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OVERVIEW

We will concentrate on the setting of the LCA group G = Rd ,
although all the results are valid in the setting of general locally
compact Abelian groups as promoted by A. Weil.
—————————————————————-
Classical Fourier Analysis pays a lot of attention to(
L
p(Rd), ‖ · ‖p

)
because these spaces (specifically for

p ∈ {1, 2,∞}) are important to set up the Fourier transform as an
integral transform which also respects convolution (we have the
convolution theorem) and preserving the energy (meaning that it is
a unitary transform of the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
).

—————————————————————-
Occasionally the Schwartz space S(Rd) is used and its dual
S ′(Rd), the space of tempered distributions (e.g. for PDE and
the kernel theorem, identifying operators from S(Rd) to
S ′(Rd) with their distributional kernels in S ′(R2d)).
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OVERVIEW II

In the last 2-3 decades the Segal algebra
(
S0(Rd), ‖ · ‖S0

)
(equal to the modulation space (M1(Rd), ‖ · ‖

M
1)) and its dual,

(S ′0(Rd), ‖ · ‖S ′0 ) or M∞(Rd) have gained importance for many
questions of Gabor analysis or time-frequency analysis.

Fourier standard spaces is a new name for a class of Banach
spaces sandwiched in between S0(Rd) and S ′0(Rd), with two
module structures, one with respect to the Banach convolution
algebra

(
L

1(Rd), ‖ · ‖1

)
, and the other by pointwise multiplication

with elements of the Fourier algebra
(
FL1(Rd), ‖ · ‖FL1

)
.

As we shall point out there is a huge variety of such spaces,
and many questions of Fourier analysis find an appropriate
description in this context.
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OVERVIEW III

The spaces in this family are useful for a discussion of questions in
Gabor Analysis, which is an important branch of
time-frequency analysis, but also for problems of
classical Fourier Analysis, such as the discussion of
Fourier multipliers, Fourier inversion questions (requiring to work
with the space L1(Rd) ∩ FL1(Rd)), and many other spaces.

Within the family there are two subfamilies, namely the Wiener
amalgam spaces and the so-called modulation spaces, among them
the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
or Wiener’s algebra(

W (C0, `
1)(Rd), ‖ · ‖W

)
.
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT
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Demonstration using GEOGEBRA (very easy to use!!)
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Spectrogramm versus Gabor Analysis

Assuming that we use as a “window” a Schwartz function
g ∈ S(Rd), or even the Gauss function g0(t) = exp(−π|t|2), we
can define the spectrogram for general tempered distributions
f ∈ S ′(Rd)! It is a continuous function over phase space.

In fact, for the case of the Gauss function it is analytic and in fact
a member of the Fock space, of interest within complex analysis.

Both from a pratical point of view and in view of this good
smoothness one may expect that it is enough to sample this
spectrogram, denoted by Vg (f ) and still be able to reconstruct f
(in analogy to the reconstruction of a band-limited signal from
regular samples, according to Shannon’s theorem).
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So let us start from the continuous spectrogram

The spectrogram Vg (f ), with g , f ∈ L2(Rd) is well defined and
has a number of good properties. Cauchy-Schwarz implies:

‖Vg (f )‖∞ ≤ ‖f ‖2‖g‖2, f , g ∈ L2(Rd),

in fact Vg (f ) ∈ C0(Rd × R̂d). Plancherel’s Theorem gives

‖Vg (f )‖2 = ‖g‖2‖f ‖2, g , f ∈ L2(Rd).

Assuming that g is normalized in L2(Rd), or ‖g‖2 = 1 makes
f 7→ Vg (f ) isometric, hence we request this from now on. Note:
Vg (f ) is a complex-valued function, so we usually look
at |Vg (f )|, or perhaps better |Vg (f )|2, which can be viewed as

a probability distribution over Rd × R̂d if ‖f ‖2 = 1 = ‖g‖2.
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The continuous reconstruction formula

Now we can apply a simple abstract principle: Given an isometric
embedding T of H1 into H2 the inverse (in the range) is given by
the adjoint operator T ∗ : H2 → H1, simply because ∀h ∈ H1

〈h, h〉H1 = ‖h‖2
H1

= (!) ‖Th‖2
H2

= 〈Th,Th〉H2 = 〈h,T ∗Th〉H1 ,
(1)

and thus by the polarization principle T ∗T = Id .
In our setting we have (assuming ‖g‖2 = 1) H1 = L

2(Rd) and
H2 = L

2(Rd × R̂d), and T = Vg . It is easy to check that

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)g dλ, F ∈ L2(Rd × R̂d), (2)

understood in the weak sense, i.e. for h ∈ L2(Rd) we expect:

〈V ∗g (F ), h〉
L

2(Rd ) =

∫
Rd×R̂d

F (x) · 〈π(λ)g , h〉
L

2(Rd )dλ. (3)
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Continuous reconstruction formula II

Putting things together we have

〈f , h〉 = 〈V ∗g (Vg (f )), h〉 =

∫
Rd×R̂d

Vg (f )(λ) · Vg (h)(λ) dλ. (4)

A more suggestive presentation uses the symbol gλ := π(λ)g and
describes the inversion formula for ‖g‖2 = 1 as:

f =

∫
Rd×R̂d

〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (5)

This is quite analogous to the situation of the Fourier transform

f =

∫
Rd

〈f , χs〉χs ds, f ∈ L2(Rd), (6)

with χs(t) = exp(2πi〈s, t〉), t, s ∈ Rd , describing the “pure
frequencies” (plane waves, resp. characters of Rd).
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Discretizing the continuous reconstruction formula

Note the crucial difference between the classical formula (6)
(Fourier inversion) and the new formula formula (5). The building
blocks gλ belong to the Hilbert space L2(Rd), in contrast to the
characters χs /∈ L2(Rd). Hence finite partial sums cannot
approximate the functions f ∈ L2(Rd) in the Fourier case, but they
can (and in fact do) approximate f in the L2(Rd)-sense.
The continuous reconstruction formula suggests that sufficiently
fine (and extended) Riemannian-sum-type expressions approximate
f . This is a valid view-point, at least for nice windows g (any
Schwartz function, or any classical summability kernel is OK:
see [F. Weisz] Inversion of the short-time Fourier transform
using Riemannian sums for example [7]).
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Modulation spaces, in particular S0(Rd) and S ′0(Rd)

The reconstruction of f from its STFT (Short-time Fourier
Transform) suggests that at least for “good windows” g one can
control the smoothness (and/or decay) of a function or distribution
by controlling the decay of Vg (f ) in the frequency resp. the time
direction.
A polynomial weight depending on the frequency variable only can
be used to describe Sobolev spaces, and (weighted) mixed-norm
conditions can be used to define the (now classical) modulation
spaces

(
M

s
p,q(Rd), ‖ · ‖Ms

p,q

)
.

We will put particular emphasis on the modulation spaces
S0(Rd) = M

1,1 = M
1, characterized by the membership of

Vg (f ) ∈ L1(R2d) and S ′0(Rd) = M
∞,∞ = M

∞, with uniform
convergence describing norm convergence in S ′0(Rd), while
pointwise convergence corresponds to the w∗-convergence in
S
′
0(Rd).
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Wilson bases and modulation spaces

It is perhaps enlightening to know that the spaces Mp(Rd) can be
characterized with the help of so-called Wilson bases (also via local
Fourier bases and of course via Gabor expansions).

Theorem

Assume that (gk,n)k∈Zd ,n∈Nd is a Wilson basis with generator

g ∈ S(Rd). Then a tempered distribution f ∈ S ′(Rd) belongs to(
M

s
p,q(Rd), ‖ · ‖Ms

p,q

)
if and only if the Wilson-coefficients of f

belong to the corresponding weighted, mixed-norm sequence space,
i.e. the following expression (equivalent norm for Ms

p,q(Rd)) is
finite

[
∑
n∈Nd

(
∑
k∈Zd

|〈f , gk,n〉|p)q/p(1 + n)sq]1/q <∞. (7)
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Modulation spaces Mp(Rd) and Gabor analysis

Just as an alternative let us remind of the following situation
concerning Gabor frames:

Theorem

Assume that (g ,Λ) generators a Gabor frame with generator
g ∈ S0(Rd) = M

1(Rd), with dual Gabor atom g̃ . Then
f ∈ S ′0(Rd) belongs to Mp(Rd) if and only if one of the following
expressions (equivalent norms) are finite:

1 |Vg (f )|Λ‖`p ;

2 ‖Vgd(f )|Λ‖`p .
Alternatively, f ∈Mp(Rd) if and only if it has an atomic
representation of the form

∑
λ∈Λ cλπ(λ)g , with

c = (cλ)λ∈Λ ∈ `p(Λ).
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Banach Module Terminology

Definition

A Banach space (B, ‖ · ‖B) is a Banach module over a Banach
algebra (A, ·, ‖ · ‖A) if one has a bilinear mapping (a, b) 7→ a • b,
from A× B into B bilinear and associative, such that

‖a • b‖B ≤ ‖a‖A‖b‖B ∀ a ∈ A, b ∈ B, (8)

a1 • (a2 • b) = (a1 · a2) • b ∀a1, a2 ∈ A, b ∈ B. (9)

Definition

A Banach space (B, ‖ · ‖B) is a Banach ideal in (or within, or of)
a Banach algebra (A, ·, ‖ · ‖A) if (B, ‖ · ‖B) is continuously
embedded into (A, ·, ‖ · ‖A), and if in addition (8) is valid with
respect to the internal multiplication inherited from A.
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Wendel’s Theorem

Theorem

The space of H
L

1(L1,L1) all bounded linear operators on L1(G )
which commute with translations (or equivalently: with
convolutions) is naturally and isometrically identified with
(Mb(G ), ‖ · ‖Mb

). In terms of our formulas this means

H
L

1(L1,L1)(Rd) ' (Mb(Rd), ‖ · ‖Mb
),

via T ' Cµ : f 7→ µ ∗ f , f ∈ L1, µ ∈Mb(Rd).

Lemma

B
L

1 = {f ∈ B | ‖Tx f − f ‖B → 0, forx → 0}.

Consequently we have (Mb(Rd))
L

1 = L
1(Rd), the closed ideal of

absolutely continuous bounded measures on Rd .
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Pointwise Multipliers

Via the Fourier transform we have similar statements for the
Fourier algebra, involving the Fourier Stieltjes algebra.

HFL1(FL1,FL1) = F(Mb(Rd)), F(Mb(Rd))FL1 = FL1. (10)

Theorem

The completion of
(
C0(Rd), ‖ · ‖∞

)
(viewed as a Banach algebra

and module over itself) is given by

HC0(C0,C0) =
(
Cb(Rd), ‖ · ‖∞

)
.

On the other hand we have (Cb(Rd))C0 = C0(Rd).
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Essential part and closure

In the sequel we assume that (A, ‖ · ‖A) is a Banach algebra with
bounded approximate units, such as

(
L

1(Rd), ‖ · ‖1

)
(with

convolution), or
(
C0(Rd), ‖ · ‖∞

)
or
(
FL1(Rd), ‖ · ‖FL1

)
with

pointwise multiplication.

Theorem

Let A be a Banach algebra with bounded approximate units, and
B a Banach module over A. Then we have the following general
identifications:

(BA)A = BA, (BA)A = BA, (BA)A = B
A, (BA)A = B

A.
(11)

or in a slightly more compact form:

BAA = BA, B
A
A = BA, BA

A = B
A, B

AA = B
A. (12)
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Essential Banach modules and BAIs

The usual way to define the essential part BA resp. Be of a
Banach module (B, ‖ · ‖B) with respect to some Banach algebra
action (a,b) 7→ a • b is defined as the closed linear span of A • B
within

(
B, ‖ · ‖B

)
. This subspace has other nice characterizations

using BAIs (bounded approximate units (BAI) in (A, ‖ · ‖A)):

Lemma

For any BAI (eα)α∈I in (A, ‖ · ‖A) one has:

BA = {b ∈ B | lim
α

eα • b = b} (13)
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The Cohen-Hewitt Factorization Theorem

In particular one has: Let (eα)α∈I and (ub)β∈J be two bounded
approximate units (i.e. bounded nets within (A, ‖ · ‖A) acting in
the limit like an identity in the Banach algebra (A, ‖ · ‖A). Then

lim
α

eα • b = b⇔ lim
β

uβ • b = b. (14)

Theorem

(The Cohen-Hewitt factorization theorem, without proof, see [5])
Let (A, ‖ · ‖A) be a Banach algebra with some BAI of size C > 0,
then the algebra factorizes, which means that for every a ∈ A there
exists a pair a′, h′ ∈ A such that a = h′ · a′, in short: A = A ·A. In
fact, one can even choose ‖a− a′‖ ≤ ε and ‖h′‖ ≤ C .
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Essential part and closure II

Having now Banach spaces of distributions which have two module
structures, we have to use corresponding symbols. FROM NOW
ON we will use the letter A mostly for pointwise Banach algebras
and thus for the FL1-action on (B, ‖ · ‖B), and we will use the
symbol G (because convolution is coming from the integrated
group action!) for the L1 convolution structure. We thus have

BGG = BG , B
G
G = BG , B

G
G = B

G , B
GG = B

G . (15)

In this way we can combine the two operators (in view of the
above formulas we can call them interior and closure operation)
with respect to the two module actions and form spaces such as

B
G
A, BA

G
A, B

G
A

G

A . . .

or changes of arbitrary length, as long as the symbols A and
G appear in alternating form (at any position, upper or lower).
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Combining the two module structures

Fortunately one can verify (paper with W.Braun from 1983,
J.Funct.Anal.) that any “long” chain can be reduced to a chain of
at most two symbols, the last occurence of each of the two
symbols being the relevant one! So in fact all the three symbols in
the above chain describe the same space of distributions.
But still we are left with the follwoing collection of altogether eight
two-letter symbols:

BGA,BAG ,BA
G ,BGA,BG

A,BAG ,B
AG ,BGA (16)

and of course the four one-symbol objects

BA,BG ,B
A,BG (17)
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Some structures, simple facts

There are other, quite simple and useful facts, such as

HA(B1
A,B

2) = HA(B1
A,B

2
A) (18)

which can easily be verified if B1
A = A • B1, since then

T ∈ HA(B1
A,B

2) applied to b1 = a • b1′ gives

T (b1) = T (a • b1′) = a • T (b1′) ∈ B2
A.
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The Main Diagram

This diagram is taken from [1].
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Fourier Standard Spaces, FouSS

Definition

A Banach space (B, ‖ · ‖B), continuously embedded between
S0(G ) and

(
S
′
0(G ), ‖ · ‖S ′0

)
, i.e. with(

S0(G ), ‖ · ‖S0

)
↪→ (B, ‖ · ‖B) ↪→

(
S
′
0(G ), ‖ · ‖S ′0

)
is called a Fourier Standard Space on G (FSS of FoSS) if it has
a double module structure: over (Mb(G ), ‖ · ‖Mb

) with respect to

convolution and over (the Fourier-Stieltjes algebra) F(Mb(Ĝ ))
with respect to pointwise multiplication.

REMARK: One could unify this assumption by combining the
two separate (commutative) group actions by the integrated
group action of the reduced Heisenberg group Rd × Rd × T
under the Schrödinger representation: π(t, s, τ) = τMsTt .
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TF-homogeneous Banach Spaces

A sufficient setting is the following one:

Definition

A Banach space (B, ‖ · ‖B) with

S(Rd) ↪→ (B, ‖ · ‖B) ↪→ S ′(Rd)

is called a TF-homogeneous Banach space if S(Rd) is dense in
(B, ‖ · ‖B) and TF-shifts act isometrically on (B, ‖ · ‖B), i.e. if

‖π(λ)f ‖B = ‖f ‖B , ∀λ ∈ Rd × R̂d , f ∈ B. (19)

For such spaces the mapping λ→ π(λ)f is continuous from
Rd × R̂d to (B, ‖ · ‖B). If it is not continuous on often has
the adjoint action on the dual space of such TF-homogeneous
Banach spaces (e.g.

(
L
∞(Rd), ‖ · ‖∞

)
or (Mb(Rd), ‖ · ‖Mb

)).
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TF-homogeneous Banach Spaces II

An important fact concerning this family is the minimality property
of the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
.

Theorem

There is a smallest member in the family of all TF-homogeneous
Banach spaces, namely the Segal algebra(
S0(Rd), ‖ · ‖S0

)
= W (FL1, `1)(Rd).

There is also a maximal space in the family of Fourier standard
spaces, namely the dual space (S ′0(Rd), ‖ · ‖S ′0 ) resp.

W (FL∞, `∞)(Rd).

The second claim even makes sense if FouSSs are defined as
subspaces of the much larger space S ′(Rd) of tempered
distributions!
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Discussion of the Diagram

For each of the Fourier Standard Spaces the discussion of the
above diagram makes sense. One may see that it can collaps
totally to a single space, or that it has in fact a rich (like(
C0(Rd), ‖ · ‖∞

)
) or simple structure.

Theorem

A Fourier standard space is maximal, i.e. coicides with
B̃ = B

AG = B
GA if and only if B is a dual space.

There is also a formula for the predual spaces, it is ((B0)′)0, where
B0 = BAG = BGA is just the closure of S(Rd) resp. S0(Rd) in B.

Of course (B, ‖ · ‖B) is minimal if and only if S0(Rd) is a dense
subspace of (B, ‖ · ‖B), resp. if it is a TF-homogeneous Banach
space.
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Discussion of the Diagram II

Theorem

A Fourier standard space is reflexive if and only if both the space
(B, ‖ · ‖B) and its dual are both minimal and maximal. In other
words, for the space itself and its dual the diagram is reduced to a
single space (B, ‖ · ‖B).
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Constructions within the FouSS Family

1 taking Fourier transforms;

2 conditional dual spaces, i.e. the dual space of the closure of
S0(G ) within (B, ‖ · ‖B);

3 with two spaces B1,B2: take intersection or sum

4 forming amalgam spaces W (B, `q); e.g. W (FL1, `1);

5 defining pointwise or convolution multipliers;

6 using complex (or real) interpolation methods, so that we get
the (Fourier invariant) spaces Mp,p = W (FLp, `p) ;

7 fractional invariant kernel and hull: For any given standard
space (B, ‖ · ‖B) we could define the largest Banach space
inside of B which is invariant under all the fractional FTs,
or the smallest such space which allows a continuous
embedding of (B, ‖ · ‖B) into that space.
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Constructions within the FouSS Family II

To explain the setting let us start with the familiar family of
L
p-spaces on a LCA group, say G = Rd , and

(B, ‖ · ‖B) =
(
L
p(Rd), ‖ · ‖p

)
, for some p ∈ [1,∞).

The
(
FLp(Rd), ‖ · ‖p

)
is well defined as the image of(

L
p(Rd), ‖ · ‖p

)
under the Fourier transform, with transport of

norm. It is another FouSS, even for p > 2 (because it is still well
defined as a subspace of (S ′0(Rd), ‖ · ‖S ′0 )).

It is a natural question to find the range of values (r , s) such that

W (FLp, `r ) ⊆ FLp ⊆W (FLp, `s).

Investigations by Peter Gröbner have shown (1992) that this
is OK if and only iff r ≤ min(p, p′) and s ≥ max(p, p′).
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Constructions within the FouSS Family III

Modulation spaces are Fourier Standard Spaces

The unweighted modulation spaces
(
M

p,q(Rd), ‖ · ‖Mp,q

)
can be

obtained by first forming the Wiener amalgams W (FLp, `q) and
then taking the inverse Fourier transform of these spaces.

The above inclusion relations then translate into exact embedding
conditions between Lp-spaces and the corresponding modulation
spaces.

Obviously there are natural embeddings between modulation
spaces with parameters p1, q1 and p2, q2, with
S0(Rd) = M

1 = M
1,1 being the smallest one!
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Constructions within the FouSS Family IV

There is a small body of literature (mostly papers by Kelly
McKennon, a former PhD student of Edwin Hewitt) concerning
spaces of “tempered elements”. He has done the case starting
B = L

p(G ), over general LC groups, but the construction makes
sense if (and only if) one has a nice invariant space which happens
not to be a convolution (or pointwise) algebra.
By intersecting the space with its own “multiplier algebra” one
obtains an (abstract) Banach algebra, and often the Banach
algebra homomorphism of this new algebra “are” just the
translation invariant operators on the original spaces.
For the case of B =

(
L
p(Rd), ‖ · ‖p

)
one would define

L
t
p := L

p ∩HG (Lp,Lp).
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Tempered elements in Lp-spaces

understood as the intersection of two FouSSs, with the natural
norm, which is the sum of the Lp-norm of f plus the operator
norm of the convolution operator.
For p > 2 one has to be careful and has to define that operator
norm only by looking at the action of k → k ∗ f on Cc(Rd)!
(convolution in the pointwise sense might fail to exist, on more
than just a null-set!).
However it is not a problem to approximate every element (in norm
or even just in the w∗-sense) by test-functions in S0(Rd) and then
take the limit of the convolution products of the regularized
expressions.
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Constructions within the FouSS Family V

Another interesting result that came recently to my attention
(thanks to Werner Ricker) provides an answer to the following
question related to the Theorem of Hausdorff-Young:
We know, that one has that FLp(Rd) ⊂ Lq(Rd) for
1/p + 1/q = 1, whenever p ∈ [1, 2]. But is there any strictly
larger, solid Banach space (B, ‖ · ‖B) (meaning pointwise
L∞(Rd)-module) such that it is still true that F(B) ⊂ Lq(Rd)).

The answer can be descibed as the FouSS (with natural norm):

B = HL∞(L∞,FLp).

In words: the pointwise multipliers from L
∞(Rd) to FLp(Rd).
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Tensor products

Let us recall some basic terms concerning tensor products of
functions or distributions (see [1], [2])
Given two functions f 1 and f 2 on Rd respectively, we set f 1 ⊗ f 2

f 1 ⊗ f 2(x1, x2) = f 1(x1)f 2(x2), xi ∈ Rd , i = 1, 2.

For distributions this definition can be extended by taking
w∗-limits or by duality, just like µ1 ⊗ µ2 is defined, for two
bounded measures µ1, µ2 ∈Mb(Rd).
It is important to know that we have σ1 ⊗ σ2 ∈ S ′0(R2d) for any
pair of distributions σ1, σ2 ∈ S ′0(Rd).
In particular S ′0(Rd)⊗̂S ′0(Rd) is well defined and a (proper)
subspace of S ′0(Rd).
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Tensor product of FouSSps

Given two Banach spaces B1 and B2 embedded into S ′(Rd),
B

1⊗̂B2 denotes their projective tensor product, i.e.{
f | f =

∑
f 1
n ⊗ f 2

n ,
∑
‖f 1

n ‖B1‖f 2
n ‖B2 <∞

}
; (20)

It is easy to show that this defines a Banach space of tempered
distributions on R2d with respect to the (quotient) norm:

‖f ‖⊗̂ := inf {
∑
‖f 1

n ‖B1‖f 2
n ‖B2 , ..} (21)

where the infimum is taken over all admissible representations.
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The Varopoulos algebra V0(R2d) and bimeasures

For questions of harmonic analysis the so-called Varopoulos algebra
V0(R2d) := C0(Rd)⊗̂C0(Rd) plays an important role.
The dual space of this tensor product, which is a proper subspace
of C0(R2d) is called the space of bi-measures BM(R2d), which
form again a Banach algebra with respect to convolution.
Their Fourier transforms (in the sense of S ′0) are still well defined,
and are bounded continuous functions, and one has again a
convolution theorem (convolution goes into pointwise
multiplication under the FT).
The space BM shares with Mb(Rd) the property that the
compactly supported elements are dense in the space, i.e.
B = BA in the spirit of the diagram.
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The KERNEL THEOREM for ScRd

The kernel theorem for the Schwartz space can be read as follows:

Theorem

For every continuous linear mapping T from S(Rd) into S ′(Rd)
there exists a unique tempered distribution σ ∈ S ′(R2d) such that

T (f )(g) = σ(f ⊗ g), f , g ∈ S(Rd). (22)

Conversely, any such σ ∈ S ′(R2d) induces a (unique) operator T
such that (22) holds.

The proof of this theorem is based on the fact that S(Rd) is a
nuclear Frechet space, i.e. has the topology generated by a
sequence of semi-norms, can be described by a metric which
turns S(Rd) into a complete metric space.
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The KERNEL THEOREM for S0 I

Tensor products are also most suitable in order to describe the set
of all operators with certain mapping properties. The backbone of
the corresponding theorems are the kernel-theorem which reads as
follows (!! despite the fact that

(
S0(Rd), ‖ · ‖S0

)
is NOT a nuclear

Frechet space)
One of the corner stones for the kernel theorem is: One of the
most important properties of S0(Rd) (leading to a characterization
given by V. Losert, [6]) is the tensor-product factorization:

Lemma

S0(Rk)⊗̂S0(Rn) ∼= S0(Rk+n), (23)

with equivalence of the corresponding norms.
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The KERNEL THEOREM for S0 II

The Kernel Theorem for general operators in L(S0,S
′
0):

Theorem

If K is a bounded operator from S0(Rd) to S ′0(Rd), then there
exists a unique kernel k ∈ S ′0(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉
for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S ′0(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .
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The KERNEL THEOREM for S0 III

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L

2(R2d)-kernels.
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The KERNEL THEOREM for S0 IV

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if
the corresponding operator K maps S ′0(Rd) into S0(Rd), but not
only in a bounded way, but also continuously from w∗−topology
into the norm topology of S0(Rd).

In analogy to the matrix case, where the entries of the matrix

ak,,j = T (ej)k = 〈T (ej), ek〉

we have for K ∈ S0 the continuous version of this principle:

K (x , y) = δx(T (δy ), x , y ∈ Rd .
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The Kernel Theorem as a BGT isomorphism

The different version of the kernel theorem for operators between
S0 and S ′0 can be summarized using the terminology of Banach
Gelfand Triples (BGTR) as follows.

Theorem

There is a unique Banach Gelfand Triple isomorphism between the
Banach Gelfand triple of kernels (S0,L

2,S ′0)(R2d) and the operator
Gelfand triple around the Hilbert space HS of Hilbert Schmidt
operators, namely (L(S ′0,S0),HS,L(S0,S

′
0)), where the first set is

understood as the w∗ to norm continuous operators from S
′
0(Rd)

to S0(Rd), the so-called regularizing operators.
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Spreading function and Kohn-Nirenberg symbol

1 For σ ∈ S ′0(Rd) the pseudodifferential operator with
Kohn-Nirenberg symbol σ is given by:

Tσf (x) =

∫
Rd

σ(x , ω)f̂ (ω)e2πix ·ωdω

The formula for the integral kernel K (x , y) is obtained

Tσf (x) =

∫
Rd

(∫
Rd

σ(x , ω)e−2πi(y−x)·ωdω
)
f (y)dy

=

∫
Rd

k(x , y)f (y)dy .

2 The spreading representation of Tσ arises from

Tσf (x) =

∫∫
R2d

σ̂(η, u)MηT−uf (x)dudη.

σ̂ is called the spreading function of Tσ.
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Further details concerning Kohn-Nirenberg symbol

(courtesy of Goetz Pfander (Eichstätt):)

· Symmetric coordinate transform: TsF (x , y) = F (x + y
2 , x −

y
2 )

· Anti-symmetric coordinate transform: TaF (x , y) = F (x , y − x)

· Reflection: I2F (x , y) = F (x ,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

The kernel K (x , y) can be described as follows:

K (x , y) = F2σ(η, y − x) = F−1
1 σ̂(x , y − x)

=

∫
Rd

σ̂(η, y − x) · e2πiη·xdη.
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Kohn-Nirenberg symbol and spreading function II

operator H Hf (x)
l =

kernel κH
∫
κH(x , s)f (s) ds

l =

Kohn–Nirenberg symbol σH
∫
σH(x , ω)f̂ (ω)e2πix ·ω dω

l =
time–varying impulse response hH

∫
hH(t, x)f (x − t) dt

l =
spreading function ηH

∫ ∫
ηH(t, ν)f (x − t)e2πix ·ν dt dν

=∫ ∫
ηH(t, ν)MνTt f (x), dt dν ,
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Spreading representation and commutation relations

The description of operators through the spreading function and
allows to understand a number of commutation relations.
If an operator is a limit (in the strong operator topology) of
translation operators it is just a convolution operator with some
τ ∈ S ′0(Rd), resp. its spreading representation is just an element
concentrated on the time axis (more or less representing τ̂ , the
“individual frequency contributions”.
Similarly, multiplication operators require just the use of
modulation operators, so their spreading function is concentrated
in the frequency axis of the TF-plane.
Finally typical Gabor frame operators arising from a family of
Gabor atoms (gλ), where λ ∈ Λ, some lattice within Rd × R̂d

typically commute with TF-shift operators, one can say that
they are obtained by periodizing the projection operator
f 7→ 〈f , g〉g along the lattice.
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The symplectic Fourier transform

The symplectic Fourier transform connects the Kohn-Nirenberg
symbol with the spreading function, i.e.

Fs(σ(T )) = η(T ) resp. Fs(η(T )) = σ(T ). (24)

(Fsympf )(k , l) =

∫
Rd

∫
Rd

f (x , y)e−2πi(k·y−l ·x); f ∈ S0(Rd × R̂d).

(25)
It is completely characterized by its action on elementary tensors:

Fsymp(f ⊗ ĝ) = g ⊗ f̂ , f , g ∈ S0(Rd), (26)

and extends from there in a unique way to a w∗ − w∗

continuous mapping from S
′
0(R2d) to S ′0(R2d), also Fs2 = Id .
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Understanding the Janssen representation

The spreading representation of operators has properties
very similar to the ordinary Fourier expansion for functions!
Periodization at one side corresponds to sampling on the transform
side, if we understand “translation” either at the level of ordinary
translation of the Kohn-Nirenberg symbol (which is the symplectic
Fourier transform of the spreading function), OR by conjugation of
an operator by the corresponding TF-shifts.
In other words: for any given operator T and λ ∈ Rd × R̂d we can
define [recall π(x , ω) = MωTx for λ = (x , ω)]

π ⊗ π∗(T ) = π(λ) ◦ T ◦ π(λ)∗, (27)

providing the important covariance property for KNS:

σ[π ⊗ π∗(λ)(T )] = Tλ[σ(T )], λ ∈ Rd × R̂d . (28)

Hans G. Feichtinger FOURIER STANDARD SPACES and the Kernel Theorem



Periodization goes over to sampling

If we have a “nice operator” T0 we can form its periodic version∑
λ∈Λ π ⊗ π∗(λ)(T0) and it is still a well defined operator from

S0(Rd) to S ′0(Rd). Its KNS is just the Λ-periodization of T0.
Consequently its spreading function is obtained by sampling of
η(T ) ∈ S0(Rd × R̂d), over the adjoint lattice Λ◦ and obtain in this
case an `1-sequence.
The adjoint lattice Λ◦ can be characterized by the fact that

Fs(ttΛ) = CΛttΛ◦ . (29)

For the projection on the Gabor atom Pg : f 7→ 〈f , g〉g the
spreading functions is essentially

[η(Pg )](λ) = Vg(g)(λ) = 〈g , π(λ)g〉, λ ∈ Rd × R̂d .
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Janssen representation II

An important insight concerning the connection between the Gabor
atom g , the TF-lattice Λ C Rd × R̂d and the quality of the
resulting Gabor frame resp. Gabor Riesz basis (e.g.condition
number) clearly comes from the Janssen representation of the
Gabor frame operator for any g ∈ S0(Rd) with ‖g‖2 = 1:

Sg ,Λ(f ) =
∑
λ∈Λ

Pgλ(f ) =
∑
λ∈Λ

π ⊗ π∗(λ)[Pg ]. (30)

The periodization principle gives the Janssen representation

Sg ,Λ =η−1[η(Sg ,Λ)] = CΛ

∑
λ◦∈Λ◦

Vg (g))(λ◦)π(λ◦), (31)

as an absolutely convergent sum of TF-shifts from Λ◦.
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Fourier Standard Spaces of Operators

The kernel theorem allows to identify many spaces of linear
operators (with different forms of continuity) with suitable FouSSs
over R2d .
For example, there are the so-called Schatten classes of operators
on the Hilbert space L2(Rd) which are compact operators with
singular values in `p, for 1 ≤ p <∞. These spaces are operator
ideals within L(H), i.e. they are Banach spaces, continuously
embedded into the space of compact operators over the Hilbert
space H, as well as two-sided Banach ideals, i.e. whenever one has
an operator T in such a space, and two bounded operators S1,S2

on H, then S1 ◦ T ◦ S2 also belongs to that operator ideal and the
operator ideal norm is bounded by the operator ideal norm of
T multiplied with the operator norms of S1 and S2.
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Spaces of Operators

Another family of operators are defined by their boundedness
between certain FouSSs, e.g. an operator may be bounded from
L
p(Rd) (with p ∈ [1,∞)) to some Lq(Rd), with 1 ≤ q ≤ ∞.

Each of these operators has a kernel, so we can look at the set of
all the kernels of bounded operators from L

p(Rd) to Lq(Rd) for
p, q in the range described above, simply by testing the norm
continuity on the dense subspace (of Lp(Rd), for p <∞) and
embedding the target space into (S ′0(Rd), ‖ · ‖S ′0 ).

Theorem

Consider the Banach space of operators L(Lp,Lq), with
1 ≤ p, q <∞, which is isomorphic to a space of kernels in
S
′
0(R2d), with the norm of the kernel being just the operator norm

of the corresponding operator.
Then the space of kernels is ismorphic to the dual of the FouSS
L
p(Rd)⊗̂Lq′(Rd).
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Spaces of Operators II

Next we define the Herz algebras Ap(Rd) via the “convolution
tensor product: The dual space of the space of all (convolution)
multipliers from L

p(Rd) to Lp(Rd) (for 1 < p <∞) can be
identified with the dual space of the Herz algebra Ap(Rd), given by

Ap(Rd) := L
p(Rd)�̂∗Lq(Rd).

In the background of such a theorem stands the fact that a matrix
commutes with (cyclic) translations if and only if it is constant
along the side-diagonals. The kernels of such operators are
constant along the main diagonal, respectively are a
“moving average”. Spectral synthesis results for the Fourier
transform on S ′0(Rd) then allow to derive this result.
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Spaces of Operators III

Of course one can now start to combine the various items,
especially concerning the “diagram” and the relation to Wiener
amalgam spaces with these spaces.
One may ask, what about the density of S0(R2d) in such a space
of operators (is it minimal, or a dual spaces, is it reflexive, and so
on, what is the form the the general diagram).
One can also ask, what about decomposing the operator kernel
into local patches of uniform size. Who is an `q-norm of the pieces
related to the overall norm in such a FouSS of operators.
And furthermore one can switch to the set of spreading symbols or
the Kohn-Nirenberg symbols of such FouSS of operators and ask
similar questions.
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Further information, LINKS

A lot of further material can be found through the NuHAG
web-page, in particular at

www.nuhag.eu/talks

E.g. selecting one the follogin filters:

BanGelTriples

FeiTalks

FeiConcept

or one of the (drafts of) lecture notes found at
http://www.univie.ac.at/nuhag-php/home/skripten.php
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