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Major Research Topics in Harmonic Analysis

A word of orientation!

Central questions in Harmonic Analysis are connected with
properties of a variety of Banach spaces of (generalized) functions,
bounded operators between them, but also Banach algebras, e.g.(
L

1(G ), ‖ · ‖1

)
with respect to convolution, or intertwining

operators. In many cases one has by now rather good knowledge
concerning unconditional bases for such spaces, or at least Banach
frames or atomic decompositions.
Having a sufficiently broad basis in this field allows to ask
(and answer!) more interesting questions (sometimes with
less effort) compared to a mindset where “classical spaces
are given and sacrosanct” (e.g. Lp-spaces only), see [4, 5].
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The Landscape of Function Space Theory

The territory of “function spaces” is vast, and even the term
itself is subject to quite different interpretations. We would like to
understand it in the spirit of Hans Triebel’s “Theory of Function
Spaces”, which means Banach spaces of functions or (usually
tempered) distributions (maybe ultra-distributions). Many of these
function spaces have been introduced to allow a clean description
of certain operators.
Function spaces are prototypical objects in functional analysis and
many general principles have been first developed in the context of
function spaces, while on the other hand the abstract principles of
linear functional analysis can be quite nicely illustrated by
applying them to (new and old) function spaces.

A listing of examples would be another talk.
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The Landscape of Function Space Theory, II

Over the years I have developed a “symbolic language” for the
different function spaces which should help to better understand
the relative inclusion relations.

Schw L1

Tempered Distr.

L2

C0

FL1
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Choice of Spaces and Criteria

In my article [4] entitled “Choosing function spaces...” I argue,
that - similar to real life - those function spaces which serve a
purpose, which can be shown to be useful in different situations,
the ones which are easy to use and/or help to derive strong results
will gain popularity, should be taught and studied more properly,
then those who are just “fancy” or which “can be constructed”,
because at the end the possible gain of using a very complicated
function space to derive a statement which in practice is almost
impossible to be applied is very modest.
Of course it is a long way from the suggestion to discuss criteria of
usefulness comparable to what is in real-life a consumer report, but
I am convinced that such an approach is important for a
healthy development of the community. It will help us to keep
contact with any kind of applications, and reduces the risk of
abstract and finally complicated but close to useless theorems.
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Goals of my presentation

Since I have made extensive use of Wiener amalgam spaces I can
present a long list of arguments why they represent a relevant
construction scheme for function spaces. In summary I would like
to discuss:

1 Motivate the use of Wiener amalgam spaces ;

2 Define and characterize Wiener amalgam spaces W (B,C );

3 Indicate where and why they are useful;

4 Specifically discuss S0(Rd) = W (FL1, `1)(Rd);

5 Indicate their role for Gabor analysis;
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The classical “Wiener-type spaces”

The fact, that there are no inclusions between any two of the
spaces

(
L
p(Rd), ‖ · ‖p

)
, with 1 ≤ p ≤ ∞ has global (in one

direction) and local (in the other direction) reasons.
W (Lp, `q)(Rd)
The Wiener amalgam spaces W (Lp, `q)(Rd) allow to get rid of
these restrictions, because they behave locally like Lp while
globally their behaviour is that of `q. The family of these spaces is
(more or less) closed under duality, under complex interpolation,
but also pointwise multiplications and convolutions respect the
local and the global component independently!
See [3]
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Recalling the concept of Wiener Amalgam Spaces

Wiener amalgam spaces are a generally useful family of spaces
with a wide range of applications in analysis. The main motivation
for the introduction of these spaces came from the observations
that the non-inclusion results between spaes

(
L
p(Rd), ‖ · ‖p

)
for

different values of p are either of local or of global nature. Hence it
makes sense to separate these to properties using BUPUs.

Definition

A bounded family Ψ = (ψn)n∈Zd in some Banach algebra
(A, ‖ · ‖A) of continuous functions on Rd is called a regular
Uniform Partition of Unity if ψn = Tαnψ0, n ∈ Zd , 0 ≤ ψ0 ≤ 1,
for some ψ0 with compact support, and∑

n∈Zd

ψn(x) =
∑
n∈Zd

ψ(x − αn) = 1 for all x ∈ Rd .
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Illustration of the B-splines providing BUPUs
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Recalling the concept of Wiener Amalgam Spaces II

Note that one can define the Wiener amalgam space W (B, `q)
by the condition that the sequence ‖f ψn‖B belongs to `q(Zd) and
its norm is one of the (many equivalent) norms on this space.

Different BUPUs define the same space and equivalent norms.
Moreover, for 1 ≤ q ≤ ∞ one has Banach spaces, with natural
inclusion, duality and interpolation properties.
Many known function spaces are also Wiener amalgam spaces:

L
p(Rd) = W (Lp, `p), same for weighted spaces;

Hs(Rd) (the Sobolev space) satisfies the so-called `2-puzzle
condition (P. Tchamitchian): Hs(Rd) = W (Hs , `

2),
and consequently for s > d/2 (Sobolev embedding) the
pointwise multipliers (V. Mazya) equal W (Hs , `

∞).
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Minimality of Wiener’s algebra

The Wiener amalgam spaces are essentially a generalization of the
original family W (Lp, `q), with local component Lp and global
q-summability of the sequence of local Lp norms.
In contrast to the “scale” of spaces

(
L
p(Rd), ‖ · ‖p

)
, 1 ≤ p ≤ ∞

which do not allow for any non-trivial inclusion relations we have
nice (and strict) inclusion relations for p1 ≥ p2 and q1 ≤ q2:

W (Lp1 , `q1) ⊂W (Lp2 , `q2).

Hence W (L∞, `1) is the smallest among them, and W (L1, `∞) is
the largest among them. The closure of the space of test
functions, or also of Cc(Rd) in W (L∞, `1) is just Wiener’s
algebra

(
W (C0, `

1)(Rd), ‖ · ‖W
)
, which was one of Hans

Reiter’s list Segal algebras. It can also be characterized as
the smallest of all solid Segal algebras.
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Introducing Modulation Spaces

Having the possibility to define Wiener amalgam spaces with
FLp(Rd) (the Fourier image of Lp(Rd) in the sense of
distributions) as a local component allowed to introduce
modulation spaces in analogy to Besov spaces, replacing more or
less the dyadic decompositions on the Fourier transform side by
uniform ones.
Formally one can define the (unweighted) modulation spaces as

M
p,q(Rd) := F−1 (W (FLp, `q)) . (1)

or more generally the now classical modulation spaces

M
s
p,q(Rd) := F−1

(
W (FLp, `qvs )

)
. (2)
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Fourier invariant modulation spaces

It is an interesting variant of the classical Hausdorff-Young
theorem to observe that one has

Theorem

For 1 ≤ r ≤ p ≤ ∞ one has

F(W (F p, `r )) ⊆W (F r , `p);

and as a consequence for 1 ≤ p, q ≤ 2:

F(W (Lp, `q)) ⊆W (Lq
′
, `p

′
).
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The Banach Gelfand Triple (S0,L
2,S ′0)(Rd)

Within the family of Banach spaces of (tempered) distributions of
the form M

p,q(Rd) we have natural inclusions. The smallest in
this family is the space M1,1

0 (Rd) = S0(Rd), which is a Segal
algebra and the smallest non-trivial Banach space isometrically
invariant under time-frequency shifts.
It is Fourier invariant, as well as all the spaces Mp := M

p,p, with
1 ≤ q ≤ ∞. This last mentioned space M∞(Rd) coincides with
S
′
0(Rd), the dual of S0(Rd), and is the largest TF-invariant

Banach space.
In the middle we have the space M2 := M

2,2 = W (FL2, `2).
Together the triple of space (S0,L

2,S ′0)(Rd) forms a so-called
Banach Gelfand Triple which is highly useful for many
applications (especially TF-analysis).
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My favorite Function Space plot
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Usefulness of S0(Rd) in Fourier Analysis

Most consequences result form the following inclusion relations:

L
1(Rd) ∗ S0(Rd) ⊆ S0(Rd);

FL1(Rd) · S0(Rd) ⊆ S0(Rd);

(S ′0(Rd) ∗ S0(Rd)) · S0(Rd);

(S ′0(Rd) · S0(Rd)) ∗ S0(Rd);

1 S0(Rd) is a valid domain of Poisson’s formula;

2 all the classical Fourier summability kernels are in S0(Rd);

3 modelling of stationary stochastic processes;

4 the elements g ∈ S0(Rd) are the natural building blocks
for Gabor expansions;
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Sampling and Wiener amalgam spaces

Irregular sampling often takes place over point sets which have, at
a rough scale, a kind of uniform density. The natural terminology
for this setting turns out to be given by the following definition:

Definition

An indexed family (yj)j∈J in a metric space is uniformly separated,
if there is a positive δ > 0 such that d(yj , yj ′) ≥ δ for all pairs
j 6= j ′. A family of points (xi )i∈I in Rd is called relatively separated
if it is the finite union of uniformly separated sets.
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Sampling and Wiener amalgam spaces, II

The typical function spaces which allow reconstruction from
sufficiently dense samples can be well described by means of
Wiener amalgam spaces, typically of the form W (C0, `

p).

The classical Shannon Sampling Theorem tells us that the
reconstruction of a band-limited function f ∈ L2(Rd) from
sufficiently dense (regular) samples can be realized by a series
expansion, involving shifted copies of a template function g (which
satisfies ĝ(s) ≡ 1 on Ω, the spectral support of f .

f =
∑
λ∈Λ

f (λ)Tλg . (3)
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Sampling and Wiener amalgam spaces, III

A crucial argument in the proof results about irregular sampling,
i.e. about the “complete reconstruction” of smooth (e.g.
band-limited) functions or functions in spline-type spaces (e.g.
cubic spline functions in Lp) involves a suitable characterization
sampling sets.

1 On the space of band-limited functions (for Ω compact)

Bp
Ω := {f ∈ Lp(Rd) | supp(f̂ ) ⊆ Ω}

the Lp-norm and the W (C0, `
p)-norm are equivalent;

2 Sampling such a function at a lattice Λ = A(Zd) results in a
measure in W (M , `p), because

∑
λ∈Λ δλ ∈W (M , `∞), hence∑

λ∈Λ

f (λ)δλ = f ·
∑
λ∈Λ

δλ ∈W (C0, `
p)·W (M , `∞) ⊆W (M , `p).

3 The Shannon-type series expansion (3) is convergent in
W (C0, `

p), in particular in
(
L
p(Rd), ‖ · ‖p

)
and uniformly.
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Sampling and Wiener amalgam spaces, IV

Theorem

Let X = (xi )i∈I be relatively separated set, µX =
∑
δxi :

1 c = (ci ) ∈ `p(I ) iff
∑

i∈I ciδxi ∈W (M, `p) and

‖
∑

i∈I ciδxi‖W (M,`p) ≤ ‖c‖`p . ‖µ‖W (M,`p) .

2 For g ∈W (C0, `1) and c = (ci ) ∈ `p(I ),
∑

i∈I ciTxig =(∑
i∈I

ciδxi

)
∗ g ∈W (M, `p) ∗W (C, `1) ⊆W (C, `p) .

3 h ∈W (C, `p) implies

h · µ =
∑
i∈I

f (xi )δxi ∈W (C, `p) · W (M, `∞) ⊆W (M, `p) .
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Sampling and Wiener amalgam spaces, IV
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Sampling and Wiener amalgam spaces, IV
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Sampling and Wiener amalgam spaces, IV

The important advantage of methods which rely on Wiener
amalgam space methods compared to the classical approach is the
fact that estimates do not rely anymore on variants of Poisson’s
formula but on convolution relations for Wiener amalgam spaces
going back to [3].
The general setup of Wiener amalgam spaces provides the
advantage that the constants involved do not depend on the choice
of the concrete local or global components. They are rather
independent of such choices and thus corresponding results are
valid for families of spaces. This is important in the following
sense, which I will describe by a story related to irregular sampling.
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Sampling results for families of spaces

It is clear that sampling results which are only valid for the Hilbert
space B2

Ω are much less relevant for applications than similar
results which are valid for a range for spaces, say Bp

Ω.

Theorem

Given a compact subset Ω ⊂ R̂d there exists some δ > 0 such that
for every δ − dense family (xi )i∈I in Rd the following is true:
There exists an iterative algorithm, mapping functions from
W (C0, `

p) into itself for any p ∈ [1,∞), with the property, that
the only input required is information about the set Ω (in fact its
diameter) and the sampling values of (f (xi ))i∈I , which is
convergent at a geometric rate (depending on the density of the
sampling set), uniformly over the full range of parameters p,
providing convergence to f in the W (C0, `

p)-norm, for any
Ω-bandlimited function in Lp(Rd).
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Crucial Ingredients

The essential ingredients are the following facts

1 Every band-limited function f ∈ Lp(Rd) (for any p ∈ [1,∞])
satisfies f = f ∗ g if g ∈W (C0, `

1) with ĝ(ω) = 1 for ω ∈ Ω;

2 Given a δ−dense family (xi )i∈I one can form a partition of
unity Φ = (φi )i∈I with supp(φi ) in Bδ′(xi ), i ∈ I .

3 SpΦ f :=
∑

i∈I f (xi )φi is close to f in W (C0, `
p)-sense:

|(SpΦ f − f )(x)| ≤ oscδf (x), x ∈ Rd ,

with oscδf (x) = max|u|≤δ |f (x)− f (x + u)|.
4 Hence ‖f − SpΦ f ∗ g‖p ≤ ε > 0.
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The Segal algebra
(
S0(Rd), ‖ · ‖S0

)
The Segal algebra

(
S0(Rd), ‖ · ‖S0

)
has been introduced as the

Wiener amalgam space W (FL1, `1)(Rd). It has many interesting
properties, for example the invariance under the Fourier transform.
Its dual space (S ′0(Rd), ‖ · ‖S ′

0
) is of course W (FL∞, `∞) (space of

translation bounded quasi-measures, which are locally
pseudo-measures).
Together with the Hilbert space(
L

2(Rd), ‖ · ‖2

)
= W (FL2, `2) = W (L2, `2) they form the

so-called Banach Gelfand triple, which allows to describe many
operators (e.g. the Fourier transform, the kernel-theorem for
operators, the mapping between the kernel and the spreading
function of an operator, etc.) in a much better way than
traditional function spaces (cf. [1]).
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The Banach Gelfand Triple (S0,L
2,S ′0)

The “rigged Hilbert space” L2(G )
 The S

0
 Gelfand triple

S0

S0’

L2
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The Banach Gelfand Triple (S0,L
2,S ′0)

This triple shares many properties with the Schwartz Gelfand triple
(S,L2,S ′)(Rd), altough in fact it is easier to use and also well
defined over general LCA groups.
For example, one has - similar to the setting of S(Rd) - the
following way of regularizing (tempered) distributions, now
elements of S ′0(Rd) by convolution combined with pointwise
multiplication of test functions.

S0 ∗ (S0 · S ′0) ⊂ S0, and S0 · (S0 ∗ S ′0) ⊂ S0. (4)

These relations can be verified as follows:
W (FL1, `1) · (W (FL1, `1) ∗W (FL∞, `∞)) ⊆
W (FL1, `1) ·W (FL1, `∞) ⊆W (FL1, `1).
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References and further resources

At the end we provide a few links to “not so easy to find
literature” on the subject.

Basic source

www.nuhag.eu/bibtex

A good introduction is provided by [8] and the classical paper [3].
The continuous description of Wiener amalgam spaces (at that
time Wiener-type spaces) is given in [2].
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