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1 Why Mathematical Understanding?



Curiosity

It is the guiding principle of
many applied mathematicians
that if something mathematical
works really well, there must be
a good underlying mathematical
reason for it, and we ought to be
able to understand it.
[Ingrid Daubechies. Big Data’s
Mathematical Myteries, Quanta

Magazine (2015)]



Improve Usability/Availability

∼ 800 page book explaining various
ad-hoc tricks, which are necessary for

good performance.
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Electricity bill for one game of AlphaGo:∼ 3000 USD
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Today’s Focus: Vanilla Neural Networks Regression

Neural Network Hypothesis Class

Given d , L,N1, . . . ,NL and σ define the associated hypothesis class

H[d ,N1,...,NL],σ :={
ALσ (AL−1σ (. . . σ (A1(x)))) : A` : RN`−1 → RN` affine linear

}
.

Simplest Regression/Classification Task

Given data z = ((xi , yi ))mi=1 ⊂ Rd ×RNL , find the empirical regression
function

fz ∈ argminf ∈H[d,N1,...,NL],σ

m∑
i=1

L(f , xi , yi ),

where L : C (Rd)× Rd × RNL → R+ is the loss function (in least
squares problems we have L(f , x , y) = |f (x)− y |2).
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Example: Handwritten Digits

MNIST Database for hand-
written digit recognition
http://yann.lecun.com/

exdb/mnist/

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit
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Example: Handwritten Digits

Every image is given as a
28× 28 matrix
x ∈ R28×28 ∼ R784:

Every label is given as a
10-dim vector y ∈ R10

describing the ‘probability’
of each digit

Given labeled training
data
(xi , yi )

m
i=1 ⊂ R784 × R10.

Fix network topology, e.g.,
number of layers (for
example L = 3) and
numbers of neurons
(N1 = 20, N2 = 20).

The learning goal is to
find the empirical
regression function
fz ∈ H[784,20,20,10],σ.

Typically solved by
stochastic first order
approximation methods.
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1 Approximation Power of (Convolutional) Neural Networks

2 Convergence Properties of Stochastic Optimization Algorithms

3 Generalization of Neural Networks

4 Invariances and Discriminatory Properties
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2 Convergence Properties of Stochastic Optimization Algorithms

3 Generalization of Neural Networks

4 Invariances and Discriminatory Properties



1. Approximation Power



Universal Approximation Theorem

Theorem [Cybenko (1989), Hornik (1991 )]

Suppose that σ : R→ R continuous is not a polynomial and fix
d ≥ 1, L ≥ 2,NL ≥ 1 ∈ N and a compact subset K ⊂ Rd . Then for
any continuous f : Rd → RNL and any ε > 0 there exist
N1, . . . ,NL−1 ∈ N and affine linear maps A` : RN`−1 → RN` ,
1 ≤ ` ≤ L such that the neural network

Φ(x) = ALσ (AL−1σ (. . . σ (A1(x)))), x ∈ Rd ,

approximates f to within accuracy ε, i.e.,

sup
x∈K
|f (x)− Φ(x)| ≤ ε.

Does not imply any quantitative results (e.g., how many nodes
to achieve a desired accuracy?).
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A Quantitative Universal Approximation Theorem

Theorem [Maiorov - Pinkus (1999)]

There exists an activation function σ : R→ R that is smooth,
monotone increasing and sigmoidal (limt→∞ σ(t) = 1 and
limt→−∞ σ(t) = 0) with the following property: For any ε > 0, any
d ≥ 1, any compact subset K ⊂ Rd and any continuous
f : Rd → RNL there exist affine linear maps A1 : Rd → R3d ,
A2 : R3d → R6d+3, A2 : R6d+3 → RNL such that the neural network

Φ(x) = A3σ (A2σ (A1(x))), x ∈ Rd ,

approximates f to within accuracy ε, i.e.,

sup
x∈K
|f (x)− Φ(x)| ≤ ε.

In other words, we can approximate any function up to any accuracy
with a fixed number of coefficients????
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A Meaningful Notion of Approximation

Definition

Let K ⊂ Rd be compact. Any C ⊂ L2(K ) that is relatively compact
is called a regression problem class.

Definition

Let σ : R→ R be an activation function and denote NNM,σ,R the
set of neural networks with activation function σ and at most M
coefficients which are all bounded by R.

Definition [Bölcskei-G-Kutyniok-Petersen (2017)]

A regression problem class C has effective approximation rate γ if
there exists a constant C > 0 and a polynomial π with

sup
f ∈C

inf
Φ∈NNM,σ,π(M)

‖f − Φ‖L2(K) ≤ C ·M−γ .
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Why is this Meaningful?

Effective approximation rate implies efficient storage!

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] Informal Version)

If C has effective approximation rate γ, then every f ∈ C can be
approximated to within error N−γ by a neural network whose
topology and quantized coefficients can be stored with C · N · log(N)
bits.

Effective approximation rate correlates with complexity of regression
problem class!

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] Informal Version)

Let s(C) be the Kolmogorov entropy of C (a measure of complexity
that can be computed). Then γ ≤ 1/s(C). In particular, this scaling
between accuracy and complexity has to be obeyed by all learning
algorithms!
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...or more formally...

Theorem [Bölcskei-G-Kutyniok-Petersen (2017)]

Consider any learning algorithm Learn : (0, 1)× C → NN (NN
being the class of neural networks) which satisfies

sup
F∈C
‖F − Learn(ε,F )‖ ≤ ε

and the weights of Learn(ε,F ) at most growing polynomially in ε−1.

Then, for each γ < γ∗(C) there exists a regression problem F ∈ C
with

sup
ε∈(0,1)

εγ · size(Learn(ε,F )) =∞.

Coefficients in Pinkus’ network are so large that they cannot be
stored!
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...we can finally ask a meaningful question

Definition [Bölcskei-G-Kutyniok-Petersen (2017)]

Neural networks are optimal for a regression problem class C if C has
effective approximation rate γ for all γ < 1/s(C).

Questions

Characterize the regression problem classes for which neural
networks are optimal!

What architectures (deep, shallow,...) are good for which
regression problem classes?
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What is Known

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] Informal Version)

Let C be a ball of any classical approximation space (for example
Sobolev, Besov, Shearlet, Kernel Approximation Space, piecewise
smooth functions on submanifolds, ...). Then neural networks are
optimal for C.

This means neural networks are as good as all classical ‘linear’
methods combined!

They are even better: Result remains true if signal class is
defined on a submanifold and/or is warped by a smooth
diffeomorphism.



What is Known

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] Informal Version)

Let C be a ball of any classical approximation space (for example
Sobolev, Besov, Shearlet, Kernel Approximation Space, piecewise
smooth functions on submanifolds, ...). Then neural networks are
optimal for C.

This means neural networks are as good as all classical ‘linear’
methods combined!

They are even better: Result remains true if signal class is
defined on a submanifold and/or is warped by a smooth
diffeomorphism.



What is Known

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] Informal Version)

Let C be a ball of any classical approximation space (for example
Sobolev, Besov, Shearlet, Kernel Approximation Space, piecewise
smooth functions on submanifolds, ...). Then neural networks are
optimal for C.

This means neural networks are as good as all classical ‘linear’
methods combined!

They are even better: Result remains true if signal class is
defined on a submanifold and/or is warped by a smooth
diffeomorphism.



A Detour: Sparse Coding

Given a dictionary D = (ϕi )i∈N ⊂ L2(Γ), approximate every
F ∈ C by optimally sparse linear combinations of D, i.e.∑

i∈J
ciϕi

with |J| as small as possible.

For most known C there exists a specific optimal dictionary that
achieves the optimal tradeoff between sparsity (∼ codelength!)
and approximation error, as dictated by γ∗(C).

Examples: Textures ↔ Gabor frames (JPEG), point singularities
↔ wavelets (JPEG2000), line/hyperplane singularities ↔
ridgelets, curved/hypersurface singularities ↔ (α-)curvelets.
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Transferring Optimality

Definition [Bölcskei-G-Kutyniok-Petersen (2017)]

A dictionary D = (ϕi )i∈N is representable by neural networks if for all
ε > 0 and i ∈ N there is Φi ,ε ∈ NN with O(1) nonzero weights,
growing at most polynomially in i · ε−1 with

‖ϕi − Φi ,ε‖ ≤ ε.

Theorem [Bölcskei-G-Kutyniok-Petersen (2017)]

Suppose that the dictionary D is optimal for the class C and suppose
that D is representable by neural networks. Then neural networks are
optimal for the regression class C.
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The Good News

Theorem ([Bölcskei-G-Kutyniok-Petersen (2017)] informal version)

All known (affine) dictionaries are representable by (shallow) neural
networks (under weak assumptions on the activation function).

Neural network regression is as powerful as regression
with all known dictionaries, combined and in particular optimal for all
corresponding problem classes!
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Related Results

[Montufar (2014)] shows that the number of linear regions in ReLU
networks grows exponentially for deep networks and only polynomially
for shallow networks

[Bianchini, Scarselli
(2014)] showed
analogous results for
Betti numbers of level
sets.

It seems that deep networks are better at approximating highly
oscillating textures with fractal structure, but no precise
characterization yet!
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High-Dimensional PDEs

Consider for example the Black-Scholes equation where we want to
compute the prize V (0, x) of an option depending on a financial
portfolio x ∈ Rd subject to

Vt +div(A(x) ·∇V ) +b(x) ·∇V − f (V ,∇V ) = 0, V (T , x) = g(x),

where g models the prize of of the option g at terminal time T .
Typical options (maximum call) are of the form

g(x) = max(
d

max
i=1

xi − X , 0).
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Deep DBSE Solver

[E, Han, Jentzen (2017)] solve high-dimensional (>100d) parabolic
PDEs using deep neural networks, essentially using a vanilla
tensorflow implementation and achieving efficiency beyond the
current state-of-the-art!

Question

Why does this work so well? Can we establish a neural network
approximation theory for solutions of PDEs?



Deep DBSE Solver

[E, Han, Jentzen (2017)] solve high-dimensional (>100d) parabolic
PDEs using deep neural networks, essentially using a vanilla
tensorflow implementation and achieving efficiency beyond the
current state-of-the-art!

Question

Why does this work so well? Can we establish a neural network
approximation theory for solutions of PDEs?



A Hint

Observation

The maximum call option can be expressed by neural networks with
∼ log2(d) and nodes!

Proof:

max(x1, x2, x3, x4) = max(max(x1, x2),max(x3, x4))

and
max(x , y) = x + ReLU(y − x).

Depth is Necessary!

One can show that high-dimensional options cannot be approximated
well by shallow networks (related methods for circuits in [Hastad
(1986)] and [Kane-Williams (2016)])!
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Related Work

[Mhaskar, Liao, Poggio (2014)] consider compositional functions for
example of the form

f (x1, . . . , x8) =

h3 (h21 (h11(x1, x2), h12(x3, x4)) , h22 (h13(x5, x6), h14(x7, x8))) ,

with hij smooth.



Summary

What we Know

Deep Networks are better than shallow networks if the function to be
approximated is

fractal, texture-like

high-dimensional with compositional structure.

Open Questions

Build general framework/theory!

Which high-dimensional problems have compositional structure?

PDE Regularity theory for neural networks?

How to approximate a large neural network by a smaller one?

How about convolutional networks?

Why do neural networks with SGD generalize despite their huge
capacity?
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2. Stochastic Optimization Algorithms



Vanilla SGD

Let fθ be a neural network with parameters θ.

Empirical Risk minimization seeks the minimizer θ∗ of

θ 7→ 1

n

m∑
i=1

|fθ(xi )− yi |2.

SGD computes updates as

θn+1 := θn − νn+1∇θ
(
|fθ(xin)− yin |2

)
,

where νn+1 is the learning rate and the indices in are chosen
uniformly and independently.

In general nothing can be said about global convergence.
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What is Known

Strong Convergence

For SGD applied to a convex problem we have, for appropriate
learning rates

E|θn − θ∗| .
1

n1/2−ε ,

and this cannot be improved.

Weak Convergence [G-Jentzen (2017)]

For SGD applied to a convex problem we have, for appropriate
learning rates and every C 2 function ψ

|Eψ(θn)− ψ(θ∗)| .
1

n1−ε ,

and this cannot be improved.

Of course neural network ERM is highly non-convex!
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Can we Leverage Convexity?

Non-convexity stems from the parameterization Π(θ) := fθ.

The function F (f ) := 1
m

∑m
i=1(f (xi )− yi )

2 is convex.

Now suppose for a moment that the set NN of neural networks
over which we optimize is convex.

Let θ∗ be a local minimum. Then (if Π is nice) fθ∗ is a local
minimum of the convex function F over the convex set NN .

Consequently, fθ∗ is a global minimum of F !

Of course the hypothesis class NN is not convex and we don’t
know anything about Π!

Question

Is every local minimum of the neural network ERM problem also a
global minimum?
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What is Known

Theorem [Kawaguchi (2016)]

The answer is ’yes’ for linear activation functions.

Observation

If NN is nearly convex (meaning that convex combinations of neural
networks can be very well approximated by neural networks) then
every local minimum is almost a global minimum.

Question

How well can convex combinations of neural networks be
approximated by neural networks of the same size? Does ”almost
convexity” improve with the size?
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Understanding the Parameterization Π

Question

How are the parameters θ and the function Π(θ) related?

Theorem [Fefferman (1992)]

For a sigmoidal activation function, the parameters (i.e., the
architecture and the coefficients) are uniquely determined by fθ, up to
trivial symmetries and for almost all networks.

Proof is deep and beautiful. But it is doubtful that it can be cast
into a stable algorithm.
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Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun

its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics

most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open

it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures

new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Summary

Deep Learning is a great field of research for mathematicians:

it is highly relevant, exciting and fun
its problems involve deep mathematics
most problems are completely open
it is interdisciplinary

Possible contributions include:

more informed design choices for network architectures
new algorithmic paradigms (for example optimal network
compression or better optimization algorithms)

interaction between different fields will be crucial!



Thank You!

Questions?


