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The DFT matrix of size 17, using unit roots of order 17

Figure: Obtained by the MATLAB command: plot(fft(eye(17)))
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Goals of the Course

1 overview over aspects of time-frequency analysis
2 the role function spaces, in particular S0(Rd),S ′0(Rd)
3 Classical Fourier analysis and distribution theory
4 The Banach Gelfand Triple (S0,L

2,S ′0)(Rd)
5 various typical Applications (TF-Analysis, classical)
6 Fourier transform, sampling, linear systems
7 the idea of Conceptual Harmonic Analysis
8 Gabor analysis, and the kernel theorem
9 numerical realization and simulation
10 survey of aspects of modern Harmonic Analysis
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Historical Background

Fourier Analysis has a 200 year history (J.B.Fourier, 1822)

Since H. Lebesgue it can be seen as an integral transform with
domain

(
L

1(Rd), ‖ · ‖1

)
; inversion using summability methods

by Plancherel’s Theorem F is unitary on
(
L

2(Rd), ‖ · ‖2

)
it converts convolution into pointwise multiplication

Most of the relevant background information has been given in the
preperatory courses at the beginning of this course, making use of
the theory of Lebesgue integrals, using several times the
Dominated Convergence Principle.
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The objects of Fourier Analysis

first of all the F is defined for functions

both non-periodic (decaying) and periodic ones

but it can also be defined for discrete functions
resp. linear combinations of Dirac measures

finally for distributions, i.e. generalized functions

we will discuss the connection between these viewpoints

as well as mutual approximation of one by the other
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The analogy to the number system

A good model of how we want to get a holistic picture of Fourier
Analysis is the number system. Let us recall that we have the
rational numbers Q, the real numbers R and the complex numbers
C. They are quite different in appearance but still have a quite
common structure, also embedded on into the other, via the
natural chain

Q ⊂ R ⊂ C. (1)

It is more correct to say, that the conversion of a rational number
p/q into an infinite decimal expression allows to identify a (dense)
subset of the real numbers with the rational numbers (exactly the
periodic ones).
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The trick with the complex numbers

Instead of just “adding” the mysterious complex unit i or j by the
definition i = sqrt(-1) (which works well in MATLAB!)
mathematicians have a clear-cut way of defining the complex
numbers as pairs of real numbers z = (a, b), a, b ∈ R (the more
traditional way is to simply write z = a + i ∗ b.
Clearly a real number r ∈ R corresponds in to the complex number
(r , 0) resp. r = r + 0 ∗ i to fulfill the formal requirements.
The embedding is not only “natural”, all the operations, i.e.
addition and multiplication, as well as taking the group inverse, i.e.
the negative −a or the reciprocal 1/a (for a 6= 0) can be taken in
either context before or after applying the embedding.
We have no problem to accept the validity of these formulas:

√
2

2
= 2; e2πi = 1, ez1 · ez2 = ez1+z2 ; s = π2, π ∗ 1/s = 1/π,

but how would we actually “compute” all these numbers?
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Connection to MATLAB I

During the course I will often refer to certain MATLAB
experiments which are supposed to support presented sometimes in
a relatively abstract manner, and on the other hand in order to
encourage numerical experiments in order to provide a better
understanding to those who are willing to carry out a bit of
programming work.
We will not need any specific toolbox, but there is a large
collection of MATLAB M-files provided by the NuHAG web-site for
this interested in downloading these tools.
For those who do not want to get involved in the programming
using MATLAB (or any other similar language) still GEOGEBRA
might be an option to consider (free download). Also occasionally
I will make use if this program for demonstration purposes.
Finally, otherwise, I hope that all of you enjoy looking at the
output (figure, plots) obtained via MATLAB.
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Connection to MATLAB II

Important message relevant for the spirit of the course:

Since the natural setting for Fourier or time-frequency analysis
(including Gabor Analysis) is the world of LCA (locally compact
Abelian) groups G the special case of G = ZN (the cyclic group of
order N, resp. the group of unit roots of order N within C) is
within the scope of the general theory.

So most of the experiments will compute numbers or functions on
such a group which are “the analogue” of something we might be
interested in the continuous setting, so over R, providing only a
numerical method providing!
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Operator Notation I

Since many of the participants of this course might have an
engineering background, some others a more mathematical
education, let us explain some possible difference between the way
how this course describes things and the usual way in those
communities.
We talk about functions f , g , h on some group G. Typically
engineers and physicists would write f (t), g(x), h(ω) etc.,
indicating that this is a (perhaps continuous) function of “time”
(t ∈ G = R) or “location” x ∈ G = R2, or frequency ω ∈ R, with
continuous variables. Alternatively the discrete setting, e.g.
G = ZN or G = Z covers the case of “discrete variables” (N ∈ N or
N =∞, the non-compact case).
Ex: Check group properties of ZN .
The details of such an identification will be given
over and over again during this course!
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Operator Notation II

We will consider a large variety of operators, i.e. linear mappings.
Typically these operators (whenever they are abstract objects) will
be defined on vector spaces of signals. We will usually clearly
define the domain the target space of such operators, even if there
are many possible choices. So a linear operator T : V1 → V2

satisfies (by definition of linearity)

T (λ1v1 + λ2w) = λ1T (v1) + λ2T (w) (2)

where v,w are general elements in V1 and λ1, λ2 belong to the
underlying field (e.g. R or C). This is (by a simple induction
argument) equivalent to the preservation of linear combinations.

T

(
K∑

k=1

λkvk

)
=

K∑
k=1

λkT (vk). (3)
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Operator Notation III

Given any operator T the input is a function with name f , g , h and
not a function f (t), g(x) etc.. and of course, any operator
mapping functions to functions can be described as f 7→ Tf and
we may define it pointwise by e.g.

Tf (x) =

∫
Rd

K (x , y)f (y)dy , x , y ∈ Rd

for the case of an integral operator. Still Tf or T (f ) is the result
of applying the operator T to the function f .
In this way we avoid confusion with terms such as Tf(t), which for
US will always mean (Tf)(t) in contrast to other traditions which
read these symbols as T[f(t)]. But the output may have the
same argument t or another variable name.
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Concrete operators I

The most important operators, first mostly for functions on R or
Rd are translation, modulation and dilation operators.

The translation operator moves the graph of a function from one
position to another position. It preserves the values, but moves
them to other positions.
The modulation operators multiply a given function by some pure
frequency. As we will see it corresponds in each case to a
translation on the Fourier transform side, therefore it is also often
called a frequency shift operator.
The dilation operators are special cases of linear transformations of
the argument of the function, here by rescaling.
Later one we will consider the Fourier transform, convolution
operators and so on.
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Concrete Operators II

We will first make use of the following operators. Note that some
of them can be defined for general LCA groups (translation,
modulation) while others are specifically tuned for Rd (dilation
etc.). For simplicity let us first work on Rd (e.g. d = 1).

Tx f (z) = f (z − x), x , z ∈ Rd (4)

Ms f (z) = e2πis·z f (z), x , s ∈ Rd . (5)

Here s · z = 〈x , s〉Rd =
∑d

k=1 xksk is the scalar product in Rd .

Dρf (z) = f (ρz), ρ 6= 0, z ∈ Rd (6)

denotes the (value preserving) dilation operator.
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Concrete Operators III

It is a good first exercise to verify that each of these families of
operators, namely

(Tx)x∈Rd , (Ms)s∈Rd , (Dρ)rho 6=0

for commutative groups of operators, with

Id = T0 = M0 = D1.

and
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Concrete Operators IV

Let us look at these three families of operators, given by

(Tx)x∈Rd , (Ms)s∈Rd , (Dρ)ρ6=0

forming commutative groups of operators, with

Id = T0 = M0 = D1, T−1
x = T−x , M−1

s = M−s , D−1
ρ = D1/ρ.

The commutativity follows from these composition rules:

Tx1 ◦ Tx2 = Tx1+x2 ; Ms1 ◦Ms2 = Ms1+s2 ; Dρ1 ◦ Dρ2 = Dρ1·ρ2 .

One can also restrict attention to ρ > 0.
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Concrete Operators V

The reason for putting a negative value into the definition of the
shift-operator is of course the fact that T4 should describe a shift
by 4 units in the positive direction.
Let us recall, that for a continuous function f the support is
defined as supp(f ) := {x | f (x) 6= 0}−, the closure of the set of
“interesting points” for f .

Ms does not change the support, but the effect of Dρ is

supp(Dρf ) = 1/ρ · supp(f ).

This is one of the reasons of introducing another dilation operator
named Stρ which we call the area preserving dilation operator

Stρf (x) = ρ−d f (x/ρ), x ∈ Rd , ρ > 0 (7)

with

∫
Rd

Stρf (y)dy =

∫
Rd

f (x)dx . (8)
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Goals for the course: Inexact Formulas

Among the most important goals of this course is a better
understanding of expressions as they are commonly used in
engineering books or physics articles. All to often mathematicians
consider expression and explanations in such a context at least as
“morally incorrect” and at least questionable. On the other hand
applied scientist tend to either ignore the inaccuracies which are
part of such explanations (e.g. at the level of well-deformedness)
and either try to use wordy explanations, claiming quite often that
the pedantic view-point taken by mathematicians is not so relevant
for applications and that the use of these “inaccurate formulas”
has made practical life so much easier than going through “all the
technical details” (!as mathematicians would require to do!)
that it is just a matter of convenience to use such things.
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A better interpretation of inaccurate formulas

At best, applied scientist claim that mathematicians would know
how to fix the claims which - when taken literally - might be
considered as mathematically incorrect. So they refer to the
pedantic community of mathematicians who would know how to
turn the intuitive and plausible statements made in engineering
books into mathematically correct (but cumbersome and
complicated) claims.
It is the purpose of this course to encourage the participants
to not give up on either an intuitive approach to the subject or
alternatively have correct mathematical statements, but rather to
combine both view by means of a “fresh look” on Harmonic
Analysis, with some aspects of functional analysis (theory of
function spaces, approximation, dual spaces).
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Examples of “incorrect” statements

Sifting property of the Delta Dirac

ψ(x) =

∫ ∞
−∞

δ(x − y)ψ(y)dy

or the integration of the pure frequencies adding up to a Dirac:∫ ∞
−∞

e2πisxds = δ(x)

One can use a combination of both statements in order to derive a
“highly formal” version of the Fourier inversion theorem.
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Turning inaccurate formula into correct statements

In the setting of tempered distributions one can rewrite the first
equation as

ψ = ψ ∗ δ

resp.
F−1(1) = δ,

or equivalently giving a “meaning” to the formula (see
WIKIPEDIA) ∫ ∞

−∞
1 · e2πixξdξ = δ(x). (9)
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Strange formulas in WIKIPEDIA (2018)

WIKIPEDIA contains (p.4 on the Dirac Delta function)∫ ∞
−∞

δ(ξ − x)δ(x − η)dx = δ(ξ − η). (10)

This is pretty confusing (to a mathematician). You have to first
multiply one delta-function with another (is this possible?) an then
even integrate out, with a result which is not a number but
another Dirac function.
For us the “underlying” statement will become

δ0 ∗ δη = δη

which is just a simple special case of the general rule

δx ∗ δy = δx+y = δy ∗ δx , x , y ∈ Rd ;

It can be seen as a special case of convolution of two measures.
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The first elements of the Fourier Landscape

L1

L2

FL1

Figure: The Lebesgue spaces L1(Rd) and L2(Rd), as well as the
Fourier image of L1(Rd), which we call the Fourier algebra FL1(Rd)
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Adding Schwartz to the Fourier Landscape

L1

L2

FL1
SC

SCP

Figure: Adding the Schwartz space S(Rd) inside all the spaces Lp(Rd),
with 1 ≤ p ≤ ∞ as well as the dual space, the space S ′(Rd) of
tempered distributions.
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The Riemann-Lebesgue Lemma

LI

LT
CO

FLI

Figure: Observe: There are L1(Rd)-functions which are not in L2(Rd)
and vice versa, but L1(Rd) ∩ C0(Rd) ⊂ L2(Rd)! Obviously FL1(Rd)
is a proper subset of C0(Rd), and so on ...
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Adding the Wiener Algebra W (C0, `
1)(Rd)

WR

WRD

LI

CO

LT

FLI

*

Figure: Wiener’s algebra WR := W (C0, `
1)(Rd) is contained in

L
1(Rd) ∩ C0(Rd), while its dual space WRD contains all the spaces
L
p(Rd). It is NOT contained in the Fourier algebra! (see *)
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Long-term goal: Adding SORd and S ′0(Rd)

WR

WRD
LI

CO
LT

FLI

*

SOSOP

SOP

Figure: The classical function spaces, adding Wiener’s algebra
W (C0, `

1)(Rd) and is dual, but also S0(Rd) and S ′
0(Rd).
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L
1(Rd) and the Fourier Algebra FL1(Rd)

SINC

box

L2

FL1

L1

S0

FL1  L1

Figure: L1(Rd),FL1(Rd) and their intersection: The domain of the
Fourier inversion theorem is the yellow domain, strictly inside of L2(Rd).
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Fourier transform for W (L1, `2)(Rd)

Figure: F(W (L1, `2))(Rd) ⊂W (L2, c0)(Rd)
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The philosophy behind these pictograms

Using these pictograms should encourage to speculate about
properties of these spaces and their mutual relationships, such as

1 (proper) containment, including intersections;

2 Fourier invariance (rotation by 90 degrees!)

3 invariance under fractional Fourier transforms
corresponding to arbitrary rotations.
This property is only valid for L2(Rd), S0(Rd) and S ′0(Rd)
(and of course S(Rd) and S ′(Rd))!)
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Banach algebras considered so far

In the introductory part we have seen that the usual approach to
Fourier analysis, making use of the Lebesgue space(
L

1(Rd), ‖ · ‖1

)
of Lebesgue-integrable functions allows as to turn

this Banach space into a Banach algebra with respect to
convolution and define the Fourier transform.
As a combination of the Riemann-Lebesgue Lemma and the
Convolution Theorem we can describe the situation as follows:

Theorem

The Fourier transform defines an injective Banach algebra
homomorphism from

(
L

1(Rd), ∗, ‖ · ‖1

)
into

(
C0(Rd), ·, ‖ · ‖∞

)
,

which also is compatible with respect to the involutions f 7→ f ∗,
with f ∗(t) = f (−x), which corresponds to the involution h 7→ h on
the Fourier transform side.
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Families of automorphisms of these Banach algebras

Theorem

1 The family (Stρ)ρ6=0 is a commutative group of isometric
automorphisms of

(
L

1(Rd), ∗, ‖ · ‖1

)
.

2 The family (Dρ)ρ6=0 is a commutative group of isometric
automorphisms of

(
FL1(Rd), · , ‖ · ‖FL1

)
, but also of(

C0(Rd), ·, ‖ · ‖∞
)
.

3 The family (Ms)s∈Rd is a commutative group of isometric
automorphisms of

(
L

1(Rd), ∗, ‖ · ‖1

)
.

There are also other (non-commutative) groups of automorphism
compatible with convolution, namely automorphism of the
underlying group Rd , i.e. linear mappings x→ A ∗ x for some
non-singular d × d-matrix A, especially rotations via

DA(f )(z) = f (A−1 ∗ x)
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Bounded approximate units via dilation/scaling

Theorem

1 For every function g ∈ L1(Rd) with
∫
Rd g(x)dx = 1 the family

(Stρg)ρ→0 defines a bounded approximate unit for the Banach
algebra

(
L

1(Rd), ∗, ‖ · ‖1

)
;

2 For any function h ∈ C0(Rd) with h(0) = 1 the family
(Dρh)ρ→0 forms a BAI for

(
C0(Rd), ·, ‖ · ‖∞

)
;

3 For any function h ∈ FL1(Rd) with h(0) = 1 the family
(Dρh)ρ→0 forms a BAI for

(
FL1(Rd), · , ‖ · ‖FL1

)
;

For g = g0, the Gauss function given by g0(t) = e−π|t|
2

also
h = ĝ0 = g0 (Fourier invariance!) provides a Dirac sequence
by compression and a pointwise approximate unit for(
FL1(Rd), ‖ · ‖FL1

)
and

(
C0(Rd), ‖ · ‖∞

)
by dilation.
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But NOW LET us TAKE A COMPLETE RESTART

We have seen that with a good background on Lebesgue
integration (and we have really used all the strong results,
including the Lebesgue dominated convergence theorem and
Fubini’s theorem) we can define

(
L

1(Rd), ‖ · ‖1

)
, the Fourier

transform and convolution, up to the convolution theorem and the
Riemann-Lebesgue Lemma and Plancherel theorem and the
inversion theorem. We have established

(
L

1(Rd), ‖ · ‖1

)
as a

commutative Banach algebra with bounded approximate identities.
All this is based on the observation that the Fourier transform,
defined as an INTEGRAL TRANSFORM through

f̂ (x) =

∫
Rd

f (t)e−2πi<s,t>dt

has a natural domain (namely L1(Rd)), etc...
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But NOW LET us TAKE A COMPLETE RESTART II

One of the main arguments for the usefulness of the Fourier
transform is the fact that it converts the complicated convolution
into simple pointwise multiplication. But why should we be
interested in CONVOLUTION?
If one follows the (excellent) Stanford course by Brad Osgood
(who also strives for a distributional view-point, trying not to stress
the audience to much with details on the Schwartz space), then
convolution could be introduced by the questions: Assume you
multiply two Fourier transforms: is this the Fourier transform of
“something”, and if so, what is it. And of course he comes up with
the convolution as we know it.
I am afraid that this is not a convincing approach for
non-mathematicians!
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Where does convolution appear in nature?

We have studied a few simple cases in the practical part:
Knowing how to multiply numbers (e.g. by looking at 1111112) we
get a first idea what convolution is.
But already kids learn how to multiply out polynomials and
compute the coefficients of a product polynomial, by forming (in a
concrete way) the so-called Cauchy product
It is possible (and in fact not difficult) to relate this multiplication
of polynomials to probability in the following way: addition of
independent random variables: we will illustrate the sume of two
dices, each associated with the polynomial

p(x) = (x + x2 + x3 + x4 + x5 + x6)/6

easily with the coefficients of p(x)2!!
(Verbal explanation, illustrated by some MATLAB experiments).
Similar case: the Binomial Theorem (Pascal’s triangle)!
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Translations invariant systems

Translation-invariant linear systems play a great role. Courses on
the subject appear in most electrical engineering curricula.

Definition

The Banach space of all “translation invariant linear systems”
(TLIS) on C0(Rd) is denoted bya

HRd (C0(Rd)) = {T ∈ L(C0(Rd)) T◦Tz = Tz◦T , ∀z ∈ Rd} (11)

aThe letter H in the definition refers to homomorphism [between normed
spaces], while the subscript G in the symbol refers to “commuting with the
action of the underlying group G = Rd realized by the so-called regular
representation, i.e. via ordinary translations.
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Translations invariant systems as a Banach algebra

Lemma

1 The space HRd (C0(Rd)) is in fact a closed subalgebra of
L(C0(Rd)) (with operatornorm), hence endowed with the
operator norm it is

2 HRd (C0(Rd)) is even closed with respect to the strong
operator topology, i.e.if you have a sequence of operator
(Tn)n≥1 in L(C0(Rd)) with the property that

limn→∞‖Tnf − T0f ‖∞ = 0, ∀f ∈ C0(Rd),

then the limiting operator also belongs to HRd (C0(Rd)).

3 Clearly HRd (C0(Rd)) contains all the translation operators
Tx , x ∈ Rd , and their closed linear span forms a commutative
subalgebra of (HRd (C0(Rd)), |‖ · |‖ ).
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Convolution operators as Moving Averages

The outline of our study of TILS (translation invariant system) on
C0(Rd) is roughly the following:

1 Show that every translation invariant system T can be viewed
as a moving average, or alternatively as a convolution
operator, characterized completely by some linear functional,
i.e.some µ ∈M(Rd);

2 Then show how thanks to discretization operators, which are
based on the existence of arbitrary fine partitions of unity,
measures can be approximated by discrete measures;

3 Then show that the convolution operators based on these
discrete measures, we call them DΨµ, are approximating the
convolution operators f 7→ Cµf = µ ∗ f in the
strong operator sense, i.e.they converge uniformly for any
given f ∈ C0(Rd).
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Recalling the choice of BUPUs

A very simple and broad BUPU. Shift parameter a = 64, a divisor
of the signal length n = 480, with four extra convolutions with a
box function of width 16. So total support size a + 4 ∗ 16 = 128.

50 100 150 200 250
 bupuspln(256,64,16,4) 

0

0.2

0.4

0.6

0.8

1

  BUPU =   bupuspln(n,gap,bas,ord);  

Figure: bupuspline00.eps
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Background information, Spline-quasi-interpolation

We have discussed BUPUs, which are bounded uniform partitions
Ψ = Ψ = (ψi )i∈I of unity, where for now boundedness refers to
boundedness in

(
C0(Rd), ‖ · ‖∞

)
, or practically speaking we

assume 0 ≤ ψi (x) ≤ 1 for all i ∈ I .
On Rd the size of a BUPU can simply be determined as 1

|Ψ| = inf{γ | supp(ψi ) ⊂ Bγ(xi )},

which by assumption is finite.
We then defined the two operators SpPsi on

(
C0(Rd), ‖ · ‖∞

)
and

its transpose operator on DΨ on (Mb(Rd), ‖ · ‖Mb
).

SpΨ(f ) =
∑
i∈I

f (xi )ψi , DΨ(µ) =
∑
i∈I

µ(ψi )δxi .

1Also taking a little bit the family (xi )i∈I into account.
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Interpretation in a classical sense

For various special choices these operators are acutally quite simple
to understand. Let us restrict our attention to the case of BUPUs
of triangular shape (B-spline of order 2 or degree 1).
We can take the standard triangular system (convolution square of
the box-function) and its shift along Z and then compress this
system by the Dρ-operator, for ρ→∞, say ρ = 2n.
Then the resulting operator SpΨ produces out a piecewise linear
interpolation of f from the samples of the form for α = 2−n.
On the other hand, just for the sake of illustration, assume you take
the spline-BUPU of order one (shifted) box functions, the think of
xi = ξi as in Riemann sums. Then DΨ(f ) can be interpreted as
Riemannian sum (even irregular Riemannian sums, by using
λ(1[ai ,bi ) = ai − ai , with λ = Lebesgue measure).
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w ∗-convergence of DΨµ to µ

We all have learned that Riemannian sums form a Cauchy-net, i.e.
for f ∈ C ([a, b]) we know that they are convergent to

∫ b
a f (x)dx ,

the so-called Riemann integral. They corresonding
Cauchy-condition is of the following form: Given f ∈ C ([a, b]) and
ε > 0 we can find some δ = δ(f , ε) such that for all Riemannian
sums which are at least as fine as δ (maximal length of intervals
occuring) two Riemannian sums will not differ more than that

given ε > 0. By completeness of R there is a limit:
∫ b
a f (x)dx!

In our setting we claim

For any f ∈ C0(Rd) we have lim
|Ψ|→0

DΨµ(f ) = µ(f ). (12)

PROOF: DΨµ(f ) = µ(SpΨ (f ))→ µ(f ) for |Ψ| → 0.
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Consequences for convolution approximation

Using this last observation it is clear that we have for every
x ∈ Rd , by replacing f by Tx f

X and starting to write µ ∗ f for the
application of the convolution operator Cµ:

DΨµ ∗ f (x)→ µ ∗ f (x), ∀x ∈ Rd .

But in fact the speed of convergence depends only on the
expression ‖ oscδ(f )‖∞ resp. here on the quantity

‖ oscδ(Tx f
X)‖∞ = ‖ oscδ f ‖∞.

This implies finally the required convergence in
(
C0(Rd), ‖ · ‖∞

)
:

lim
|Ψ|→0

DΨµ ∗ f = µ ∗ f , ∀f ∈ C0(Rd). (13)
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Properties of DΨµ

Although it is clear that SpΨ is not normexpanding, since obviously

‖SpΨ(f )‖∞ ≤ ‖f ‖∞, ∀f ∈ C0(Rd),

we could derive this using the (anyway useful) estimate

|µ(ψi )| ≤ ‖µψ‖M . (14)

Proof: We just define ψ∗i =
∑

j :ψj ·ψi 6=0 ψj and find that

‖psi∗i =
∑

j∈F ψj for some finite set, hence ‖ψ∗i ‖∞ ≤ 1. Hence

|µ(ψi )| = |µ(ψ∗i · ψi )| ≤ ‖µψi‖M ,

and in particular ∑
i∈I
|µ(ψi )| ≤ ‖µ‖M .
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illustration of the functions ψ∗i

Figure: locplautpsistar.jpg

Hans G. Feichtinger A Fresh Look at HARMONIC ANALYSIS



Goals of the Course

Tightness in C0(Rd)

The idea of uniform concentration of functions resp. of measures
(most of the “mass” of a finite measure on Rd is concentrated on
a bounded subdomain) will play a role in our consideration. We
will use the word tight for this concept. Since unbounded but well-
concentrated sets will not be of any relevance for our
considerations we make boundedness a part of the definition.

Definition

A bounded subset M in
(
C0(Rd), ‖ · ‖∞

)
is called tight (or

uniformly tight) if for ε > 0 there exists some compactly supported
function p ∈ Cc(Rd) (we think of plateau-functions) such that

‖f − p · f ‖∞ ≤ ε ∀f ∈ M.
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A short remark on tightness

Remark: It is a good exercise to show that any bounded
approximate unit in

(
C0(Rd), ‖ · ‖∞

)
qualifies in the same way to

characterize tightness. The usual description could be considered
as a variant of this description, with p ∈ Cc(Rd) being replaced by
the net of indicator functions of compact sets K ⊂ Rd , ordered by
size.
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Tightness in M(Rd)

In a very similar way tightness of a set S in (M(Rd), ‖ · ‖M) is
valid if

‖µ− p · µ‖M ≤ ε ∀µ ∈ S .

It is, for example, not difficult to show:

Lemma

For any tight set S of measures, also the set

{DΨµ | |Ψ| ≤ 1, µ ∈ S}

is also a tight subset of (M(Rd), ‖ · ‖M).
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Tightness and convolution

Often results valid about e.g. the w∗-convergence of DΨµ to µ are
also valid for w∗- convergent and tight nets (potentially arising in
a different way than discretization), e.g.

Lemma

Assume a (bounded and) tight net (µα)αinI is w∗-convergent to
some µ0 ∈M(Rd). Then we also have

lim
α
‖µα ∗ f − µ0 ∗ f ‖∞ = 0.
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Introducing convolution on (M(Rd), ‖ · ‖M)

Having identified now on the one hand HRd (C0(Rd)) with M(Rd)
(isometrically) and also realized that - as the strong closure of a
commutative algebra of discrete convolution operator - we can
transfer the commutitive multiplicative structure onto
(M(Rd), ‖ · ‖M). In other words we check that the convolution can
be defined reflecting the composition laws of the corresponding
operators T , thus turning the Banach space (M(Rd), ‖ · ‖M) into
a Banach algebra!
Clearly we get associativity for free (in the same we get
associativity of matrix multiplication for free as soon as we have
verified that matrix multiplication just corresponds to the
composition of the corresponding linear mappings). We also can
prove (using natural arguments) that

lim
|Ψ|→0

DΨµ1 ∗ DΨµ2 ∗ f → µ1 ∗ µ2 ∗ f .

Hans G. Feichtinger A Fresh Look at HARMONIC ANALYSIS



Goals of the Course

Consistency considerations

Within the “convolution” that we obtain by transfer of structure
we can now check what the concrete action of a given measure on
function is, resp. on measures.
Important starting point:

δx ∗ f = Tx f , f ∈ C0(Rd), x ∈ Rd .

Just look at

δx ∗ f (z) = δx(Tz f
X) = δx([T−z f ]X)) = [T−z f ](−x)

= f (−x − (−z)) = f (z − x) = Tx f (z)

Since Tx ◦ Ty = Ty ◦ Tx we have

δx ∗ δy = δx+y , x , y ∈ Rd .
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Comparing our approach with L1(Rd)-theory

recall:  MB = CO* and LINF = LI* 

LINF

CO

LI

MB

SC

Figure: LILINFCOMB.eps
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Comparing the situation

So far we have
(
C0(Rd), ‖ · ‖∞

)
and its dual (M(Rd), ‖ · ‖M).

We have also seen that w∗-convergence of measures (elements) of
the dual space is relevant, because the discrete measures form a
proper, closed subspace of Md(Rd).
There are different ways of characterizing L1(Rd) within M(Rd),
mostly (measure theoretic) as the “absolutely continuous”
measures, alternatively via ‖Txµ− µ‖M(Rd ) → 0 for x → 0.

This viewpoint will help us to understand
(
L

1(Rd), ‖ · ‖1

)
as a

closed ideal within (M(Rd), ‖ · ‖M).
We will have of course a dual of

(
L

1(Rd), ‖ · ‖1

)
.

The embedding k → µk resp. the realization of Cb(Rd) as a
part of the dual space of

(
L

1(Rd), ‖ · ‖1

)
requires the Haar

measure on Rd (i.e. the Riemann integral, not more!).
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Illustration of the DΨ operator

Given a probability density and a relatively course BUPU we have
this situation in a discrete situation. The density was created from
a random lowpass signal, be raising the real part and then
normalizing the sum of these non-negative values to 1.

0 50 100 150 200 250 300 350 400 450 500
-2

0

2

4

6
10-3  a probability density 

50 100 150 200 250 300 350 400 450

0

0.5

1

some partition of unity

Figure: probBUP1.eps
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The corresponding distribution functions

The corresponding distribution functions then look like this. The
jumps (Dirac measures) arise here at regular sampling positions,
coordinates 1 : 20 : 480 , so the BUPU has 24 entries.

0 50 100 150 200 250 300 350 400 450 500
-2

0

2

4

6
10-3 recalling the probability distribution plus discretization

50 100 150 200 250 300 350 400 450
0

0.5

1
 distribution function of density plus discretization

Figure: probBUP2.eps

The upper picture also includes a STEM-display of the amplitudes
of the original function (rescaled to the maximal hight of the
density).
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Concerning the inequivalence of sup-norm and FL1-norm

-200 -150 -100 -50 0 50 100 150 200

-0.2

0

0.2

 a test signal composed of TF-shifts of some Gauss function

-200 -150 -100 -50 0 50 100 150 200

-0.2

0

0.2

 the normalizzed (unitary) FFT of the test signal 

Figure: inequavCOFLI.eps

L
1-norm grows with the number of terms, ‖f̂ ‖∞ is stable.
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’Poor approximation by simple quasi-interpolator’

The next picture shows some smooth (complex-valued) and
band-limited signal (max. frequency 15, hence 31 random Fourier
coefficients and SpΨ(f ) using the above BUPU.

100 200 300 400

-0.1

-0.05

0

0.05

0.1

0.15
approximation by spline quasi-interpolator

Figure: quasiapprox3.eps
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The same signals, with their Fourier spectra

The left hand sides show real part of the signals, with SpΨ(f ) at
the lower level the right hand sides their (normalized) Fourier
transforms.
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 SIGNAL 1 
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 (unitary) FFT-1 
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 SIGNAL 2 
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0
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 (unitary) FFT-2 

Figure: quasiapprox3b.eps
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The Gaborator: Free online spectrogramm

The Gaborator is a software which came out in November 2017
and was presented at an AUDIO Conference then (see Youtube).

Figure: Observe the information about frequency and musical
description of score in the left lower corner!
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The Gaborator

Figure: Gaborator: bibliographic hint
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Vandermonde matrices and Lagrange interpolation

The columns of the inverse Vandermonde matrix describe just the
coefficients of the Lagrange interpolating polynomial.

>> inv(vander(0:3))

-0.1667 0.5000 -0.5000 0.1667

1.0000 -2.5000 +2.0000 -0.5000

-1.8333 3.0000 -1.5000 0.3333

+1.0000 0.0000 +0.0000 0.0000

>> cof2 = conv(conv([1,0],[1,-2]),[1,-3])

>> cof2 = 1 -5 6 0

>> lagr2 = ans/polyval(cof2,1)

= 0.5000 -2.5000 3.0000 0.0000

It is also easy to illustrate it via GEOGEBRA, as a product of
terms of the form (x − xk).
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Some GEOGEBRA FILES prepared for the course

See (as usual) www.nuhag.eu/chennai18 for the corresponding
files (file extension is “.ggb”).

Figure: The convolution product of the standard triangular function with
a dilated triangular function, computed pointwise via integration.
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Some GEOGEBRA FILES: Product of dilated SINCs

The same situation on the Fourier transform side

Figure: The convolution product of the standard triangular function with
a dilated triangular function, computed pointwise via integration.
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Banach modules already observed

In the introductory part concerning Banach spaces and Banach
algebras we have already seen a couple of Banach modules.
For example the family of `p-spaces of Lp-spaces.
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Banach modules already observed

In the introductory part concerning Banach spaces and Banach
algebras we have already seen a couple of Banach modules.
For example the family of `p-spaces of Lp-spaces. Cleary they are
Banach modules over the Banach algebras

(
`∞, ‖ · ‖∞

)
resp. or(

L
∞, ‖ · ‖∞

)
with respect to pointwise multiplication, which are in

fact commutative C ∗-algebras with unit.
In fact these properties are equivalent to the property of solidity.
For the sequence spaces

(
`p, ‖ · ‖p

)
, 1 ≤ p ≤ ∞ this means.

a = (ai )i∈I ∈ `p(I ), |bi | ≤ |ai | ∀i ∈ I ⇒ b ∈ `p and ‖b‖p ≤ ‖a‖p.

However we find it more interesting (to understand situations
arising in the context of

(
L

1(Rd), ‖ · ‖1

)
or
(
FL1(Rd), ‖ · ‖FL1

)
)

to work with Banach algebras having only BAI, hence we view
these spaces as Banach modules over

(
c0, ‖ · ‖∞

)
/
(
C0, ‖ · ‖∞

)
.
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Banach algebras of relevance for Harmonic Analysis

(Mb(G ), ∗, ‖ · ‖Mb
),
(
L

1(Rd), ∗, ‖ · ‖1

)
,
(
C0(Rd), ·, ‖ · ‖∞

)
,
(
c0, ‖ · ‖∞

)
and of course various operator algebras, including pointwise
multiplier algebras of Fourier multipliers, i.e.algebras of operators
commuting with translations.

1
(
`p, ‖ · ‖p

)
is an Banach module over

(
c0, · , ‖ · ‖∞

)
with

respect to “coordinatewise multiplication” for 1 ≤ p ≤ ∞;
essential for p <∞ (density of finite sequences);

2 (M(Rd), ‖ · ‖M) is an essential Banach module over(
C0(Rd), ‖ · ‖∞

)
with respect to pointwise multiplication;

3
(
C0(Rd), ‖ · ‖∞

)
is a Banach module with respect to

(Mb(G ), ∗, ‖ · ‖Mb
) (thanks the a suitable definition of

convolution within (Mb(Rd), ‖ · ‖Mb
));

4
(
L

1(Rd), ∗, ‖ · ‖1

)
is a closed ideal within (Mb(G ), ∗, ‖ · ‖Mb

);
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Ordinary functions viewed as bounded measures

It is not surprising that we can identify many (integrable, in fact)
functions as bounded measures (depending on our concept of what
an integral is), but certainly for k ∈ Cc(Rd), using Riemannian
integrals.

µ = µk , resp. µ(f ) =

∫
Rd

f (x)k(x)dx (15)

Then we have the following crucial embedding:

Lemma

The mapping k → µk described above defines an isometric
embedding from (Cc(Rd), ‖ · ‖1) into (M(Rd), ‖ · ‖M). Hence we
may identify the closure of MCc = {µk | k ∈ Cc(Rd)} with the
completion of the normed space (Cc(Rd), ‖ · ‖1).
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Visual justification for the embedding, real case

Green: continuous variant of signum function for k ∈ Cc(R).
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1

the signal and a smoothed sign−function
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Completion by closure within (M(Rd), ‖ · ‖M)

Since we can now identify the test-functions, endowed with the
L

1-norm (computed via Riemann integrals!) we can just close this
space (actually, its isometric copy) with (M(Rd), ‖ · ‖M) in order
to obtain one version of its completion, which we call(
L

1(Rd), ‖ · ‖1

)
.

In the classical literature one characterizes this space via Lebesgue
integrability, resp. identifies this space using measure theoretic
methods as the subspace of all bounded regular Borel measures
which are absolutely continuous with respect to the Lebesgue
measure on Rd
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Alternative characterizations of
(
L

1(Rd), ‖ · ‖1

)
There are some other characterizations of the closed subspace
generated by Cc(Rd) via the natural embedding into M(Rd),
which uses the following idea, comparable to the definition of
Cub(Rd) ⊂ Cb(Rd):

Definition

Mcs := {µ ∈M(Rd) | ‖Txµ− µ‖ → 0 for x → 0.} (16)

In the same way one shows easily:

Lemma

Mcs(Rd) is a closed ideal within (Mb(Rd), ‖ · ‖Mb
) with respect to

convolution. It is also invariant under the usual involutions (e.g.
µ→ µX.
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How can we show that
(
L

1(Rd), ‖ · ‖1

)
equals Mcs(Rd)

It is plausible that the closed subspace
Mcs(Rd) ⊂ (M(Rd), ‖ · ‖M) can be characterized by appropriate
!norm convergence (within (M(Rd), ‖ · ‖M)) of convolutions with a
Gaussian Dirac sequence (Strhog0)ρ→0.
Secondly the convolution, now either viewed WITHIN the Banach
convolution algebra (M(Rd), ‖ · ‖M) or alternatively as an action
of µ on some test function in

(
C0(Rd), ‖ · ‖∞

)
can actually be

identified. We skip the discussion of this detail for the moment,
mentioning that the adjoint action on (M(Rd), ‖ · ‖M), viewed as
a dual space to

(
C0(Rd), ‖ · ‖∞

)
, is just internal convolution with

µX. This is easily verified for µ = δ, hence for DΨµ and by
taking limits one can have the desired result.
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Although closed in (Mb(Rd), ‖ · ‖Mb
) the space L1(Rd) is

w ∗ dense

Having observed that
(
L

1(Rd), ‖ · ‖1

)
is a closed ideal, still

containing all the compressed Gauss function and other Dirac
sequences which behave well as convolution operators on(
C0(Rd), ‖ · ‖∞

)
(see Exercises, using uniform continuity) we can

claim that L1(Rd) is a w∗-dense subspace of (Mb(Rd), ‖ · ‖Mb
).

Even more concrete.

Lemma

Let (eα)α∈I be any bounded approximate identity in L1(Rd) for its
action on

(
C0(Rd), ‖ · ‖∞

)
, e.g.(Stρg)ρ→0 for some

g ∈ L1(Rd) ∩ C0(Rd) with
∫
Rd g(t)dt = 1.

Then eα ∗ µ is w∗-convergent to µ, for any µ ∈M(Rd).
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Approximation of measures by L1(Rd)-functions via
smoothing

Proof.

To see that w∗-convergence happens we only have to observe that
for any f ∈ C0(Rd) we have for g = gX (for convencience)

[Stρg ∗ µ](f ) = µ(Stρg ∗ f )→ µ(f ) inC, for ρ→ 0, (17)

because ‖Strhog ∗ f − f ‖∞ → 0 and µ is a continuous linear
functional. On the other hand we can represent Stρg ∗ µ by the
continuous, bounded (and integrable) function z 7→ µ(Tx [Stρg ]X)
(according to above argument, now without compact support..).
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How can we show that
(
L

1(Rd), ‖ · ‖1

)
equals Mcs(Rd) II

The key argument is then approximately the following one, at least
for the dense subspace of compactly supported measures, and for
non-negative functions g ∈ Cc(Rd) with

∫
Rd g(t)dt = 1:

Stρg ∗ µ = µStρg ∗ µ = Cµ(Stρg) ∈ Cc(Rd)! (18)

Since these terms tend to µ now in M(Rd) the limit must be in
the closure of Cc(Rd) ⊂M(Rd) (via natural embedding), and the
argument is completed.
From now on we can forget about the definition and use all the
properties of

(
L

1(Rd), ‖ · ‖1

)
that we know from Lebesgue

integration theory.
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Now we are ready for the Riemann-Lebesgue Lemma

It is not difficult to show that
(
L

1(Rd), ‖ · ‖1

)
(now defined

differently) is a continuous function and that it belongs to C0(Rd).
For the first claim (in fact uniform continuity is clear) we may
recall that the usual Lebesgue dominated convergence can be
replaced by the uniform convergence of characters on compact sets
combined wit the “essentially compact” support of elements of
L

1(Rd) ⊂M(Rd).
The decay property is proved in the same way as for L1(Rd)
defined via Lebesgue integration.
Moreover, the (abstract) uniqueness (up to isometric isomorphism)
of the completion of a normed space (here Cc(Rd) with the
L

1-norm) grants that the different approaches give the same space.
Obviously we also get that

(
L

1(Rd), ‖ · ‖1

)
with convolution

is a commutative Banach algebra with BAI with involution.
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Both L1(Rd) and Md(Rd) are w ∗-dense in M(Rd)

An attempt to visualize the containment of L1(Rd) and Md(Rd),
the discrete measures. In the norm topology closed they are almost
disjoint, but w∗ dense in M(Rd).

Figure: LIandMdiscr.jpg
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a more complete picture

Wiener algebra W (C0, `
1)(Rd) (green) with S0 (small circle)

inside, and dual: translation bounded measures W (M , `∞)(Rd)
inside S ′0(Rd) (big circle). Yellow circle indicates L2(Rd).
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(M(Rd), ‖ · ‖M) as universal Banach algebra

The action of (M(Rd), ‖ · ‖M) as a Banach algebra under
convolution on the first space, namely

(
C0(Rd), ‖ · ‖∞

)
, is the

most simple one, but we have seen, there is also an action within
the algebra, consistent with the embedding of (Cc(Rd), ‖ · ‖1) in to
(Mb(Rd), ‖ · ‖Mb

), which restricts to an action on
(
L

1(Rd), ‖ · ‖1

)
,

hence it is plausible to expect something for
(
L
p(Rd), ‖ · ‖p

)
, with

1 ≤ p <∞, or e.g. Wiener’s algebra
(
W (C0, `

1)(Rd), ‖ · ‖W
)
. If

one does not like to use local Lebesgue integrability on can assume
for the definition below simply that the Banach space is
continuously embedded into the dual space of Wiener’s algebra,
which is W (M , `∞) resp. W (L1, `∞)(Rd), endowed with the
vague resp. w∗-convergence.
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Homogeneous Banach spaces a la Katznelson

For this purpose let us recall the concept of homogeneous Banach
spaces (on Rd) as it is found in the book of Y. Katznelson.

Definition

A Banach space (B, ‖ · ‖B) of locally integrable functions is called
a homogeneous Banach space if it satisfies:

1 it is isometrically translation invariant, i.e.

‖Tx f ‖B = ‖f ‖B , ∀f ∈ B;

2 Translation is continuous in B, i.e.

‖Tx f − f ‖B → 0 for x → 0.
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Homogeneous Banach spaces are (M(Rd), ‖ · ‖M)-modules

Our next claim (without providing details) is the following one:

Theorem

1 Any homogeneous Banach space (B, ‖ · ‖B) is a Banach
module over (M(Rd), ‖ · ‖M) with respect to convolution.

2 If one restricts the attention to the closed subalgebra(
L

1(Rd), ‖ · ‖1

)
, then it is even an essential module.

3 Conversely, every (M(Rd), ‖ · ‖M) module which, viewed as(
L

1(Rd), ‖ · ‖1

)
is an essential L1(Rd) Banach convolution

module inside the locally integrable functions, then it is a
homogeneous Banach space.

The proof is based on the action of bounded discrete measures,
viewed as Riemannian type sums with values in Banach spaces and
the convergence of DΨµ ∗ f in (B, ‖ · ‖B).
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Geometric interpretation of matrix multiplication

Null(A) ⊆ Rn

Row(A) Col(A) ⊆ Rm
-

T̃ = T|row(A)

inv(T̃ )

?

PRow

@
@
@
@
@
@
@
@
@@R

T T ′

Rm ⊇ Null(A′)

?

�

PCol

�
�
�

�
�
�

�
�
��	

?

T = T̃ ◦ PRow , pinv(T ) = inv(T̃ ) ◦ PCol .
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Matrices of maximal rank

We will be mostly interested (as models for Banach Frames and
Riesz projection bases) in the situation of matrices of maximal
ranks, i.e. in the situation where r = rank(A) = max(m, n), where
A = (a1, · · · , ak).
Then either the synthesis mapping x 7→ A ∗ x =

∑
k xkak has

trivial kernel (i.e. the column vectors of A are a
linear independent set, spanning the column-space of which is of
dimension r = n), or the analysis mapping y 7→ A′ ∗ y = (〈y , ak〉)
has trivial kernel, hence the column spaces equals the target space
(or r = m), or the column vectors are a spanning set for Rm.
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Moving from Cn to Hilbert spaces: PROBLEMS

It seems easy to go from the finite dimensional setting to infinite
dimensional cases. This is in fact possible, if we have mappings
which have closed range!! Then the four spaces (terminology of
Gilbert Strang’s LINEAR ALGEBRA books!) are still here and we
can talk about Moore-Penrose inverse and all this.
WARNING: The usual “generalization” of linear independence
resp. “generating system”, meaning the property of a set to be
total in the Hilbert space are NOT SUITABLE because they lack
stability. The first restricts the attention (wrongly) to finite
families, the other talks about approximation by finite linear
combinations instead of series representations, convergent
in the Hilbert space. THERE IS A BIG difference.
RECOMMENDATION: Use diagrams to understand/describe the
case!!!
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Riesz basic sequences for Banach spaces

For Riesz basic sequences we have the following diagram:

X

X 0 Y
-C

�
R

P

?

@
@
@
@@R

C

Definition

A sequence (hk) in a separable Hilbert space H is a Riesz basis for
its closed linear span (sometimes also called a Riesz basic
sequence) if for two constants 0 < D1 ≤ D2 <∞,

D1‖c‖2
`2 ≤

∥∥∥∑
k

ckhk

∥∥∥2

H
≤ D2‖c‖2

`2 , ∀c ∈ `2 (19)

Details on Riesz projection bases are given in the PhD thesis of
G. Zimmermann.
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What is a generating set in a Hilbert space

We teach in our linear algebra courses that the following properties
are equivalent for a set of vectors (fi )i∈I in V :

1 The only vector perpendicular to a set of vectors is ∅;
2 Every v ∈ V is a linear combination of these vectors.

An attempt to transfer these ideas to the setting of Hilbert spaces
one comes up with several different generalizations:

a family is total if its linear combinations are dense;

a family is a frame if there is a bounded linear mapping from
H into `2(I ) f 7→ c = c(f ) = (ci )i∈I such that

f =
∑
i∈I

ci fi ∀f ∈ H. (20)
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The usual definition of frames

There is another, equivalent characterization of frames. First, it is
an obvious consequence of the characterization given above, that

f =
∑
i∈I

ci fi ∀f ∈ H. (21)

implies that there exists C ,D > 0 such that

C‖f ‖2 ≤
∑
i∈I
|〈f , fi 〉|2 ≤ D‖f ‖2 ∀f ∈ H. (22)

For the converse observe that Sf :=
∑

i∈I 〈f , fi 〉fi is a strictly

positive definite operator and the dual frame (f̃i ) satisfies

f =
∑
i∈I
〈f , f̃i 〉fi =

∑
i∈I
〈f , fi 〉f̃i
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The corresponding diagram for frames

R being a left inverse of C implies that P = C ◦R is a projection
in Y onto the range Y 0 of C, thus we have the following
commutative diagram.

Y

X Y 0-
C

� R ?

P

�
�

�
��	

R
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Dennis Gabor’s suggestion of 1946

There is one very interesting example (the prototypical problem
going back to D. Gabor, 1946): Consider the family of all
time-frequency shifted copies of a standard Gauss function
g0(t) = e−π|t|

2
(which is invariant under the Fourier transform),

and shifted along Z (Tnf (z) = f (z − n)) and shifted also in time
along Z (the modulation operator is given by
Mkh(z) = χk(z) · h(z), where χk(z) = e2πikz).
Although D. Gabor gave some heuristic arguments suggesting to
expand every signal from L

2(R) in a unique way into a (double)
series of such “Gabor atoms”, a deeper mathematical analysis
shows that we have the following problems (the basic analysis
has been undertaken e.g. by A.J.E.M. Janssen in the early 80s):
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TF-shifted Gaussians: Gabor families
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Problems with the original suggestion

Even if one allows to replace the time shifts from along Z by
time-shifts along aZ and accordingly frequency shifts along bZ one
faces the following problems:

1 for a · b = 1 (in particular a = 1 = b) one finds a total subset,
which is not a frame nor Riesz-basis for L2(R), which is
redundant in the sense: after removing one element it is still
total in L2(R), while it is not total anymore after removal of
more than one such element;

2 for a · b > 1 one does not have anymore totalness, but a Riesz
basic sequence for its closed linear span ( $ L

2(R));

3 for a · b < 1 one finds that the corresponding Gabor
family is a Gabor frame: it is a redundant family
allowing to expand f ∈ L2(R) using `2-coefficients (but
one can even remove infinitely many elements!);
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The Balian-Low Theorem

In his seminal paper of 1946 D. Gabor chose the integer lattice
a = b = 1 in R2 and used the Gaussian in order to define a Gabor
system with maximal time-frequency localization. Unfortunately
this system is no longer stable though complete/total. The
Balian-Low Theorem (early 80th) states that good time-frequency
localization and Gabor Riesz bases are not compatible:

Theorem

(Balian-Low) If G(g , 1, 1) constitutes a Riesz basis for L2(R), then∫
R2

|g(t)|2t2dt

∫
R2

|ĝ(ω)|2ω2dω =∞ .

The Balian-Low Theorem reveals a form of uncertainty
principle and has inspired fundamental research.
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The Banach Gelfand Triple

Figure: The Banach Gelfand triple generated by S0Hans G. Feichtinger A Fresh Look at HARMONIC ANALYSIS
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Banach Gelfand Triple (auto)morphism
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Various Gelfand Triples in the literature
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism
between H1 and H2.

3 A extends to norm-to-norm continuous isomorphism between
B
′
1 and B ′2 which is then automatically w∗-w∗--continuous!
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The S0(Rd)-Banach Gelfand Triple

From now on we will mostly focus on the Banach Gelfand triple
based on the Segal algebra S0(Rd).

Figure: SOGTRX.jpg
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Another comparison of function spaces

Figure: L1(Rd) and FL1(Rd), but also Wiener’s algebra WR (green) and
its Fourier image FWR (yellow).
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Sampling the spectrogram (STFT)

Yellow points indicate sampling set corresponding to a Gabor
frame. You see the spectrogram of some band-limited signal with
respect to a discrete Gaussian.

Figure: stftsamp1.jpg
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What we have learned in this course

Starting from the end:

Banach Gelfand Triples appear in many places and are in fact
almost as useful as the usual Gelfand triple
S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd), except for PDE;

Banach Gelfand Triples appear in many places and are in fact
almost as useful as the usual Gelfand triple
S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd), except for PDE;

Diagrams help to describe frames and Riesz basis at this level,
corresponding to sampling and atomic decomposition;

Many function spaces on LCA groups, like
(
S0(G ), ‖ · ‖S0

)
and(

S
′
0(G ), ‖ · ‖S ′

0

)
can be introduced and used;

We have a generalized Fourier transform, Shannon
Sampling Theorems and Kernel Theorems
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