

[Tz f ](x) = f (x − z), x , z ∈ G,

and the existence of an invariant integral, the so-called Haar
measure (Alfred Haar, [1885 - 1933]).
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Topics of Abstract Harmonic Analysis

The central theme of Harmonic Analysis (according to my advisor
Hans Reiter [1921-1992]) was the study of the Banach algebra(
L

1(G ), ‖ · ‖1

)
, in particular the structure of closed ideals. One of

the central questions is the question of spectral synthesis.
This is a rather involved topic, roughly described as follows:
Can one approximate - in a suitable weak sense - a function f from
finite linear combinations of pure frequencies of those frequencies
which are found “in the signal” f via spectral analysis?
In other words, one considers only this frequencies χs , such that s
belongs to the support of f̂ (i.e. s can be approximated by values
sn with f̂ (sn) 6= 0). Then one expect to approximate f weakly by
trigonometric polynomials tk(x) =

∑n
k=1 ckχsk . The failure of

spectral synthesis for R3 is due to L.Schwartz [1915 - 2002].
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Laurent Schwartz Theory of Tempered Distributions

Laurent Schwartz is mostly known for having introduced the space
of tempered distributions, a topological vector space of
generalized functions or distributions which is invariant under
the Fourier transform.
He starts out by defining the so-called Schwartz space of rapidely
decreasing functions, consisting of all infinitely differentiable
functions on Rd which decay faster at infinity than any polynomial.
This space S(Rd) is naturally endowed with a countable family of
semi-norms, turning the space into a nuclear Frechet space.
The topological dual of S(Rd), i.e. the collection of all linear
functionals σ on S(Rd) satisfying the continuity assumption
fn → f0 in S(Rd) implies σ(fn)→ σ(f0) in C, constitutes
S ′(Rd), the space of tempered distributions.
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The classical setting of test functions & distributions

Schw L1

Tempered Distr.

L2

C0

FL1
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Fourier Transforms of Tempered distributions

The Fourier transform σ̂ of σ ∈ S ′(Rd) is defined by the simple
relation

σ̂(f ) := σ(f̂ ), f ∈ S(Rd).

His construction vastly extends the domain of the Fourier
transform and allows even polynomials to have a Fourier tranform.
Among the objects which can now be treated are also the Dirac
measures δx , as well as Dirac combs tt=

∑
k∈Zd δk .

Poisson’s formula, which expresses that one has for f ∈ S(Rd)∑
k∈Zd

f (k) =
∑
n∈Zd

f̂ (n), (14)

can now be recast in the form

t̂t= tt.
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Sampling and Periodization on the FT side

The convolution theorem, can then be used to show that sampling
corresponds to periodization on the Fourier transform side, with
the interpretaton that

tt· f =
∑
k∈Zd

f (k)δk , f ∈ S(Rd).

In fact, we have
t̂t· f = t̂t∗ f̂ = tt∗ f̂ .

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
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Recovery from Samples

If we try to recover a real function f : R→ R from samples, i.e.
from a sequence of values (f (xn))n∈I , where I is a finite or
(countable) infinite set, we cannot expect perfect reconstruction.
In the setting of

(
L

2(R), ‖ · ‖2

)
any sequence constitutes only set

of measure zero, so knowing the sampling values provides zero
information without side-information.
On the other hand it is clear the for a (uniformly) continuous
function, so e.g. a continuous function supported on [−K ,K ] for
some K > 0 piecewise linear interpolation (this is what MATLAB
does automatically when we use the PLOT-routine) is providing a
good (in the uniform sense) approximation to the given function f
as long as the maximal distance between the sampling points
around the interval [−K ,K ] is small enough.
Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions.
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A Visual Proof of Shannon’s Theorem
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Shannon’s Sampling Theorem

It is kind of clear from this picture that one can recover the
spectrogram of the original function by isolating the central copy
of the periodized version of f̂ by multiplying with some function ĝ ,
with g such that ĝ(x) = 1 on spec(f ) and ĝ(x) = 0 at the shifted
copies of f̂ . This is of course only possible if these shifted copies of
spec(f ) do not overlap, resp. if the sampling is dense enough (and
correspondingly the periodization of f̂ is a course one. This
conditions is known as the Nyquist criterion. If it is satisfied, or
supp(f ) ⊂ [−1/α, 1/α], then

f (t) =
∑
k∈Zd

f (αk)Tαkg(x), x ∈ Rd .
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Lars Hörmander and PDE

Just in order not to leave out an important mathematical
applicatoin area of tempered distributions (and their
generalizations) let us mention the work of Lars Hörmander
[1931-2012]. He as well as Elias Stein (born also in 1931, most of
the time in Princeton) have developed Fourier Methods
tremendously into the multi-dimensional setting.
Their work cannot be summarized in a short talk, but it is clear
that a modern theory of PDE (partial differential operators), or a
fine analysis of functions or distributions on Rn (e.g. in the sense
of micro-local analysis) cannot be thought without them.
Among the heroes of “modern Fourier analysis” let me mention
two of Elias Stein’s students: Charles Feffermann (born 1949)
and Terence Tao (born 1975).
See: Journal of Fourier Analysis and Applications or
Applied and Computational Harmonic Analysis.
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Where do we use Fourier Analysis in our Daily Life?

Perhaps you have to think a bit? But there are MANY
opportunities, and few activities do not involve the use of
FFT-based technology.

1 You use your mobile phone to communicate?

2 You listen to music? (MP3 or WAV-files);

3 You download images? (JPEG format);

4 Your computer communicates with your printer;

5 You watch digital videos?
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Gabor Analysis in our kid’s daily live (MP3)
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Mobile Communication
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Mobile Communication
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Medical Imaging using Tomographs
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Medical Imaging using the Radon Transform
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Tomography and the Radon Transform

Mathematical key idea behind tomography

The tomographic device measures the attenuation of of X-rays
through the tissue along many-many straight lines, between
(rotating) X-ray source and sensor array;

Different tissues have known absorption behaviour, thus
attenuation indicates integrated density along lines;

Mathematically speaking the task is the invert a sampled
Radon transform which can be obtained from these data

After regridding the data arising on a polar grid an IFFT2
provides one possible way to produce images (slices),

Modern Compressed Sensing methods improve further
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Building blocks for Discrete Cosine Transform DCT
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The JPEG compression

The widely used JPEG standard, established by the “Joint
Photographic Experts Group” is based on the discrete cosine
transform, a real version of the Fourier transform (real images give
real coefficients).

First a general image is decomposed into blocks of 8× 8
pixels, (each of them in fact in the range of 0 to
255 = 28 − 1, so one Byte or 8 Bits worth);

Then depending on the chosen compression rate a fixed
number of coefficients, from upper left to lower right corner
(figure below) is stored and transmitted;

Resynthesis from this set of coefficients provides
the decoded image.
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The building blocks for the Discrete Cosine Transform
DCT2
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On the Role of Fourier Analysis within Applied Sciences

Our talk would be endless if we had to explain the use of Fourier
analysis within some modern disciplines, like PDE (Partial Diff.
Equ.), hence Physics or (Theoretical) Chemistry and so on. Let us
just mention:

1 Modern PDE or pseudo-differential operators

2 for Wavelet and Shearlet Theory

3 Fourier integral operators

4 Theory of Function Spaces (Sobolev, Triebel,...)

5 Schrödinger equation, quantum physics

6 Frames, Banach Frames, Riesz projection bases
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From Linear Algebra to Fourier Analysis 1

Given the important role of the Fourier transform in digital signal
processing (audio, images, video, etc.) and the closeness of the
involved algorithms to those taught in Linear Algebra courses it
would make sense to teach Fourier analysis first in the discrete,
finite setting.

Here the DFT (Discrete Fourier Transform), realized as the FFT
(Fast Fourier Transform) is just a change from the standard
orthonormal basis of unit vectors (obtained by shifting the unit
vector at zero along the finite group ZN).

The algebraic properties of unit roots of order N resp. those of
polynomials imply many important properties of the DFT/FFT.

Hans G. Feichtinger Fourier Analysis in the 21st century



History Fourier Analysis in Real Life Modern Teaching Fourier Analysis

Basic Properties of the DFT

Key points implying some of the basic properties of the DFT are:

1 The orthogonality of (discrete) pure frequency vectors implies
the energy preserving property;

2 The matrix realizing the DFT by matrix multiplication is the
Vandermonde matrix for the collection of unit roots, starting
from 1 = ω0, taken in clockwise order;

3 Consequently we can interpret the mapping a→ b := fft(a)
as the mapping of coefficients of a polynomial to its values
over the unit roots of order N;

4 pointwise multiplication (of these values) corresponds to
the Cauchy product, describing the coefficients of the
product polynomial, e.g. binomial law.
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What makes the FFT so fast?

It is a nice mathematical feature that the group structure of ZN

allows to recursively compute FFTs of big length 2N by doing (up
to some simple recomputation) two FFTs of length N. Practically
speaking this comes done to the fact that one can easily combine
the values of a polynomial with even terms only (half length) and
then multiply the odd ones (with coefficients shifte to the even
part) with x and then add:

1 + 2x + 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + 8x7 =

(1 + 3x2 + +5x4 + 7x6) + x(2 + 4x2 + 6x4 + 8x6).

As a consequence FFTs of length 2k , i.e. k = 10, then
210 = 1024 or 29 = 512 are good numbers for image formats.
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A good number for HiFi Music

When it comes to audio applications, the natural number 44100 is
quite popular. It describes the number of samples taken per second
for the recording of a CD or as a typical format for WAV-files.

But why 44100, and not e.g. 44000 or 50000?

First of all the fact the human beings never hear anything beyond
20kHz is the first step of the reasoning. Since sin(2 · 20000πx) has
40000 zeros on any intervall of length 1 it is plausible, that the
Nyquist criterion is satisfied for sampling rates better than 40000
samples per second.
BUT 44100 is such a nice number!! Because it can be written
as (2 · 3 · 5 · 7)2, and it is thus an integer having a lot of
(different) divisors! Still, the FFT of such a length is fast.
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Convolution and time-invariant linear systems

Aside from probability (cf. above) convolution has its role in Linear
Systems Theory, in particular in the mathematical description of
time-invariant linear systems, meaning linear operators T ,
mapping signals f to signals g = T (f ), with time-invariance:

T ◦ Tx = Tx ◦ T , ∀x ∈ G.
A non-trivial, although quite plausible result is the following one

Theorem (hgfei)

Any bounded and translation invariant operator from(
C0(Rd), ‖ · ‖∞

)
into itself (so-called BIBOS system) which

commutes with translation is a moving average by some bounded
measure, i.e. by some element in the dual space of(
C0(Rd), ‖ · ‖∞

)
. In fact, µ(f ) = Tf (0) describes the system,

given by

Tf (x) = [T−xTf ](0) = T (T−x f )(0) = µ(T−x f = Txµ(f ).

This pairing establishes a bijection between the dual space of(
C0(Rd), ‖ · ‖∞

)
(the space of bounded measures

(Mb(Rd), ‖ · ‖Mb
)) and the TILS, which is isometric, i.e. with

‖µ‖Mb
= |‖T |‖C0 .

Since δz(f ) = f (z) corresponds to the operator Tf = T−z f the
usual definition of such a pairing involves in addition the so-called
flip operator f X(x) = f (−x), extended to bounded measures, in
order to be compatible with the usual conventions for convolutions
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Convolution and Fourier Stieltjes transforms

The fact, that the collection of all TILS is not only a Banach
space, but also a Banach algebra under composition of operators
(with the operator norm) allows to transfer this composition rule
to the generating measures.
One can shown, that (Mb(Rd), ‖ · ‖Mb

) is then a Banach algebra
with respect to convolution imposed in this way, containing(
L

1(Rd), ‖ · ‖1

)
as a closed, translation-invariant ideal.

The collection of characters, i.e. the functions χs are the joint
eigenvectors to all these operators, among them the translation
operators. The Fourier transform extends to all of these characters,
and is then often called Fourier Stietjes transform, again with

µ̂1 ∗ µ2 = µ̂1 · µ̂2,

for µ1, µ2 ∈Mb(Rd) (Convolution Theorem for measures).
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Consequences an the Transfer Function

This approach to convolution can be carried out without the use of
measures theory (!), details can be found in my course notes.

In an engineering terminology the measure µ describing the linear
system T via T (f ) = µ ∗ f is the impulse response of the system.
It can be obtained (!proof) as a w∗-limit of input functions tending
to the Dirac measure, e.g. compressed, normalized (in the
L

1-sense) rectungular pulses.

The Fourier (Stieltjes) transform of the system T is know as the
transfer function of the system T , and it is characterized by the
eigen-vector property:

µ(χs) = µ̂(s)χs , s ∈ R.
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A schematic description: all the spaces

S0
Schw

FL1

Tempered Distr.

SO’

L2

C0

L1
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A schematic description: the simplified setting

Testfunctions ⊂ Hilbert space ⊂ Distributions, like Q ⊂ R ⊂ C!
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The way out: Test Functions and Generalized Functions

The usual way out of this problem zone is to introduce generalized
functions. In order to do so one has to introduce test functions,
and give them a reasonable topology (family of seminorms), so
that it makes sense to separate the continuous linear functionals
from the pathological ones. The “good ones” are admitted and
called generalized functions, since most reasonable ordinary
functions can be identified (uniquely) with a generalized function
(much as 5/7 is a complex number!).
If one wants to have Fourier invariance of the space of
distributions, one must Fourier invariance of the space of test
functions (such as S(Rd)). If one wants to have - in addition -
also closedness with respect to differentiation one has to take more
or less S(Rd). BUT THERE IS MORE!
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The Banach space
(
S0(Rd ), ‖ · ‖S0

)
Without differentiability there is a minimal, Fourier and
isometrically translation invariant Banach space (called(
S0(Rd), ‖ · ‖S0

)
or (M1(Rd), ‖ · ‖

M
1)), which will serve our

purpose. Its dual space (S ′0(Rd), ‖ · ‖S ′0 ) is correspondingly the
largest among all Fourier invariant and isometrically translation
invariant “objects” (in fact so-called local pseudo-measures or
quasimeasures, orginally introduced in order to describe translation
invariant systems as convolution operators).
Although there is a rich zoo of Banach spaces around (one can
choose such a family, the so-called Shubin classes - to intersect in
the Schwartz class and their union is corresondingly S ′(Rd)), we
will restrict ourselves to the situation of Banach Gelfand Triples,
mostly related to (S0,L

2,S ′0)(Rd).
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖
L

1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd )

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (15)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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Motivated by MUSICAL SCORE one could do ?
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... and cut the signal into pieces
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... and do localized spectra
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D.Gabor’s suggestion of 1946

Choose the Gauss-function, because it is the unique minimizer to
the Heisenberg Uncertainty Relation and choose the critical,
so-called von-Neumann lattice, which is simply Z2.
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The Gaborian Building blocks
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Phase space lattices/ time-frequency plane
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The Key Players (why is it called TF-analysis)

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rdd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (t, ω) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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Modern Viewpoint I

Todays Rules of the Game

Choose a good window or Gabor atom (any g ∈ S(Rd) will do)
and try to find out, for which lattices Λ ∈ R2d the signal f resp. its
STFT (with that window) can recovered in a STABLE way from
the samples, i.e. from the values 〈f , π(λ)g〉.
We speak of tight Gabor frames (gλ) if we can even have the
expansion (for some constant A > 0)

f = A ·
∑
λ∈Λ

〈f , gλ〉gλ, ∀ f ∈ L2(Rd).

Note that in general tight frames can be characterized as
orthogonal projections of orthonormal bases of larger spaces!!!
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Modern Viewpoint II

Another basic fact is that for each g ∈ S(Rd) one can find, if Λ is
dense enough (e.g. aZ× bZ ⊂ Rd for ab < 1 in the Gaussian
case) a dual Gabor window g̃ such that one has at least

f =
∑
λ∈Λ

〈f , g̃λ〉gλ =
∑
λ∈Λ

〈f , gλ〉g̃λ (16)

g̃ can be found as the solution of the (positive definite) linear
system Sg̃ = g , where Sf =

∑
λ∈Λ〈f , gλ〉gλ, so using g̃ instead

of g for analysis or synthesis corrects for the deviation from the
identity operator. An important fact is the commutation relation
S ◦ π(λ) = π(λ) ◦ S , for all λ ∈ Λ.
Thus (16) is just S ◦ S−1 = Id = S−1 ◦ S in disguise!).

Hans G. Feichtinger Fourier Analysis in the 21st century



History Fourier Analysis in Real Life Modern Teaching Fourier Analysis

Modern Viewpoint III

The possibility of having such tight Gabor frames is resulting from
the continuous reconstruction formula, valid for arbitrary L2-atoms
g . Writing again for λ = (t, ω) and π(λ) = MωTt , and furthermore
gλ = π(λ)g we have in fact for any g ∈ L2(Rd) with ‖g‖2 = 1:

f =

∫
Rd×R̂d

〈f , gλ〉gλdλ.

It follows from Moyal’s formula (energy preservation):

‖Vg (f )‖
L

2(Rd×R̂d )
= ‖g‖2‖f ‖2, f , g ∈ L2. (17)

This setting is well known under the name of coherent frames
when g = g0, the Gauss function. Its range is the Fock space.
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Modern Viewpoint IV

There is a similar representation formula at the level of operators,
where we also have a continuous representation formula, valid in a
strict sense for regularizing operators, which map w∗-convergent
sequences in S ′0(Rd) into norm convergent sequences in(
S0(Rd), ‖ · ‖S0

)
.

T =

∫
Rd×R̂d

〈T , π(λ)〉HSπ(λ)dλ. (18)

It establishes an isometry for Hilbert-Schmidt operators:

‖T‖HS = ‖η(T )‖
L

2(Rd×R̂d )
, T ∈ HS,

where ηT = 〈T , π(λ)〉HS is the spreading function of the operator
T . The proof is similar to the proof of Plancherel’s theorem.
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Gabor Riesz bases and Mobile communication

Another usefulness of “sparsely distributed” Gabor systems comes
from mobile communication:

1 Mobile channels can be modelled as slowly varying, or
underspread operators (small support in spreading domain);

2 TF-shifted Gaussians are joint approximate eigenvectors to
such systems, i.e. pass through was some attenuation only;

3 underspread operators can also be identified from transmitted
pilot tones;

4 Communication should allow large capacity at high reliability.
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Things that you should forget! (dislearn!?)

The concept of linear independence

Definition

A set M ⊂ V within (any) vector space is linear independent if
every finite subset F ⊂ M is linear independent in the usual sense,
i.e. if

n∑
k=1

ci fi = 0 in V ⇒ ~c = ~n ∈ Cn. (19)

shortcoming: Once transferring the question to
infinite-dimensional spaces, in particular to normed spaces, one
should adapt the concept by allowing “infinite linear
combinations”.
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Note: There are books (cf. I.Singer) on the concept of bases in a
Banach space. We would like to say that “every element is uniquely
expanded into a series of elements using the elements of a basis”,
but what does it mean “begin represented”? Should we assume
unconditional convergence, and/or norm convergence. Should
conditional convergence in some weaker topology (e.g. pointwise
convergence) be admitted? Due to the large variety of concepts
even the notion of a basis in a Banach space appears to be
non-trivial! (hence even more the concept of linear independence).
Problem: How should one generalize this to infinite dimensional
settings. Which sequences should be allowed. Exactly
`2-sequences? Should this be done only for so-called Bessel
sequences (fi ) which are such that the mapping

c 7→
∑
i∈I

ci fi

is bounded from `2(I ) to some Hilbert space H, implying
unconditional convergence of the series. Or just (un?)conditional
convergence (in norm or weakly?).Hans G. Feichtinger Fourier Analysis in the 21st century
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Gabor’s suggestion from 1946 (!)

A good example for problems with infinite dimensional spaces is
the collection (let us call it call D. Gabor’s classical family):
Take the family of TF-shifted copies of the standard Gaussian (i.e.
we take the density of the normal distribution, shift it by integers,
and multiply it with pure frequencies which are compatible with
the time-shifts), so each “atom” has a well-defined position on the
integer grid Z and a well defined integer frequency, also in Z if we
use the description of pure frequencies using complex exponential
functions

e2πikx = cos(2πkx) + i · sin(2πkx).
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This family has the following properties:

(pos0) the family is linear independent in the classical sense;

(pos1) the family is total, i.e. the linear combinations of these
building blocks allow to approximate any f ∈ L2(R) to any
precision ε > 0.

(neg1a) if the required precision is increased, i.e. for ε→ 0
the corresponding coefficients do not converge, so there is no
“final/limiting” set of coefficients.

(neg1b) the set is not minimal, i.e. one can remove e.g. one
element (!but not two!) such that the remaining set is still
total.

(neg2) If one wants to represent arbitrary elements from the
Hilbert space L2(R) one should not restrict the attention to
coefficients from `2(Z2d)!
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(pos3) the building blocks are optimally localized in the
TF-sense, because the Gauss-function is providing the
minimizer (Fourier invariant) for the Heisenberg uncertainty
relation.

(neg3a) the coefficients can be obtained using a (quasi-)
biorthogonal system, which can be “computed” (Bastiaans
dual window), but it is in fact not anymore an L2-function,
but only L∞(R).

(neg3b) so strictly speaking we cannot even determine “the
coefficients” by taking ordinary scalar products (should the be
taken using summability methods?? and/or should we allow
alternative forms of convergence??)
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Another well trained sentence is this one:

A series is convergent if the sequence of partial sums is convergent.
Coming to Fourier series this view-point brings a lot of trouble
(or if you prefer: challenging mathematical problems, only
resolved by Carleman in 1972!, after conjectures due to Lusin
from around 1922).
In fact, the interpretation of a series (of function) in the
classical (i.e. the pointwise almost everywhere) setting makes
the problem a (very) hard one, while it is easily resolved if one
puts oneself in the context of a Hilbert space setting, with
convergence being taken in the quadratic mean (the L2-norm).
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Pending application: Removing Fringes in Astronomy ?
as part of an ongoing ESO project in AUSTRIA.
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Motivation for compactness of musical description

1 It is localized (as opposed to the global Fourier transform)

2 Its building blocks are localized pure frequencies, hence
approximate eigenvectors to slowly variant systems;

3 recall that the pure frequencies are a complete system of
eigenvectors for the (commutative algebra) of translation
operators;

4 one has to choose whether one wants to have redundant and
generating families (frames), OR undersampled, linear
independent families (Riesz bases), and one cannot have both,
except with other undesirable properties (Balian-Low principle)
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2D-Gabor Transform: Plane Waves

a plane wave

−200 −100 0 100 200

−200

−100

0

100

200

−200 −100 0 100 200

−1

−0.5

0

0.5

1

a pure frequence: real/imag
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2D-Gabor Analysis: Test Images
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2D-Gabor Transform: Test-Images 2
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Image Compression: a Test Image
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Showing the elementary 2D-building blocks
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(regular) Gabor families: Frames and Riesz bases

Definition

Given a pair (g ,Λ), consisting of a vector g ∈ `2(G ) and a lattice
Λ / G × Ĝ we call the family (gλ)λ∈Λ a Gabor frame, if the family
spans all of `2(G ). It is called a Gaborian Riesz basis (resp. Riesz
basic sequence) if it is a linear independent set.

There are - for people in numerical analysis - quality measures for
the quality of such families, in the sense of a conditioning of the
problem, thus being a quotient of two relevant singular values of
associated operators, we don’t go into details here.
Both situations are of practical relevance!



Usefulness and applications of Gabor frames:

The question of Gabor frames is of interest, when a signal (say
some audio signal, or some image, cf. introduction) is to be
decomposed into meaningful elementary building blocks, somehow
like transcription. Ideally the distribution of energy in the signal
goes over into an equivalent energy distribution. AND WHAT can
we do with this:
a) contributions may be irrelevant (or disturbing) and can be
eliminated (the bird contributing to the open air classical concert):
denoising of signals
b) signals can be separated in a TF-situation
c) unimportant, small contributions can be omitted (+ masking
effect): allows for efficient lossy compression schemes >> MP3.



Applications of Gabor Riesz bases:

Of course Gabor Riesz bases (for subspaces) will correspond to
lattices Λ with at most N points. Ideally, the Gram matrix of the
corresponding system is diagonal dominant (there is the so-called
piano-reconstruction theorem).
They are very useful in mobile communication. The fact, that
smooth envelopes (as used for Gabor frames), multiplied with pure
frequencies are at least approximate eigenvectors for so-called
slowly varying channels makes them useful for mobile
communication. The physical assumption of limited multi-path
propagation (variable kernels over time) and Doppler (due to
movement) related to underspread operators, i.e. to matrices whose
spreading function is supported on a given rectangular domain.



Applications of Gabor Riesz bases:

The information, encoded as a collection of coefficients which we
will call (cλ◦) are used to form a linear combination of the
elements of our Gaborian Riesz basis. I.e. the sender plays slowly a
melody on the piano.
Assume we are able to estimate the approximate eigenvalues (dλ◦

of the involved building blocks (gλ◦ , the approximate eigenvector
property of these building blocks implies that the receiver obtains∑

λ◦ cλ◦dλ◦gλ◦ . Knowing the factors (dλ◦) (by sending so-called
pilot tones) and the biorthogonal basis the receiver can then
(approximately) recover the set of coefficients (cλ◦) sent by the
sender.
In other words, the receiver listens to the music behind a wall,
knowing e.g. that higher frequencies are absorbed more (or less)
then others and figures out, what has been played.



The (canonical) dual Gabor frame

This greatly simplifies the calculation of (minimal norm)
coefficients for the given signal. In fact, it is found that the
solution g̃ of the simple (positive definite) linear equation

Sg̃ = g resp. g̃ = S−1g ,

spans the dual Gabor frame. In fact FFT-based methods can be
applied to efficiently calculate these coefficients, once g̃ is given.
Sometimes alternative sets of coefficients are equally useful.
For the solution of the above equations various iterative methods,
e.g. conjugate gradients, can be applied .



dual atoms and Gabor multipliers

It is clear, that one actually would like to build an arbitrary signal f
given the pair (g ,Λ) (in the frame case), or at least do the best
approximation of f by linear combinations from the Gabor family
in the Riesz basis case. In both cases one has a number of choices,
but the canonical one (related to PINV resp. to the associated
MNLSQ-problem is the one usually preferred.
The appropriate coefficients are then obtained by taking scalar
products with respect to the correspondig “dual” family, which is
numerically efficiently implemented by doing a sampled STFT
(using FFT-based methods).
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Operating on the audio signal: filter banks
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Finally let us operate on the Gabor coefficients

Definition

Let g1, g2 be two L2-functions, Λ a TF-lattice for Rd , i.e. a discrete
subgroup of the phase space Λ C Rd × R̂d . Furthermore let
m = (m(λ))λ∈Λ be a complex-valued sequence on Λ. Then the
Gabor multiplier associated to the triple (g1, g2,Λ) with (strong
or) upper symbol m is given as

Gm(f ) = Gg1,g2,Λ,m(f ) =
∑
λ∈Λ

m(λ)〈f , π(λ)g1〉π(λ)g2. (20)

g1 is called the analysis window, and g2 is the synthesis window. If
g1 = g2 and m is real-valued, then the Gabor multiplier is
self-adjoint. Since the constant function m ≡ 1 is mapped into the
Identity operator if g1 = g2 is a Λ-tight Gabor atom this is often
the preferred choice.



The family of projection operators (Pλ)

Theorem

Assume that (g ,Λ) generates an S0-Gabor frame for L2(Rd), with
‖g‖2 = 1, and write Pλ for the projection f 7→ 〈f , π(λ)g〉π(λ)g .
i) Then the family (Pλ)λ∈Λ is a Riesz basis for its closed linear span
within the Hilbert space HS of all Hilbert-Schmidt operators on
L

2(Rd) if and only if the function H(s), defined as the Λ-Fourier
transform of

(
|STFTg (g)(λ)|2

)
λ∈Λ

is does not have zeros.
ii) An operator T belongs to the closed linear span of this Riesz
basis if and only if it belongs to GM2, the space of Gabor
multiplier with `2(Λ)-symbol.
iii) The canonical biorthogonal family to (Pλ)λ∈Λ is of the form
(Qλ)λ∈Λ,

Qλ = π(λ) ◦ Q ◦ π−1(λ) for λ∈Λ,

for a uniquely determined Gabor multiplier Q ∈ B.
iv) The best approximation of T ∈ HS by Gabor multipliers based
on the pair (g ,Λ) is of the form

PG (T ) :=
∑
λ∈Λ

〈T ,Qλ〉HS Pλ. (21)

Hence PG describes the orthogonal projection from HS onto
GM2(g ,Λ).
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Summarizing the situation: test functions & distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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A few relevant references

K. Gröchenig: Foudations of Time-Frequency Analysis,
Birkhäuser, 2001.
H.G. Feichtinger and T. Strohmer: Gabor Analysis, Birkhäuser,
1998.
H.G. Feichtinger and T. Strohmer: Advances in Gabor Analysis,
Birkhäuser, 2003.
G. Folland: Harmonic Analysis in Phase Space. Princeton
University Press, 1989.
I. Daubechies: Ten Lectures on Wavelets, SIAM, 1992.
Some further books in the field are in preparation, e.g. on
modulation spaces and pseudo-differential operators.
See also www.nuhag.eu/talks.
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Added in proof! last night

Time-Frequency Analysis and Black Holes

Breaking News

Today, Oct. 3rd, 2017, the Nobel Prize in Physics was awarded
to three physicists who have been key figure for the LIGO
Experiment which led last year to the detection of Gravitational
Waves as predicted 100 years ago by Albert Einstein!
The Prize-Winners are

Rainer Weiss, Barry Barish und Kip Thorne.
They have supplied the key ideas to the so-called LIGO experiment
which has meanwhile 4-times verified the existence of Gravitational
waves by means of a huge laser-inferometric setup. The first
detection took place in September 2016.
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The shape of gravitational waves

Einstein had predicted, that the shape of the gravitaional wave of
two collapsing black holes would be a chirp-like function,
depending on the masses of the two objects.
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Gravitational waves and Wilson bases

There is not enough time to explain the details of the huge signal
processing task behind these findings, the literal “needle in the
haystack”.
There had been two strategies:

Searching for 2500 explicitely determined wave-forms;

Using a family of 14 orthonormal Wilson bases in order to
detect the gravitational waves.

The very first was detected by the second strategy, because the
masses had been out of the expected range of the predetermined
wave-forms.
NOTE: Wilson bases are cooked up from tight Gabor frames of
redundancy 2 by pairing them, like cos(x) and sin(x) using
Euler’s formula (in a smart, woven way).
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THANK YOU

Thank you for your attention and the
honour of giving this
16th Jarnik Lecture

at Charles University in the nice city
of Prague!

More at www.nuhag.eu
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