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History
°

Key aspects of my talk

o
2]
o
o
o
o
o
o

Fourier Analysis is a classical topic
Convergence issues, Hilbert space theory
Time-Frequency Analysis

Frames (and Riesz bases)

The need for generalized functions;

The Banach Gelfand Triple (So, L?, S5)(RY)
Various typical applications

The Idea of Conceptual Harmonic Analysis
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Notations and Conventions

Let us collect here the normalizations of the Fourier transform and
relevant transformations of function spaces.

flw) = /Rd f(t)-e 2™t dt. (1)

The inverse Fourier transform (resp. Fourier synthesis) then has
the form

f(t) = /R () e d, 2)

which is valid at least for those continuous, integrable functions
which have a Fourier transform f € L!(RY).
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Time and Frequency Shifts

[T.f](t) = f(x — t), x,teR; (3)
[M,,f](x) = e f(x) x,weRY. (4)

These operators show the following behavior under the FT
(Tuf\ = M_xf  (Muf) = T,f (5)

Combined, applying first the time-shift and then Ehe frequency
shift we get the TF-shifts for A = (t,w) € RY x RY:

[T(N)F](x) = M, Tef(x) = €279t (x — t). (6)

N/
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Time and Frequency Shifts: on Time and Fourier Side

SIGNAL 1 (unitary) FFT-1
0.2+
0.2
0.1
0.1 0
-0.1+
0
-200  -100 0 100 200 -200  -100 0 100 200
SIGNAL 2 (unitary) FFT-2
0.2 0.2+
0.1 0.1
0 0
0.1 017
0.2 0.2t
-200  -100 0 100 200 -200  -100 0 100 200

Figure: Demonstrating the effect of shifts on time or.frequency side
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Operators and conventions

A Summary of Operator Rules |

Although we will not use the theory based on Lebesgue integration
it is still good to know what the standard rules are on the standard
spaces, such as L1(R?). We will come back to this space later on.

Operators

T, | T.f(x) =f(x—z) translation by z
M, | Msf(x) = e™=>f(x) | modulation operator
St, | St,f(x) = p~9f(x/p) | stretching operator
D, | D,f(x) = f(px) dilation operator

" (x) = f(—x) flip operator

*(x) = f(—x) L'-involution

f(x) = f(x) conjugation operator
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Operators and conventions

A Summary of Operator Rules |l

Translation and modulation are isometric on all the LP-spaces,
1 < p < 00. The stretching operator is isometric an

(LY(R?), ||-[l1), while D,, is isometric on (Cp(RY), |- |lco)
hence on (Co(RY), [| - [loc) (or (L=(RY), |- llo))-

| Compatibility of Operators |

T,oM, =e?"?M.o T, | translation with modulation
FoM,=T,0F translation and Fourier

M(g * f) = Mf x Mg modulation and convolution
To(h-f)=Teh- T.f translation and multiplication
D,(h-f)=D,h-D,f dilation and multiplication

St,(g * f) = St,f xSt,g | stretching and convolution

(Fxg) =g «f* convolution and involution
h-f=h-f multiplication and conjugation m
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Operators and conventions
A Summary of Operator Rules IlI

We have for 1 < p < o0

Operators
| T.fll, =|Ifll, | translation by z
[Mf]l, = [[f]l, | modulation operator
ISt fll1 = ||fll1 | stretching operator
ID,flloc = [If]loo | dilation operator
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Operators and conventions
A Summary of Operator Rules IV

We also have a couple of adjointness relationship (adjoint
operators in the sense of the Hilbert space (Lz(Rd) || || )

its standard scalar product, given by (f, g) fRd dx.
For example T, = T_,,M. = M_,, and D,’ = St, resp
(equivalently) St Dp.

Sometimes also the L2-isometric dilated version is used (e.g. in
wavelet theory, which suggest this form of the scaling opeator:

Sof(2) = p~*f(2/p).p # 0.
Then one has S| = Sy, (adjoint operator), and

15pfll2 = [Ifll2; and  supp(S,f) = p-supp(f).  (7)
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Operators and conventions

A Summary of Operator Rules V

Definition (Banach spaces of continuous functions on R9)

Cp(R?) := {f : RY — C, continuous and bounded, ...

with norm || ||oc = sup,cpre|f(x)| }

The spaces C,p(R9) and Cy(RY) are defined as the subspaces of
C,(RY) consisting of functions which are uniformly continuous
(and bounded) resp. decaying at infinity, i.e.

fe C(RY) ifandonlyif  lim |f(x) =0.

[x| =00
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STFT Def.

The Short-Time Fourier Transform

The Short-Time Fourier Transform

Vef(A) = (f, M Teg) = (f,m(N)g) = (f,8x), A= (t,w);

We also need dilation operators:

[Stogl(x) = p~%g(x/p), p#0, (8)
and the value preserving dilation operator
[D,hl(x) = h(px), p 0. (9)
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STFT Def.

Creating Dirac sequences

15- B

Il Il Il Il Il
-2 -15 -1 -05 0 0.5 1 15 2
Stﬂ applied to Gauss function, p = 1; 1/2; 1/4.

Figure: The stretching operator applied to a standard Gauss function,
with “compression” factors of 1 (blue),1/2 (green),1/4 (red). m
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STFT Def.

Summability kernels by dilation

1t

0.8

0.6 -

0.4r

0.2

0

-4 -3 -2 -1 0 1 2 3 4
D,, applied to Gauss function, p = 1; 1/2; 1/4; 1/16 (black)

Figure: Dilation corresponding to this on the Fourier transform side, for
p — 0, exactly: p =1 (blue), 1/2 (green), 1/4 (red), 1/16 (black).
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STFT Def.

The Main Subject of the Course

The main subject of this course will be a triple of Banach spaces,
namely (So, L2, S})(RY), or a so-called Banach Gelfand Triple or
rigged Hilbert space, because it is the (usual) Hilbert space
(L2(R9), || ||l2), “surrounded” by a pair of spaces, namely the
Banach space of (continuous and Riemann integrable) test
functions (So(R?), || - ||s,) and it dual (So(RY), || -[|s). Thus

So(RY) — L2(RY) — SH(RY) (10)

with two continuous embeddings, and density of So(R9) in
(L2(R9), || ||l2) and w*-density of So(R9) or L>(R?) in S§(R9),
i.e. for any o € S{(RY) there exists a sequency of test functions
(hn) in So(RY), such that for any given g € So(R9) on has

/]Rd g(x)ha(x)dx — o(g), for n — occ. m
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STFT Def.

The Overall Perspective

We could give longer courses on the following goals:

@ Motivate the necessity (originally coming from applications) of
allowing objects which are not “proper functions”, like the
so-called Dirac function §(t) or dp.

@ Go through the technicalities of topological vector spaces and
explain the concept of S’(RY), the tempered distibutions and
then work within that larger reservoir;

@ Doing things from scratch and provide all the functional
analytic details we would have a solid basis but would not get
far enough to present interesting applications;

o INSTEAD I plan to provide BACKGROUND
information, BASIC FACTS and describe TYPICAL
APPLICATION SITUATIONS. m
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STFT Def.

The Course Structure

| will try to follow roughly the following plan:

@ Provide a list of motivating properties, why do we need
Banach algebras of test functions;

@ Define then Banach space ($(RY), || |s,)
(and similar spaces) and show its basic properties;

© Derive the basic properties of the dual space Sé(]Rd);

@Q Combine the three spaces to the Banach Gelfand Triple
(So. L%, $5)(RY);

© Show typical application situations, mostly in Fourier Analysis
and Gabor Analysis resp. time-frequency analysis (TFA).
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STFT Def.
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Comparison with the Number System |

The trio of “function spaces” can be compared with the trio of
number systems (fields of numbers), namely the chain

QcRcC. (11)

While there is a obvious distinction in their appearance it is also
clear how to interpret each of these objects as a subset of the
larger ones (e.g. rationals as periodic infinite decimal expressions),
and all the computations which can be done at a lower level can be
expanded in a natural unique way to the larger one.

The best example is multiplication and inversion, think of the

number 1/72, or the claim that 2™ = 1. This is not as simple

as forming the multiplicative inverse of 3/4, which is 4/3

(observe transition from actual to symbolic computation!). m
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STFT Def.
(o] 1¢]

A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the "kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w*)!

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space

Figure: Compare the situation with Q C R € C m
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STFT Def.
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Comparison with the Number System Il

There are many good reasons to extend the rational numbers
(which already are a field and thus allow for quite a variety of
operations) to the field of real numbers. It is lack of completeness
which is the problem with Q. It is easy to find a Cauchy sequence
of rationals g,, n > 1 with the property that g2 — 2 for n — oc.
BUT there is no rational number g such that g% = 2!

The abstract way which allows to embed each metric space into a
complete metric space (where every Cauchy-sequence has a limit)
makes use of equivalence classes of Cauchy-sequences.

In the case of the rational number Q with the distance

d(q1, g2) = |g1 — go| each such equivalence class contains

(more or less) exactly one infinite decimal expression.
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Comparison with Fourier Analysis for Engineers |

We will see that the use of certain symbols, specifically integrals
within an engineering context is better understood at the
“symbolic level”, e.g. the Fourier inversion formula.

Let us give an example: Sometimes the validity of the Fourier
inversion formula is justified by the (so-called) validity of the
following formula

/oo eZmist ds = §(t). (12)

Such a claim is of course very problematic to mathematicians
who try to take it literal and object to the existence of the integral
on the left hand side as a Lebesgue integral (the best possible
one), and the pointwise interpretation of the equality, because

the “delta-function” should not be described pointwise.
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STFT Def.
0®00000000

Comparison with Fourier Analysis for Engineers ||

Instead of just discarding the equation (12) as non-sense we can
take it as a symbol, but we have to learn to read it properly.

Expressions of the form [°° h(s)e*™™!ds are generally useful and
allow us to regain g from its Fourier transform h = g, given by
g(s) = [ g(t)e ?"tdt, at least for (good, i.e.) test functions.
In this sense we can read (12) as the claim that F (1) = &y, the
inverse Fourier transform of the function contant one is the Dirac
delta (distribution or measures).

This sounds reasonable if we assume that the forward or inverse
Fourier transform of objects like 1 of §g “exist”?!, since the
convolution theorem suggest that for test functions f one has

Soxf=Ffebg-f (clearlyzl-f).

! Another problematic setting with the danger of drifting into m
philosophical discussions about the existence of objects!
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STFT Def.
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Comparison with Fourier Analysis for Engineers |lI

So one of goals of this course will be to build a bridge between
engineering intuition and “symbolic manipulations” and strict
mathematical description, without going too deep into complicated
mathematical theory (involving Lebesgue integration, which does
not help here, or topological vector spaces, which are used as the
foundation to the Schwartz theory of tempered distributions,
indicating how they can be replaced to a large extent by Banach
space arguments.

Coming back to (12) let us indicate our plan:

First we have to extend the domain of the forward and inverse
Fourier transform from the space of test functions to a larger
vector space of generalized functions. Then we have to show that
do and 1 correspond to each other! Finally we can verify the
validity of the convolution theorem in this more general context,
justifying claim (12) in a different way. m
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Comparison with Fourier Analysis for Engineers 1V

But the fact that the (generalized) inverse Fourier transform has
the (necessary) property of bringing 1 back to g by itself does not
guarantee that the classical Fourier inversion formula is giving a
description of the inverse mapping to the Fourier transform, if we
change (and specifically expand) the domain.

This is like saying, that it is obvious that we have

T —-m=1 inR.
T

Such a claim is trivial at the symbolic level, but would have to be a
bit complicated if realized “numerically” (or constructively).
We can justify formula (12) later on also by verifying that the
so-called w*w™continuity of the extended Fourier transform on
S5(R)
enforces that (12) is not only valid but characteristic for the m
inverse (of the) Fourier transform!
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What can we learn from the Number Systems

Multiplication and division (correctly interpreted as inversion of the
multiplication for non-zero elements!), well defined on @, can be
extended in a very natural way once we know a few things:

@ how to create the generalized objects from the given set of
object (e.g. infinite decimal expression viewed as sequences of
their approximations with finite precision);

@ how to embed the original structure into to new object,
including the algebraic properties (e.g. multiplication, or
Euclidean distances) in a compatible way!?

© show how new objects are approximated by old ones;

@ extend the structures and demonstrate that the extended
structure is characterized by these natural properties.

2Like (3/4)? = 9/16 = 0.5625 = 0.75°.
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Papoulis comment on distribution theory

It is very interesting to read to introduction to the original version
of A. Papoulis on The Fourier Transforms and its Applications
(first published in 1962), one of the standard works for applied
Fourier Analysis, specifically for Engineers, in the second half of
the last century, see [27].

Note that at this time the theory of Schwartz distributions was still
quite fresh, that Papoulis argues that it is a powerful but a theory
which is too complicated for engineers. Note also that this book
has been written shortly before the time the FFT was even
invented (by Cooley and Tuckey, see [2]), which clearly has a deep
impact on modern (computational) Fourier Analysis.

Papoulis writes in his preface:

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



STFT Def.
0000008000

Possible way to introduce Generalized Functions 1la

There are two different ways to introduce generalized functions.

The first one is through equivalence classes of sequences of test
functions, while the second one uses functional analytic ideas, i.e.
defines the space of distributions as a set of linear functionals on
some topological vector space. This means one takes all /inear
functionals which respect the convergence (typically describe by
families of seminorms on the vector space), i.e. which are
continuous. We will follow this second approach, but with a simple
Banach space approach, where continuity can be expressed simply
by boundedness, the function o has to satisfy |o(f)| < C||f]|s, for
some C > 0 and all f € S(RY).

The main advocate of the sequential approach is the
was J. Ligthill, whose book [25] appeared first in 1958. m
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Benefits and Problems with the Sequential Approach 1b

It is clear that the sequential approach is modeled after the
construction of the real numbers R from the rationals Q, resp. by
applying the general concept of completion of metric spaces.
Unfortunately (unlike one has the infinite decimal representation
for R) the general situation does not allow to work with a specific
representative or a unique sequence of test functions, but one has
to work effectively with equivalence classes of so-called regular
(meaning “somehow convergent”) sequences.

This makes the handling in this approach quite involved and even
for simple (if not almost trivial statements) one has to work hard
(or leave the details to the reader, so that she/he is left with a lot
of work).

N/
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Comments on the Approach by Duality, 2a

Aside from the fact that one has to make use of a few basic
principles from the theory of Banach (and perhaps Hilbert) spaces
the introduction of generalized functions, or perhaps better
distributions is to define them as linear spaces of linear functionals.
What is a bit less convenient at first sight is the necessity of
embedding ordinary functions into which can be done using the
Riemann integral (or Haar meausure), or more generally the
Lebesgue integral for the most general examples of regular
distributions (e.g. bounded measures with density in L*(R9)).

We define the distribution induced by a function h on RY via

op(f) = /Rd f(x) h(x)dx, (13)

i.e. by integration of the argument f € So(RY) against h. m
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Benefits of the Approach based on Duality, 2b

Aside from the fact that perhaps the view-point that signals ARE
IN SOME SENSE linear functionals, which can be measured,
without having necessarily a pointwise value (what about room
temperature as a function of time and space coordinates: we can
only measure some averages!) and pointwise defined functions are
perhaps more of an idealization (compare to concrete linear
functionals) one has several advantages from the duality approach.

First of all it is easy to verify completeness of the space of
distributions. Secondly one has in addition to the norm
convergence in the dual space also the so-called w*-convergence.

We will see that with a couple of basic facts from /inear
functional analysis we can prove quite a few things (partially
based on linear algebra considerations). m

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



The Segal algebra SO(Rd)

The key-players for time-frequency analysis

Time-shifts and Frequency shifts

T f(t) =1f(t —x)

and x,w,t € RY _
M, f(t) = ™ tf(t).

Behavior under Fourier transform

(Tuf) = M_f (M) = T,f

The Short-Time Fourier Transform

Vef(A) = (f, M Teg) = (f,m(N)g) = (f,ex), A= (t,w);

N/
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The Segal algebra SO(Rd)

A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF

= time-frequency plan:

Beethoven Sonata

] o2
-mmt
e =
: ‘1 wrl N i
”\ Mﬁ- '~_~“~‘ ~_: -
w« — . LA

u
1 uu ZDU 300 400 500 SDD 8DD 900 1000 m
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The Segal algebra SO(Rd)

Space of (Fei 1979)

A function in f € L?(R9) is in the subspace Sy(RY) if for some
non-zero g (called the “window") in the Schwartz space S(R?)

1flls, := [I Vg f”,_l// \fow)|dxdw<oo

The space (So(R?), | -|ls,) is a Banach space, for any fixed,
non-zero g € So(R9)), and different windows g define the same
space and equivalent norms. Since So(RY) contains the Schwartz
space S(}Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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The Segal algebra SO(Rd)

Basic properties of M' = S3(RY)

Lemma

Let f € So(R?), then the following holds:

(1) w(u,n)f € So(RY) for (u,n) € RY x R?, and
[ (u, m)flls = [If]ls,-

(2) f € So(RY), and |[fls, = |Ifls,-

In fact, (So(R7), |- ||s,) is the smallest non-trivial Banach space
with this property, and therefore contained in any of the LP-spaces
(and their Fourier images), for 1 < p < oo, and dense for p < occ.
Later on we will make use of the fact that (So(RY), |- [|s,)
coincides with the Wiener amalgam space W (FL!, £})(R9).e In
fact it was introduced in this way by the author ([7], see [?]).

N/
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The Segal algebra SO(Rd)

Various Function Spaces

Figure: The usual Lebesgues space, the Fourier algebra, and
the Segal algebra So(RY) inside all these spaces m
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The Segal algebra SO(Rd)

BANACH GELFAND TRIPLES: a new category

Definition
A triple, consisting of a Banach space (B, || - ||g), which is densely

embedded into some Hilbert space H, which in turn is contained in
B’ is called a Banach Gelfand triple.

Definition
If (B1,H1,B}) and (B2, H2, BY) are Gelfand triples then a linear
operator T is called a [unitary] Gelfand triple isomorphism if

© A is an isomorphism between B; and B;.

@ A is [unitary] isomorphism between H; and Ho.

© A extends to a weak™ isomorphism as well as a norm-to-norm
continuous isomorphism between B and B5.
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The Segal algebra SO(Rd)

A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the "kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w*)!

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space
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The Segal algebra SO(Rd)

The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)

W = (1)) for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within 7 which have an absolutely convergent expansion,
i.e. satisfy >, [(x,¢i)| < oo.

For the case of the Fourier system as CONB for 7 = L?([0,1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)' is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A, L2, PM)(T) and (£, €2 £>)(Z). N|
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The Segal algebra SO(Rd)

The Fourier transform as BGT automorphism

The Fourier transform F on RY has the following properties:
© F is an isomorphism from Sy(R9) to So(R?),
@ F is a unitary map between L?(R?) and L2(RY),
© F is a weak* (and norm-to-norm) continuous bijection from
S{(R9) onto S(RY).

Furthermore, we have that Parseval’'s formula

~

(f.g) =(f.g) (14)

is valid for (f,g) € So(RY) x S5(RY), and therefore on each level
of the Gelfand triple (Sp, L2, S§)(RY).
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Properties of SORd

Some concrete computations (M.DeGosson: Wigner

Transform)

For ¢ € S(R") the short-time Fourier transform (STFT) Vj with
window ¢ is defined, for ¢ € §’(R"), by

Vo(z) = /R e 277 (<Y — X)X (15)

The STFT is related to a well-known object from quantum
mechanics, the cross-Wigner transform W (v, ¢), defined by

W, 0)(2) = ()" [ e P ulx+ bole— Endy. (10
In fact, a tedious but straightforward calculation shows that
n/2 2,
W(,0)(2) = (2)"2 eFP Vo a2/ Z)  (17)

where ¢ 5—(x) = ¢ (xv2rh) and ¢ (x) = ¢(—x); m
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Properties of SORd

This formula can be reversed to yield:

V¢1/}(Z) _ (%)—n/2 efiﬂ'P-XW(q/Jl/\/E, gf);//\/ﬁ)(z %h) (18)

In particular, taking ¥ = ¢ one gets the following formula for the
usual Wigner transform:

Wi(e) = (Z)"2 HP Vi, (a)(e 3

with ¢1 = 9" 5 and ¥ = ¢ 5.
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Properties of SORd

Another reference is the book of K. Grochenig [23], which contains
(in the terminology used there) in Lemma 4.3.1 the following
formula, using the convention g (x) = g(—x):

W(f,g)(x,w) = 276"V, f(2x,2w). (19)
Charly (in [23]) also provides the folloing covariance property

W(TyM,f) = Wf(x — u,w —n). (20)

W(F,8)(x,w) = W(f,g)(~w, ). (21)
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Basic Properties of §

Usefulness of Sy(IR9) in Fourier Analysis

Most consequences result form the following inclusion relations:

L'(R?) x So(R?) C So(R); (22)
FLY(RY) - SH(RY) C Sp(RY); (23)
(SHR?) + SH(RY)) - So(R?) C Sp(RY); (24)
(So(RY) - Sp(RY)) * So(R?) € Sp(RY); (25)
So(RI)BSo(R7) = Sp(R*). (26)

@ So(RY) is a valid domain of Poisson's formula;
@ all the classical Fourier summability kernels are in So(R9);

© the elements g € Sy(RY) are the natural building blocks
for Gabor expansions; m
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Basic Properties of §

The Banach Gelfand Triple

The Banach Gelfand Triple (Sp, L2, S5)(R?) is for many
applications in theoretical physics and engineering, but also for

Abstract Harmonic Analysis a good replacement for the Schwartz
Gelfand Triple (S, L2, S").

Lemma
(So*S0) - S0 € So, (Sp-So)*So < So, (27)

Clearly (So(R9),||-||s,) is a Banach space and NOT a nuclear
Frechet space, but still there is a kernel theorem!

The main exception are applications to PDE where So(Rd) is not
well suited, but there is a family of so-called modulation spaces
which allows also to overcome this problem, and even go for the
theory of ultra-distributions, putting weighted L'-norms on the
STFT (see [23] for a first glimpse!).
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Basic Properties of §

A large variety of characterizations

There is a large variety of characterizations of (Sp(R9), || ||s,) and
(So(R), |1~ [ls) (see e.g. [24]).

For example, a tempered distribution in S’(RY) belongs to S{(R9)
if and only if its STFT (well defined for g € S(R?)!) is a bounded
function. Norm convergence is equivalent to uniform convergence
of spectrograms, while w*-convergence (!very important)
corresponds to uniform convergence over compact sets of the
corresponding STFTs. It is again independent of the choice of the
window, even any non-zero g € Sy(R?) can be used here.

There are atomic characterizations, or characterizations via Wiener
amalgam spaces, for example

So(R?) = W(FLL, £1)(RY).
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The Space S;(IR9) of distributions

In this section we will show that the dual space S{(RY) is a quite
natural object, and that the Fourier transform can be extended in a
unique and natural way to S{(RY), using w*-convergence. Since
the space (So(R9), || - ||s,) is separabel the restriction to sequences
is in fact well justified (as opposed to convergence of nets or filters
in general topological vector spaces).

First of all we start with a trivial remark: A linear functional

o: f— o(f) from (So(RY),]| - ||s,) into (C,|-|) is continous if and
only if it is bounded. In other words, it satisfies

|fa — folls, > 0forn—o00 = o(f,—fH) > 0inC
if and only if there exists C > 0 such that

o(FA < Clifls, ¥f € So(RY). (28) N|
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The Space S;(IR9) of distributions

The minimal constant can be also characterized as

lollsy = sup {lo(F)[}- (29)
Fllfllg <1

Making use of the atomic characterization of So(R?) one can show:
Theorem

For any nonzero g € So(R?) the S{-norm is equivalent to the
supremums-norm || Vg(0)||ec, in other words:

Norm convergence in (S{(R9), || - Is;) is the same as uniform
convergence at the spectrogram level.

Again using Wiener amalgams suggests (correctly) to identify the
dual space as §j = W(FL', ) = W(FL™®,£%) > W(M,£%). [
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w*-convergence in S;(RY)

Thm. 6 suggests to look for a weaker concept of convergence
compared to norm convergence, because it will never be possible to
e.g. approximated a periodic function by compactly supported
ones, even if the norm is a relatively weak norm compared to the
ordinary LP-norms.

The answer is of course provided by the w*-convergence.

Recall that o9 = w*lim,_ .0, if and only if

lim o,(f) =oo(f), VFfeES. (30)

n—o0

As a first observation note that |61/, — dof|g; = 2 while
0o = wlim,_,.0d%, for any sequence x, — 0 for n — oc.
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Characterizing w*-convergence and approximation

Note that a bounded sequence (c,),>1 in (S§(RY), |- Is;) is
w*-convergent if and only if convergence takes place on a dense or
just total subset of (Sp(RY), ]| ||s,)-

Thus for example is it enough to test the validity of (30) for any
compactly supported function f with fe L1(RY), or for all the
band-limited functions in f € L}(RY).

The theory of Gabor frames on the other hand implies that it is
enough to verify pointwise convergence of the STFT with respect
to the Gaussian window go(t) = e ™/tI* for all the lattice points of
any fixed lattice A of the form A = aZ9 x bZ9 with a-b< 1, i.e.

Vgo(n)(A) = Vgy(o0)(A)  for n — oo.

Comment: A closed subset of Sy(R?) is compact if and only if
the convergence takes place uniformly in £1(A). m
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Interesting examples of w*-convergence

It is often the w*-convergence (sometimes appearing in disguise)
which is used for handwaving arguments in Fourier Analysis.

© One has limg_,o0l Ly, = do (as is easily verified by applying it
to compactly supported functions in Sp(R9));
@ The absolute Riemann-integrability of
f € S(RY) € W(Co, £1)(RY) implies that limg 0891115 = 1;
© For any g € S(R?) one has

lima o0 Ly * g = 8.

© The same relation on the Fourier transform (with § = 1/a) is
used to explain the form of the continuous Fourier transform
(by letting the “period go to infinity").
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How can we DEFINE Generalized Functions

The theory of generalized functions is clearly supposed to allow
certain “objects” which are beyond the scope of the usual concept
of a pointwise well-defined functions f (or f(t) as engineers would
write in order to emphasize the character of the domain of f).
The Dirac "function” §(t) (engineering way of writing) is an
example, and is usually described as the /imit of a sequency of
box-functions, with shrinking basis (to zero), and constant area 1.
In general there are two ways of defining linear spaces of
generalized function, or we will call them “distributions”3

3Even if they are not distributions in the classical setting, e.g. because they m
are defined over LCA groups, without reference to differentiability.
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Overall Perspective, Versatile Tools

When it comes to applications it is like real life: We would like to
have the most universal and reliable tool at for a good price.
Translated into the scientific world: Even if mathematicians are
willing to create the most complicated and and fancy tools these
tools might not be used by other (more applied) scientist. If they
are lucky they may receive great respect, but this does not mean
that the applied scientist have the patience or skill or just
willingness to learn and then use such a tools.

Of course sometimes only complicated tools do the job and one
needs the top experts and specialists to tackle those few problems,
but the daily life one should ideally have a good equipment helping
the users to solve their problems themselves.

N/
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Regularization of Distributions |

We have claimed in the introduction that distributions can be
approximated by test functions. In fact a good example is

LU= LLipg = 3" cz4 Ok, which is a well defined element of Sj(R9)
(it is even Fourier invariant, according to Poisson's formulal).

It cannot be viewed as a regular distributions coming from any
possible test functions because it has two defects

@ First of all it is not a continuous function, because it is a sum
of Dirac measures;

@ Secondly it does not have decay at infinity, since all the
involved Dirac measures have the same coefficient 1.

Whenever we want to approximate (in fact in the w*-sense) we
have to improve both the t local and the global properties of the
distribution! m
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Regularization of Distributions Il

There are various ways to improve the local and global properties.
Typically it is convolution by a test function which helps to
improve the local properties while pointwise multiplication by a test
function improves the decay at infinity, i.e. the global properties.
Let us therefore recall the two version of the dilation operatot that
will be useful for this purpose. One is the L'-norm preserving,
where the index describes the shrinkage or expansion of the
support, also stretching operator (for p > 1):

[Stpgl(x) = p~g(x/p), p#0, (31)

and the value preserving dilation operator

[D,hl(x) = h(px), p 0. (32)
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Regularization of Distributions IlI

While the first is compatible with the structure of the Banach
convolution algebra (L*(R9), ||-||1) the second is compatible with
the pointwise structure of (Co(R9), |- ||lso) or (FLY(RY), ||+ || £11)
(the Fourier algebra). We have in particular

IStoflle = [Iffls and [|Dyhllec = [[Allco-

St,(g * f) = St,(g) * St,(f)
Dy(h - f) = Dy(h) - D,(f).

Of course (So(RY), || - ||s,) is invariant with respect to any
automorphism of the underlying group, so in particular with
respect to both of these (commutative) dilation groups, but of
course not in the isometric sense (like St, on (L*(R9), |- |1)
and D, on (Co(R?), ||-[|sc)).
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Regularization of Distributions 1V

The approximation of distributions requires the application of both
of these regularizes, in any order.
So let us look at the Product-Convolution (short: PC) operator

o+ St,g*x(Dyh-0), forp—0.

Here g € So(RY) should satisfy [, g(x)dx = 1, while h € Sp(R?)
is has to satisfy the condition h(0) = 1. Since SE,} = D,f one
could be the (inverse) FT of the other. In a similar way one has
Convolution-Product (CP) operators of the form

o+ D,h-(St,g*0c), forp—0,

with the same conditions on g and h in Sp(RY).
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Regularization of Distributions V

So we finally just have to verify that these operators map in fact
(for fixed) p # O the space (S§(RY), || - ls) into (So(RY), || |ls).
even in the sense that a w*-convergent and bounded sequence (or
net) in S{(RY) with w* limo, = o is mapped into a norm
convergent sequence within (So(R9), || -|s,).

Note that these operators act uniformly bounded (w.r.t. p) on
each of the spaces (Sp(R?), || - ||50),(L2(Rd), |]l2) and

(SR, |- 15!

A similar behaviour (we call it a regularizing sequence for the
Banach Gelfand Triple (So, L2, S5)(R?)) can be verified for the
partial sum operator for a Gabor expansion, with Gabor atom

g € So(RY) and canonical dual (or minimal £2-norm coefficients) g
(which also automatically belongs to Sp(IR9)).

N/
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Typical Applied Questions

Let us thus list a couple of questions where Fourier Analysis has to
play a role and doing it properly may be appreciated even by very
applied persons from the engineering or physics community:

@ The theory of Translation Invariant Systems works with
convolution by the impulse response or alternatively with the
transfer function (i.e. multiplication on the Fourier transform
side);

@ The Shannon-Sampling Theorem, allowing to reconstruct
band-limited functions from regular samples at or above the
Nyquist rate; it is based on Poisson’s Formula;

© Generalized Stochastic Processes can be seen as a
combination of distribution theory with classical stochastic
processes. They can be modelled as linear operators from
So(R9) to some Hilbert space # (of random variables). m
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Sampling and Periodization on the FT side

The convolution theorem can then be used to show that sampling
corresponds to periodization on the Fourier transform side, with
the interpretaton that

- f =" f(k)ok, feSRY).
kezd

In fact, we have -
L f = [0 f = LU« f.

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
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Recovery from Regular Samples: Shannon's Theorem

If we try to recover a real function f : R — R from samples, i.e.
from a sequence of values (f(xp))nes, where [ is a finite or
(countable) infinite set, we cannot expect perfect reconstruction.
In the setting of (LZ(R), |- |l2) any sequence constitutes only set
of measure zero, so knowing the sampling values provides zero
information without side-information.

On the other hand it is clear the for a (uniformly) continuous
function, so e.g. a continuous function supported on [—K, K] for
some K > 0 piecewise linear interpolation (this is what MATLAB
does automatically when we use the PLOT-routine) is providing a
good (in the uniform sense) approximation to the given function f
as long as the maximal distance between the sampling points
around the interval [—K, K] is small enough.

Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions. m
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A Visual Proof of Shannon's Theorem
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Shannon’s Sampling Theorem

It is kind of clear from this picture that one can recover the
spectrogram of the original function by isolating the central copy
of the periodized version of f by multiplying with some function g,
with g such that g(x) = 1 on spec(f) and g(x) = 0 at the shifted
copies of f. This is of course only possible if these shifted copies of
spec(f) do not overlap, resp. if the sampling is dense enough (and
correspondingly the periodization of f is a coarse one). This
conditions is known as the Nyquist criterion. If it is satisfied, or
supp(f) C [-1/a,1/a], then

F(t)= ) flok)Targ(x), xR
kezd
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Proof an extension of the Shannon Sampling Theorem

Although the Hilbert space is very nice we will often encounter
non-perfect situations, in the following respect:

o the sampled function may not belong to L>(R?) but rather
some LP(R?), or in some weighted LP-space;

@ the function might not be strictly band-limited, but only
approximately, with “small tails” on the Fourier transform
side, e.g. f € Hs(RY), some Sobolev space;

@ the samples might not be regular, either due to jitter error, or
generically irregular sampled, perhaps with some outliers, so
that one has to perform scattered data approximation of the
underlying function f from the data (f(x;)).

In all these cases we should have suitable mathematical tools and
algorithms in order to analytically study the problem. As we will
see Wiener amalgam spaces are a highly appropriate tool. m
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Band-limited functions in LP(RY)

Let us begin with the case of band-limited functions in LP(RY), for
some p € [1,00]. The first question is, what does it mean for the
Fourier transform to be zero outside some cube Qu? Especially for
p > 2 where the Hausdorff-Young inequality (implying that
FLP(RY) C LI(RY), for 1/p+1/q=1)

Since LP(RY) < S{(RY) it is clear that the Fourier transform exists
in the sense of S{(R9) and hence we assume that supp(F) € Qo.

If we want to cover the case p = 1 we should avoid the SINC
function (not in LY*(R9)!) but rather choose some function h in
So(R9) with h(g) = 1 on Qo and h(q + k/a) = 0 for k € Z9\ {0},
for example some plateau-type function. Then

(I—I—ll/a * A) ~h= ?\,
or by the the inverse Fourier transform, for g = C,F th € S(RY):
f=(Wy-f)xg.

N/
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Band-limited functions in LP(RY) II

But are all the infinite sums convergent, and are the limits (of their
partical sums) convergent in the given space (LP(R?), |- ||,)?
After all, the choice of g resp. h does not depend on the parameter
p € [1,00], but only on o and Qp (as long as on has

QoNk/a+ Q =0 for keZd,k;«éO).

First of all we see that h - f = f for obvious reasons, or
equivalently h+ g = g for some g € Sp(R9). Since we assume that
f € LP = W(L', £P) this implies that one actually has

f=rfxge W(LLEP)« W(Cy, 1) C W(Co,P)(RY). (33)

Consequently the samples belong to £°(Z?), but it is better to
argue that LLl, € W(M, £€°°) and hence

Ly - f € W(M, £°)- W(Cy,£P) C W(M,P)(RY).  (34) N

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Band-limited functions in LP(R?) I

Finally we prove the convergence of the Shannon sampling series:
(Wo-f)xg= (> flak)dax | x&=Y_ flak)Takg. (35)
kezd kezd

Since L, - f € W(M, £P) the convergence in W(Cy, £P)(R?), and
hence in (LP(RY), ||-||5) and uniformly follows from

W(M, €P) xSy C W(M., £P)x W(Co, £1) C W(Co, £P)(RY). (36)

For p = oo minor modifications may apply (if f ¢ Co(RY)).
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Band-limited functions in LP(R?) IV

We cannot go into details about the irregular case, but at least we
mention that instead of an orthonormal basis of shifte
SINC-functions one has a frame of shifted SINC functions
describing the situation, since

F(t;)) = f * SINC(t;) = (f, T, SINC), i€l

For the case of irregular samples (f(t;)) of a band-limited function
in LP(RY) (with high enough density, depending only on Q!) one
can write a Shannon-like series of the form Af = Eiel w; Ty, g for
well chosen adaptive weights (see [13]) and then goes on the prove

IAf — fllw(coery < V- Iflw(cyery, for somey <1

and for all Qp band-limited functions in Lp(Rd), so that Banach's
fix point theorem can be applied to do the rest ([12]). m
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Overall perspective

In this section we will explain how the setting of the Banach
Gelfand Triple (Sp, L?, S{)(R9) can be used to formulate a number
of important general principles, most of which actually extend to
the setting of LCA (locally compact Abelian) groups, even if they
do not have arbitary fine lattices.

In many cases this setting allows for compact formulations of
natural statements, combined with a wnified principle of proofl
The Fourier transform will be the prototypical example, the kernel
theorem for linear operators the other one, but there are many
more of these statements, also in connection with the theory of
Banach frames and Riesz projection bases.

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Fourier Transform as Banach Gelfand Triple Automorphism

First of all we can describe the Fourier transform on R? as a
unitary Banach Gelfand Triple automorphism of (Sp, L2, S§)(RY),
meaning that it is

o well defined (and isometric) on (So(R9), || ||s,);

e extending to a unitary automorphism of (L2(]Rd), - 1l2);

o with a unique w*w*extension to S{(RY).
As you see the classical Lebesgue space (aside from the Hilbert
space (L*(R9), ||-|2)) do not play an important role now, because
we see the Fourier transform in a wider context than just being an
integral transform. Only the view that the Fourier transform
should be an integral transform suggest to choose (L'(R?), ||-||1)
as a domain, but this is not good enough to find out that the
Fourier transform of a pure frequency is just a Dirac. m
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B’ is called a
Banach Gelfand triple.

Definition
If (B1,H1,B}) and (B2, H2, BY) are Gelfand triples then a linear
operator T is called a [unitary] Gelfand triple isomorphism if

Q@ A is an isomorphism between B; and B;.

@ A is [a unitary operator resp.|] an isomorphism between #;

and Ho.
© A extends to a weak® isomorphism as well as a norm-to-norm
continuous isomorphism between B and Bj. N
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the "kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w*)!

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)

W = (¢););e for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within  which have an absolutely convergent expansion,
i.e. satisfy > ., [(x,9;)| < oc.

For the case of the Fourier system as CONB for # = L?([0, 1]), i.e.
the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)', known as the space of pseudo-measures,
appears. One can extend the classical Fourier transform to this
space, and in fact interpret this extended mapping, in conjunction
with the classical Plancherel theorem as the first unitary Banach
Gelfand triple isomorphism, namely between (A, L?, PM)(T) and

(€1, €2 £°)(2). N
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The KERNEL THEOREM for S(RR9)

The kernel theorem for the Schwartz space can be read as follows:

Theorem

For every continuous linear mapping T from S(RY) into S'(R?)
there exists a unique tempered distribution o € 8'(R?) such that

T(f)(g)=o(feg), f,gecSR). (37)

Conversely, any such o € S'(R??) induces a (unique) operator T
such that (37) holds.

The proof of this theorem is based on the fact that S(RY) is a

nuclear Frechet space, i.e. has the topology generated by a

sequence of semi-norms, can be described by a metric which

turns S(RY) into a complete metric space. m
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The KERNEL THEOREM for S |

Tensor products are also most suitable in order to describe the set
of all operators with certain mapping properties. The backbone of
the corresponding theorems are the kernel-theorem which reads as

follows (!! despite the fact that (So(R9), || ||s,) is NOT a nuclear
Frechet space)

One of the corner stones for the kernel theorem is: One of the
most important properties of So(R?) (leading to a characterization
given by V. Losert, [26]) is the tensor-product factorization:

Lemma

So(R“)&So(R") = So(R**7), (38)

with equivalence of the corresponding norms.
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The KERNEL THEOREM for S I

The Kernel Theorem for general operators in £(Sp, S}):

Theorem

If K is a bounded operator from Sy(RY) to Sj(RY), then there
exists a unique kernel k € S§(R??) such that (Kf,g) = (k,g @ f)
for f, € So(RY), where g @ f(x, y) = g(x){(y).

Formally sometimes one writes by “abuse of language”

Kf(x) = /Rd k(x,y)f(y)dy

with the understanding that one can define the action of the
functional Kf € S{(R9) as

0= [ [ ontmat- [ [ iy
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The KERNEL THEOREM for Sy Il1

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L?(R9) are just those

compact operators which arise as integral operators with
L?(R?9)-kernels.
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The KERNEL THEOREM for Sy IV

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with (T,S)ys = trace(T * S')
as scalar product on HS and the usual Hilbert space structure on
L2(R?9) on the kernels.

Moreover, such an operator has a kernel in So(R??) if and only if
the corresponding operator K maps Sj(R?) into So(R?), but not
only in a bounded way, but also continuously from w*—topology
into the norm topology of So(R9).

In analogy to the matrix case, where the entries of the matrix
ak.j = T(ej)k = (T(ej), ex)
we have for K € §y the continuous version of this principle:

K(x,y) = 6x(T(8,), x,y € R Y]
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The Kernel Theorem as a BGT isomorphism

The different version of the kernel theorem for operators between
So and Sj can be summarized using the terminology of Banach
Gelfand Triples (BGTR) as follows.

Theorem

There is a unique Banach Gelfand Triple isomorphism between the
Banach Gelfand triple of kernels (So, L2 §§)(R??) and the operator
Gelfand triple around the Hilbert space HS of Hilbert Schmidt
operators, namely (£(Sy, So), HS, L(So, Sy)), where the first set is
understood as the w* to norm continuous operators from Sj(RY)
to So(RY), the so-called regularizing operators.
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Spreading function and Kohn-Nirenberg symbol

@ For o € Sj(RY) the pseudodifferential operator with
Kohn-Nirenberg symbol o is given by:

Tgf(x):/ o(x, w)f(w)e*™“ dw
Rd
The formula for the integral kernel K(x, y) is obtained
Tof(x) = / (/ U(X,w)e_zﬁ"(y_x)'wdw) f(y)dy
R \JRI
= / k(x,y)f(y)dy.
Rd

@ The spreading representation of T, arises from

Tof() = [ 30 )M, T ducn

o is called the spreading function of T,. m
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Further details concerning Kohn-Nirenberg symbol

(courtesy of Goetz Pfander (Eichstatt):)
- Symmetric coordinate transform: TsF(x,y) = F(x+ %,x — %)
- Anti-symmetric coordinate transform: T,F(x,y) = F(x,y —x)
- Reflection: TrF(x,y) = F(x,—y)
- partial Fourier transform in the first variable: JFi
- partial Fourier transform in the second variable: F»

The kernel K(x,y) can be described as follows:
K(Xay) = fZU(U,y - X) = -7:1_16(Xay _X)

—/ G(n,y — x) - ¥ dn.
Rd

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Kohn-Nirenberg symbol and spreading function Il

operator H Hf (x)
i =

kernel kpy [ kH(x,s)f(s)ds
i =

Kohn—Nirenberg symbol oy [ on(x,w)f(w)e*™* dw
) =
time—varying impulse response hy J h( t,x )f(x —t)dt
I
spreading function ny [ [nu(t,v)f(x — t)e27”x vV dt dv

fan t,v M,,th(X),dtdI/,

N/
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Spreading representation and commutation relations

The description of operators through the spreading function and
allows to understand a number of commutation relations.

If an operator is a limit (in the strong operator topology) of
translation operators it is just a convolution operator with some
TE Sé(Rd), resp. its spreading representation is just an element
concentrated on the time axis (more or less representing 7, the
“individual frequency contributions”.

Similarly, multiplication operators require just the use of
modulation operators, so their spreading function is concentrated
in the frequency axis of the TF-plane.

Finally typical Gabor frame operators arising from a family of
Gabor atoms (g)), where A € A, some lattice within R? x R
typically commute with TF-shift operators, one can say that
they are obtained by periodizing the projection operator

f — (f,g)g along the lattice. m
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The symplectic Fourier transform

The symplectic Fourier transform connects the Kohn-Nirenberg
symbol with the spreading function, i.e.

Fs(a(T)) =n(T) resp. Fs(n(T))=0o(T). (39)

(Faympf)(k, 1) = / Fx, y)e2milr =1 £ ¢ S (RY x RY).
Rd JRd
(40)
It is completely characterized by its action on elementary tensors:

Fomp(f®8)=g®F, f,gcS(RY), (41)

and extends from there in a unique way to a w* — w*
continuous mapping from S{(R2?) to S{(R?9), also F.? = Id.

N/
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Understanding the Janssen representation

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich

The spreading representation of operators has properties
very similar to the ordinary Fourier expansion for functions!
Periodization at one side corresponds to sampling on the transform
side, if we understand “translation” either at the level of ordinary
translation of the Kohn-Nirenberg symbol (which is the symplectic
Fourier transform of the spreading function), OR by conjugation of
an operator by the corresponding TF-shifts.

In other words: for any given operator T and A € R? x RY we can
define [recall m(x,w) = M, T, for A = (x,w)]

7@ (T)=m(N)oTom(N)T, (42)

providing the important covariance property for KNS:

olr @ *A\)(T)] = Talo(T)], AeRYxRY.

(43) N|
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Periodization goes over to sampling

If we have a "nice operator” Tg we can form its periodic version

Y oaen ™ @ T (A)(To) and it is still a well defined operator from
So(RY) to S{(RY). Its KNS is just the A-periodization of T.
Consequently its spreading function is obtained by sampling of
n(T) € S(RY x RY), over the adjoint lattice A° and obtain in this
case an £'-sequence.

The adjoint lattice A° can be characterized by the fact that

Fs(LLn) = CalLipe. (44)

For the projection on the Gabor atom P, : f — (f, g)g the
spreading functions is essentially

[n(Pe)I(N) = Ve(g)(\) = (g, 7(\g), Ae€R? xR

N/
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Janssen representation Il

An important insight concerning the connection between the Gabor
atom g, the TF-lattice A < R¥ x R9 and the quality of the
resulting Gabor frame resp. Gabor Riesz basis (e.g.condition
number) clearly comes from the Janssen representation of the
Gabor frame operator for any g € So(R9) with ||g|2 = 1:

Sen(f) = Pe(f)=> m@m (N)[Pg]. (45)
AeA AeA
The periodization principle gives the Janssen representation
Sen =0 (Sg)l = Ch D Ve(g))(X)m(X°),  (46)
A°eN°

as an absolutely convergent sum of TF-shifts from A°.

N/
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Fourier Standard Spaces of Operators

The kernel theorem allows to identify many spaces of linear
operators (with different forms of continuity) with suitable FouSSs
over R%.

For example, there are the so-called Schatten classes of operators
on the Hilbert space LZ(RC’) which are compact operators with
singular values in £P, for 1 < p < co. These spaces are operator
ideals within L(#), i.e. they are Banach spaces, continuously
embedded into the space of compact operators over the Hilbert
space H, as well as two-sided Banach ideals, i.e. whenever one has
an operator T in such a space, and two bounded operators S1, S,
on H, then S; 0 T o 5, also belongs to that operator ideal and the
operator ideal norm is bounded by the operator ideal norm of

T multiplied with the operator norms of S; and S».
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Frames in Hilbert Spaces: Classical Approach

Definition

A family (f;);c, in a Hilbert space H is called a frame if there exist
constants A, B > 0 (called frame bounds) such that

A|f]|? < Z |(f,£)]? < B||f||?, forall fe?H. (47)
iel

It is well known that condition (47) is satisfied if and only if the
so-called frame operator S is invertible, which is given by

Definition

S(F) =) (f.fi)fi, for feH,

icl m
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Frames in Hilbert Spaces: Classical Approach Il

The obvious fact S o 5‘12 Id=5S"1o S implies that the
(canonical) dual frame (f;);cs, defined by f; := S71(f;) has the
property that one has for f € H:

Definition

f=> (F0)f=> (f.f)fi (48)

i€l i€l

Moreover, applying S~ to this equation one finds that the family
(f;)ics is in fact a frame, whose frame operator is just S~1, and
consequently the “second dual frame” is just the original one.
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Frames in Hilbert Spaces: Approach Il

Since S is positive definite in this case we can also get to a more
symmetric expression by defining h; = S~1/2f;. In this case one has

f=> (f hi)h forall feH. (49)
iel

The family (h;);es defined in this way is called the canonical tight
frame associated to the given family (g;)ic/. It is in some sense the
closest tight frame to the given family (f);¢;.
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Where did frames come up? Historical views:

| think there is a historical reason for frames to pop up in the
setting of separable Hilbert spaces H. The first and fundamental
paper was by Duffin and Schaeffer ([6]) which gained popularity in
the “painless” paper by Daubechies, Grossmann and Y. Meyer
([5])- It gives explicit constructions of tight Wavelet as well as
Gabor frames. For the wavelet case such dual pairs are are also
known due to the work of Frazier-Jawerth, see [20, 21]. Such
characterizations (e.g. via atomic decompositions, with control of
the coefficients) can in fact seen as prerunners of the concept of
Banach frames to be discussed below.

These methods are closely related to the Fourier description of
function spaces (going back to H. Triebel and J. Peetre) using
dyadic partitions of unity on the Fourier transform side.
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Dyadic Partitions of Unity and Besov spaces

dyadic BUPU by transfer from uniform BUPU on R
T T T T

1 1 1 1
20 40 60 80 100 120 140 160 180
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Where did frames come up? Historical views Il

The construction of orthonormal wavelets (in particular the first
constructions by Y. Meyer and Lemarie, and subsequently the
famous papers by Ingrid Daubechies), with prescribed degree of
smoothness and even compact support makes a big difference to
the Gabor case.

In fact, the Balian-Low theorem prohibits the existence of (Riesz-
or) orthogonal Gabor bases with well TF-localized atoms, hence
one has to be content with Gabor frames (for signal expansions) or
Gabor Riesz basic sequences (for mobile communication such as
OFDM).

This also brings up a connection to filter banks, which in the case
of Gabor frames has been studied extensively by H. Bolcskei

and coauthors.

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



LINEAR ALGEBRA: Gilbert Strang's FOUR SPACES

Let us recall the standard linear algebra situation. Given some
m X n-matrix A we view it as a collection of column resp. as a
collection of row vectors. We have:

row-rank(A) = column-rank(A)
Each homogeneous linear system of equations can be expressed in
the form of scalar products* we find that

Null(A) = Rowspace(A)*
and of course (by reasons of symmetry) for A’ := conj(A?):

Null(A’) = Colspace(A)~*

*Think of 3x + 4y + 5z = 0 is just another way to say that the vector m
x = [x, y, z] satisfies (x, [3,4,5]) = 0.
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Geometric interpretation of matrix multiplication

Since clearly the restriction of the linear mapping x — A * x

Rn

I:)Row
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Geometric interpretation of matrix multiplication

Null(A) C R R™ D Null(A')

I:’Rcow

T =ToProw, pinv(T)=inv(T)o Pco.
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Four spaces and the SVD

The SVD (the so-called Singular Value Decomposition) of a
matrix, described in the MATLAB helpful as a way to write A as

A=UxSxV

, where the columns of U form an ON-Basis in R™ and the columns
of V form an ON-basis for R", and S is a (rectangular) diagonal
matrix containing the non-negative singular values (o) of A. We
have o1 > 02...0, > 0, for r = rank(A), while o5 = 0 for s > r.
In standard description we have for A and pinv(A) = A*:

A*X—Zakkauk, At xy = Z y,uk
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Generally known facts in this situation

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich

The Four Spaces are well known from LINEAR ALGEBRA, e.g. in
the dimension formulas:

ROW-Rank of A equals COLUMN-Rank of A.

The defect (i.e. the dimension of the Null-space of A) plus the
dimension of the range space of A (i.e. the column space of A)
equals the dimension of the domain space R". Or in terms of
linear, homogeneous equations: The dimension of set of all
solution to the homogeneous linear equations equals the number of
variables minus the dimension of the column space of A.

The SVD also shows, that the isomorphism between the
Row-space and the Column-space can be described by a diagonal
matrix, if suitable orthonormal basis for these spaces are used.
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Consequences of the SVD

We can describe the quality of the isomorphism T by looking at its
condition number, which is 01/0,, the so-called Kato-condition
number of T.

It is not surprising that for normal matrices with A’ x A= A x A’
one can even have diagonalization, i.e. one can choose U = V/,
because

NUll(A) =apmays Null(A' + A) = Null(Ax A') = Null(A).

The most interesting cases appear if a matrix has maximal rank,

i.e. if rank(A) = min(m, n), or equivalently if one of the two
Null-spaces is trivial. Then we have either linear independent

columns of A (injectivity of T >> RIESZ BASIS for

subspaces) or the columns of A span all of R™

(i.e. Null(A") ={0}): FRAME SETTING! m
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Geometric interpretation: linear independent set > R.B.

R™ D Null(A')
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Geometric interpretation: generating set > FRAME

Null(A) C R"

I:,Row
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The frame diagram for Hilbert spaces:

If we consider A as a collection of column vectors, then the role of
A’ is that of a coefficient mapping: f — ((f,f)).

(1)

H C(H)

This diagram is fully equivalent to the frame inequalities (14).

N/

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Riesz basic sequences in Hilbert spaces:

The diagram for a Riesz basis (for a subspace), nowadays called a
Riesz basic sequence looks quite the same.

In fact, from an abstract sequence there is no! difference, just like
there is no difference (from an abstract viewpoint) between a
matrix A and the transpose matrix A’.

However, it makes a lot of sense to think that in one case the
collection of vectors (making up a Riesz BS) spans the (closed)
subspace of H by just taking all the infinite linear combinations
(series) with £2-coefficients.

In this way the synthesis mapping ¢ ~ >, c;g; from £2(/) into the
closed linear span is surjective, while in the frame case the
analysis mapping f — ((f, g)) from H into £3(/) is injective
(with bounded inverse).
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Frames versus atomic decompositions

Although the definition of frames in Hilbert spaces emphasizes the
aspect, that the frame elements define (via the Riesz
representation theorem) an injective analysis mapping, the
usefulness of frame theory rather comes from the fact that frames
allow for atomic decompositions of arbitrary elements f € H.

One could even replace the lower frame bound inequality in the
definition of frames by assuming that one has a Bessel sequence
(i.e. that the upper frame bound is valid) with the property that
the synthesis mapping from £2(/) into 7, given by ¢ — 3" cig; is
surjective onto all of H.

Analogously one can find Riesz bases interesting (just like linear
independent sets) because they allow to uniquely determine

the coefficients of f in their closed linear span on that closed
subspace of H. m
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A hierarchy of conditions 1

While the following conditions are equivalent in the case of a finite
dimensional vector space (we discuss the frame-like situation) one
has to put more assumptions in the case of separable Hilbert
spaces and even more in the case of Banach spaces.

Note that one has in the case of an infinite-dimensional Hilbert
space: A set of vectors (fj);c; is total in H if and only if the
analysis mapping f — ((f, gj)) is injective. In contrast to the
frame condition nothing is said about a series expansion, and in
fact for better approximation of f € H a completely different finite
linear combination of g/s can be used, without any control on the
£2-norm of the corresponding coefficients.

THEREFORE one has to make the assumption that the range

of the coefficient mapping has to be a closed subspace of

£2(1) in the discussion of frames in Hilbert spaces. m
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A hierarchy of conditions 2

In the case of Banach spaces one even has to go one step further.
Taking the norm equivalence between some Banach space norm
and a corresponding sequence space norm in a suitable Banach
space of sequences over the index set / (replacing £2(1) for the
Hilbert space) is not enough!

In fact, making such a definition would come back to the
assumption that the coefficient mapping C : f — ((f, g;)) allows to
identify with some closed subspace of that Banach space of
sequences. Although in principle this might be a useful concept it
would not cover typical operations, such as taking Gabor
coefficients and applying localization or thresholding, as the
modified sequence is then typically not in the range of the
sampled STFT, but resynthesis should work!
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A hierarchy of conditions 3

What one really needs in order to have the diagram is the
identification of the Banach space under consideration (modulation
space, or Besov-Triebel-Lozirkin space in the case of wavelet
frames) with a close and complemented subspace of a larger space
of sequences (taking the abstract position of £2(/).

To assume the existence of a left inverse to the coefficient mapping
allows to establish this fact in a natural way. Assume that R is the
left inverse to C. Then C o R is providing the projection operator
(the orthogonal projection in the case of £3(/), if the canonical
dual frame is used for synthesis) onto the range of C. The converse
is an easy exercise: starting from a projection followed by the
inverse on the range one obtains a right inverse operator R.
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A hierarchy of conditions 4

The above situation (assuming the validity of a diagram and the
existence of the reconstruction mapping) is part of the definition of
Banach frames as given by K. Grochenig in [22].

Having the classical situation in mind, and the spirit of frames in
the Hilbert spaces case one should however add two more

conditions:
In order to avoid trivial examples of Banach frames one should
assume that the associated Banach space (B, - HB) of sequences

should be assumed to be solid, i.e. satisfy that |a;| < |b;| for all
i€land be Bimpliesac B and |a|lg < |b|s.

Then one could identify the reconstruction mapping R with the
collection of images of unit vectors h; :== R(€;), where & is the

unit vector at / € /. Moreover, unconditional convergence

of a series of the form ). cih; would be automatic. m
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A hierarchy of conditions 6

Instead of going into this detail (including potentially the
suggestion to talk about unconditional Banach frames) | would
like to emphasize another aspect of the theory of Banach frames.
According to my personal opinion it is not very interesting to
discuss individual Banach frames, or the existence of some Banach
frames with respect to some abstract Banach space of sequences,
even if the above additional criteria apply.

The interesting cases concern situations, where the coefficient and
synthesis mapping concern a whole family of related Banach
spaces, the setting of Banach Gelfand triples being the minimal
(and most natural) instance of such a situation.

A comparison: As the family, consisting of father, mother and the
child is the foundation of our social system, Banach Gelfand
Triples are the prototype of families, sometimes scales of Banach
spaces, the “child” being of course our beloved Hilbert space. m
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Comments on the literature

@ Material concerning directly 8y and related topics, starting
with the survey article [3], and the original book contributions
to [16], which are [14], [18];

The Gabor Books: [16, 17],[23],

Related books, e.g. Folland: [19], |. Daubechies [4]
Foundations of (Abstract) Harmonic Analysis [28],[29],
Coorbit theory (Feichtinger/Grochenig): [11],

Recent articles on the subject: [24]

Frame matrix representation of operators, e.g. [1]

e 6 6 6 o o o

Choosing Function Spaces in Harmonic Analysis [9]: Features

some ideas concerning construction principles of function

spaces. [10] describes ideas about the connection between

finite discrete groups approximating the continuous case. m
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Summarizing the landscape of spaces used
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Ultradistributions and the Fourier Transform

Tempered Ristr.

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Classical spaces and the Banach Gelfand Triple

Figure: SOclassSOP.eps

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



The zoo of function spaces used in Fourier analysis
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Figure: The collection of all function, spaces
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Domain of the Fourier inversion theorem

L1 [blue] and FT(L1) [red]

Figure: L* 0 FL*
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The Wiener algebra (of absolutely R-integrable fcts)

local maximal function
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Figure: Integrability of the local maximal function
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WR [blue] and FT(WR) [red]

Figure: W(GCo, £")(RY) N AW (G, £')(RY)) N
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Spectrogram of functions in Sobolev Spaces

random signal: after smoothing

L2-space Sobolev space inside
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Sobolev Embedding and (So(Rd), | - Hso)

Figure: blue = Sobolev space, yellow = weighted L? m
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Sobolev Embedding and (So(IRY), || - ||s,) Il

We will denote (for now) by L2 the weighted L?-space with weight
vs(t) = (1 + [t|?)*/?, for s € R. Then the Sobolev space

(Hs(R?), || - [|2,) is defined as the Fourier inverse image of L2(R9)
(with natural norm).

Theorem

For s > d one has
Ho(RY) N L2 ¢ Sp(RY),

with continuous embedding with respect to the natural norms.
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Sobolev and weighted L>-spaces

Sobolev spaces and weighted L2 spaces
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Sobolev and weighted L>-spaces

Sobolev spaces and weighted L2 spaces and M j spaces

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Wiener's algebra and Sy(R?)

Figure: It was shown by V. Losert that the inclusion of S into
W N AW) is a proper one. m
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The Banach Gelfand Triple

The Banach Gelfand Triple based on S|
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Banach Gelfand Triple (auto)morphism

Gelfand triple mapping

Tha 8, Gelfand triple Tha S, Gelfand triple

C
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Various Gelfand Triples

Fei-BGTr Schwartz GTr

1L P Sobolev GTr
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Mathematically strange formulations in the literature

The sifting property,
| #60stx = ax = 7(6) (50)
The identity

\/g/ el =Dx g — 5(k — 1) (51)
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Examples of “incorrect” statements

Sifting property of the Delta Dirac

vt = [ dbe—)e)dy

or the integration of the pure frequencies adding up to a Dirac:

/ e.27risxd$ _ (S(X)

o0

One can use a combination of both statements in order to derive a
“highly formal” version of the Fourier inversion theorem.
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Turning inaccurate formula into correct statements

In the setting of tempered distributions one can rewrite the first

equation as
Y= xs
resp.
F1) =9,
or equivalently giving a “meaning” to the formula (see
WIKIPEDIA)
o0
/ 1.2 ge = 0(x). (52)
—00
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Strange formulas in WIKIPEDIA (2018)

WIKIPEDIA shows (p.4 on the Dirac Delta function) this
equation:

[ e = x)stx — myac = a(& ). (53)

This is pretty confusing (to a mathematician). You have to first
multiply one delta-function with another (is this possible?) and
then even integrate out, with a result which is not a number but
another Dirac function. For us the “underlying” statement is

O¢ %0y = Ogiy = Oy % 0, €, € RY,;

It can be seen as a special case of convolution of two measures.

N/
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The relevant space: Wiener's Algebra

It has turned out (there is meanwhile a long list of publications on
the subject) that the most natural and simple condition on ¢
which allows to provide such estimates is in terms of Wiener's
algebra (W(Co, €1)(RY), || - ||w)-

This space (of bounded and continuous) functions on R? can be
described roughly as the linear space of all absolutely Rieman
integrable functions, resp. the space of all continuous functions
with finite upper Riemannian sum.

A sufficient condition for a continuous function f on RY is

FO)] < C(L+Ix]) 799, x e RY.
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The relevant space: Wiener's Algebra Il

Among the main reasons, why Wiener's algebra is so important, we
can identify these two most important ones:

© The atomic decomposition: Every f € W(Cp, £}) is the
absolutely convergent sum of functions (in (Co(R?), |- [|s0))
of functions with support in sets of the form of x, + Q
(e.g. in the unit cube @ = [0,1]9);

@ The convolution relations between the more general Wiener
amalgam spaces and Wiener's algebra, e.g.

W (M, £P) x W(Co, ) C W(Co, £P).
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Recalling the concept of Wiener Amalgam Spaces

Wiener amalgam spaces are a generally useful family of spaces
with a wide range of applications in analysis. The main motivation
for the introduction of these spaces came from the observations
that the non-inclusion results between spaes (LP(R9), || -||,) for
different values of p are either of local or of global nature. Hence it
makes sense to separate these to properties using BUPUs.

Definition
A bounded family ¥ = (¢,),cz¢ in some Banach algebra
(A, || -||a) of continuous functions on R is called a regular

Uniform Partition of Unity if ¢, = Taptbo,n € Z9, 0 < g < 1,
for some g with compact support, and

Z Yn(x) = Z P(x—an)=1 forall xe€ RY.
nezd nezd m
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Added in May 2018, hgfei

The definition of general Wiener amalgam spaces (originally
called Wiener-type spaces, when introduced in 1980, see [8]) with
global component £9 is the following one. Assume that a

(B, || - |lg) is a Banach space of (locally integrable) functions or
distributions such that the action of the elements of the BUPU is
uniformly bounded:

|vn - fllB < Cullflle, VfeB. (54)
Definition

W(B,Eq) = {f € B/OC‘ ||f“W(B,£q) = (Z ”wn . f“g)l/q < OO}
kezd

N/
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The usual boundedness

For the case of that (B, | -[|g) = (LP(RY), ||-||») it is sufficient
to assume that the BUPU (v,) is bo unded in the pointwise sense,
e.g. that

0<vn(x)<1, ¥xeRYVn>.1

For spaces B describing some smoothness it is typically a good
idea to assume that ¢ = i)y belongs to some C(K) space of k times
continuously differentiable functions.

Finally the case (B, |- [|g) = (FLP(RY), || - [|,p) is of great interest
because it opens up the way to the definition of modulation spaces
(spaces which are of the form W/(FLP, £9) on the Fourier
transform side). Since L'« IPCLPforl<p<oo (together with
the corresponding norm inequalities) it is enough assume that

) = 1o belongs to FL'(R?), because translation is isometric in

(FLR), |-l rp)! N
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lllustration of the B-splines providing BUPUs

spline of degree 1 spline of degree 2
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Recalling the concept of Wiener Amalgam Spaces ||

Note that one can define the Wiener amalgam space W(B, £9)
by the condition that the sequence ||f1,||g belongs to £9(Z9) and
its norm is one of the (many equivalent) norms on this space.

Different BUPUs define the same space and equivalent norms.
Moreover, for 1 < g < oo one has Banach spaces, with natural
inclusion, duality and interpolation properties.
Many known function spaces are also Wiener amalgam spaces:
o LP(RY) = W(LP,£P), same for weighted spaces;
o Hs(RY) (the Sobolev space) satisfies the so-called ¢2-puzzle
condition (P. Tchamitchian): Hg(RY) = W(Hs, £2),
and consequently for s > d/2 (Sobolev embedding) the
pointwise multipliers (V. Mazya) equal W (#Hs, ().
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Minimality of Wiener's algebra

The Wiener amalgam spaces are essentially a generalization of the
original family W/(LP,£9), with local component LP and global
g-summability of the sequence of local LP norms.

In contrast to the “scale” of spaces (LP(R?), ||-||5),1 < p < oo
which do not allow for any non-trivial inclusion relations we have
nice (and strict) inclusion relations for p; > pr and g1 < go:

W(LP, £7) C W(LP, %),

Hence W(L®,£1) is the smallest among them, and W/(L!,£>) is

the largest among them. The closure of the space of test

functions, or also of C.(R9) in W(L*>, £) is just Wiener's

algebra (W(GCo, £')(R9), || |lw). which was one of Hans

Reiter's list Segal algebras. It can also be characterized as

the smallest of all solid Segal algebras. m
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Introducing Modulation Spaces

Having the possibility to define Wiener amalgam spaces with
FLP(RY) (the Fourier image of LP(R?) in the sense of
distributions) as a local component allowed to introduce
modulation spaces in analogy to Besov spaces, replacing more or
less the dyadic decompositions on the Fourier transform side by
uniform ones.

Formally one can define the (unweighted) modulation spaces as

MPA(RY) .= F~1 (W (FLP, £9)). (55)
or more generally the now classical modulation spaces
M; (RY) == F 1 (W(FLP,02)) . (56)

N/
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Fourier invariant modulation spaces

It is an interesting variant of the classical Hausdorff-Young
theorem to observe that one has

Theorem

@ Forl <r < p < oo one has
FW(FP L") C W(F',¢P);
@ and as a consequence for 1 < p,q < 2:

FW(LP,£9)) C W(LT ¢7).
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The Banach Gelfand Triple (Sp, L2, S5)(RY)

Within the family of Banach spaces of (tempered) distributions of
the form MP9(R?) we have natural inclusions. The smallest in
this family is the space My (RY) = Sy(RY), which is a Segal
algebra and the smallest non-trivial Banach space isometrically
invariant under time-frequency shifts.

It is Fourier invariant, as well as all the spaces MP := MPP with
1 < g < 0o. This last mentioned space M*°(RY) coincides with
S{(RY), the dual of So(RY), and is the largest TF-invariant
Banach space.

In the middle we have the space M? := M?>2 = W(FL?, ¢?).
Together the triple of space (Sp, L2, §§)(R9) forms a so-called
Banach Gelfand Triple which is highly useful for many
applications (especially TF-analysis).
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My favorite Function Space plot

Tempered Distr.
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Comments on the literature

The subject is not sufficiently well popularized so far. It is used by
scientist in quantum physics working with rigged Hilbert spaces.
The properties of the specific Banach Gelfand Triple (So, L2 S5)
(over RY resp. general LCA groups) is appearing prominently in [3].
The subject has been addressed in a large number of talks by the
speaker, most of which are accessible via the NuHAG talk server:

http://www.univie.ac.at/nuhag-php/program/talks.php

searching for “title like:” Banach Gelfand
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Convolution discussed from scratch

One of the main arguments for the usefulness of the Fourier
transform is the fact that it converts the complicated convolution
into simple pointwise multiplication. But why should we be
interested in convolution?

If one follows the (excellent) Stanford course by Brad Osgood
(who also strives for a distributional view-point, trying not to stress
the audience to much with details on the Schwartz space), then
convolution could be introduced by the questions: Assume you
multiply two Fourier transforms: is this the Fourier transform of
“something”, and if so, what is it. And of course he comes up with
the convolution as we know it. | am afraid that this is not a
convincing approach for non-mathematicians! For details see
http://www.univie.ac.at/nuhag-php/home/skripten.php
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Where does convolution appear in nature?

We have studied a few simple cases in the practical part:

Knowing how to multiply numbers (e.g. by looking at 111111?) we
get a first idea what convolution is.

But already kids learn how to multiply out polynomials and
compute the coefficients of a product polynomial, by forming (in a
concrete way) the so-called Cauchy product

It is possible (and in fact not difficult) to relate this multiplication
of polynomials to probability in the following way: addition of
independent random variables: we will illustrate the sum of two
dices, each associated with the polynomial

p(x) = (x + x>+ x>+ x* + x> + x°) /6
easily with the coefficients of p(x)?!!
Similar case: the Binomial Theorem (Pascal’s triangle)! m
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Translations invariant systems

Translation-invariant linear systems play a great role. Courses on
the subject appear in most electrical engineering curricula.

Definition

The Banach space of all “translation invariant linear systems”
(TLIS) on Co(RY) is denoted by?

Hpa(Co(RY)) = {T € L(Cy(RY)) ToT, = T,oT,Vz € R} (57)

“The letter H in the definition refers to homomorphism [between normed
spaces], while the subscript G in the symbol refers to “commuting with the
action of the underlying group G = R? realized by the so-called regular
representation, i.e. via ordinary translations.

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich- Banach Gelfand Triples and their Applications in Harmonic An:



Translations invariant systems as a Banach algebra

Lemma

© The space Hya(Co(RY)) is a closed subalgebra of
(Lra(Co(RI), |l - Il ), hence it is a Banach algebra under
composition with the operator norm.

Q@ Hpa(Co(RY)) is even closed with respect to the strong

operator topology, i.e.if you have a sequence of operator
(T)n>1 in L(Co(RY)) with the property that

limn_soo|| Taf — Tof|leo =0, VF € Co(RY),

then the limiting operator Ty belongs to Hya(Co(R)).

© Clearly Hpa(Co(RY)) contains all the translation operators
Tx, x € RY, and their closed linear span forms a commutative

subalgebra of (Hga(Co(R)), Il - Il). N
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Convolution operators as Moving Averages

The outline of our study of TILS (translation invariant system) on
Co(RY) is roughly the following:

@ Show that every translation invariant system T can be viewed
as a moving average, or alternatively as a convolution
operator, characterized completely by some linear functional,
i.e.some 1 € Mp(RY), given by u(f) = T(f¥)(0).

© Then show how thanks to discretization operators, which are
based on the existence of arbitrary fine partitions of unity,
measures can be approximated by discrete measures Dy .

© Finally show that the convolution operators based on these
discrete measures, we call them Dy, are approximating the
convolution operators f — C,f = p * f in the strong operator
sense, i.e. they converge uniformly for any given f € Co(R9)
(or even f € C,p(RY), in particular for f(t) = exp(2mist)). m
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Recalling the choice of BUPUs

A very simple and broad BUPU. Shift parameter a = 64, a divisor
of the signal length n = 480, with four extra convolutions with a
box function of width 16. So total support size a + 4 % 16 = 128.

BUPU = bupusplin(n,gap,bas,ord);

50 00 150 200 250

1
bupusplIn(256,64,16,4)
Figure: bupuspline00.eps m
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Background information, Spline-quasi-interpolation

We have discussed BUPUs, which are bounded uniform partitions
W =W = (4););es of unity, where for now boundedness refers to
boundedness in (Cy(R?), || ||« ), or practically speaking we
assume 0 < ¢;(x) < 1forall i€l

On RY the size of a BUPU can simply be determined as °

(W[ =inf{y| supp(¥;) C By(x)},

which by assumption is finite.
We then defined the two operators Spy on (Co(R?), || - [|~) and
its transpose operator on Dy on (M,(R9), | - ||a,)-

Spu(f) =Y F0i)wi, Duw(p) = u(¥i)dg.  (58)

iel i€l

N/

®Also taking a little bit the family (xi)ier into account.
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Interpretation in a classical sense

For various special choices these operators are acutally quite simple
to understand. Let us restrict our attention to the case of BUPUs
of triangular shape (B-spline of order 2 or degree 1).

We can take the standard triangular system (convolution square of
the box-function) and its shift along Z and then compress this
system by the D,-operator, for p — oo, say p = 2".

Then the resulting operator Spy, produces out a piecewise linear
interpolation of f from the samples of the form for aa =27".

On the other hand, just for the sake of illustration, assume you take
the spline-BUPU of order one (shifted) box functions, the think of
x; = &; as in Riemann sums. Then Dy(f) can be interpreted as
Riemannian sum (even irregular Riemannian sums, by using
AM1[s;,5,)) = bi — ai, with A = Lebesgue measure).
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w*-convergence of Dy to

We all have learned that Riemannian sums form a Cauchy-net, i.e.
for f € C([a, b]) we know that they are convergent to fab f(x)dx,
the so-called Riemann integral. They corresonding
Cauchy-condition is of the following form: Given f € C([a, b]) and
e > 0 we can find some 0 = 6(f, ) such that for all Riemannian
sums which are at least as fine as § (maximal length of intervals
occuring) two Riemannian sums will not differ more than that
given £ > 0. By completeness of R there is a limit: fab f(x)dx!

In our setting we claim

For any f € Cy(RY) we have mOD\u,u(f) = pu(f). (59)
—

li
A

PROOF:  Dyu(f) = pu(Spy (f)) — u(f) for [W| — 0.
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Consequences for convolution approximation

Using this last observation it is clear that we have for every
x € RY, by replacing f by Tyf* and starting to write x * f for the
application of the convolution operator C,:

Dyp * f(x) = p* f(x), Vx &R

But in fact the speed of convergence depends only on the
expression || oscs(f)||oo resp. here on the quantity

|| oscs( T )loo = || 05¢5 f |l o-
This implies finally the required convergence in (Co(RY), |- [|c):

lim Dypuxf=puxf, VFfe C(RY). (60)
|W|—0

N/
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Properties of Dypu

Hans G. Feichtinger, Univ. Vienna & TU Muenich hans.feich

Although it is clear that Spy, is not normexpanding, since obviously
I1SPw(lloe < [Ifllocs  VF € Co(RY),

we could derive this using the (anyway useful) estimate

(i)l < llpblina - (61)

Proof: We just define 97 = 3., ., .0 and find that
|psif = >_;cF v for some finite set, hence [|¢)f||c < 1. Hence

(i)l = (7 - i)l < llpabillm,

and in particular

(i)l < llpllm-
ize;u ll —

Banach Gelfand Triples and their Applications in Harmonic An:



A Picture Book Approach to Function Spaces

In this talk, aside from a picture book presentation | have tried to
communicate various suggestions:

© One needs to understand basic distribution theory (using
Banach spaces only), no Lebesgue integration or topological
vector spaces,

@ Computations, images, plots can help the understanding, not
only illustrate results numerically;

© Diagrams can provide a big help

© Numerical simulations (e.g. MATLAB) can provide interesting
experimental information
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The first elements of the Fourier Landscape

FL1

Figure: The Lebesgue spaces L*(R?) and L?(R?), as well as the Fourier
image of L*(RY), which we call the Fourier algebra FL'(RY)
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Adding Schwartz to the Fourier Landscape

Figure: Adding the Schwartz space S(R?) inside all the spaces LP(RY),
with 1 < p < oo as well as the dual space, the space S’(R?) of
tempered distributions.
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The Riemann-Lebesgue Lemma

LI

Figure: Observe: There are L'(R9)-functions which are not in L*(RY)
and vice versa, but L*(RY) N Go(R?) C L*(R?)! Obviously FL'(R)
is a proper subset of Cy(R?), and so on ...
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Adding the Wiener Algebra W (Cy, £')(R9)

Figure: Wiener's algebra WR := W(GCy, £')(R?) is contained in
L' (RY) N Cy(R?), while its dual space WRD contains all the spaces
LP(RY). It is NOT contained in the Fourier algebra! (see *)
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Long-term goal: Adding SORd and Sj(RY)

—_WR
L
/ SERIRN
/ ¢ O\LT
\
/
( \“
| 1 |
\ /
\ J
\ /

Figure: The classical function spaces, adding Wiener's algebra
W(Co, £1)(R9) and is dual, but also So(RY) and Sj(RY).
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L'(RY) and the Fourier Algebra FL'(R9)

Figure: L'(R9), FL'(R?) and their intersection: The domain of the
Fourier inversion theorem is the yellow domain, strictly inside of L*(R9).

N/
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Fourier transform for W(L', £)(R9)

v

Figure: F(W(L', £%))(RY) ¢ W(L?, co)(R?)
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The philosophy behind these pictograms

Using these pictograms should encourage to speculate about
properties of these spaces and their mutual relationships, such as

@ (proper) containment, including intersections;
@ Fourier invariance (rotation by 90 degrees!)

© invariance under fractional Fourier transforms
corresponding to arbitrary rotations.
This property is only valid for L2(R9), So(R?) and S}(R9)
(and of course S(RY) and S'(RY))!)
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Tightness and convolution

Often results valid about e.g. the w*-convergence of Dyp to p are
also valid for w*- convergent and tight nets (potentially arising in
a different way than discretization), e.g.

Lemma

Assume a (bounded and) tight net (1ia)aini is w*-convergent to
some 1o € M(RY). Then we also have

“21 [t F = pio * floo = 0.
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Introducing convolution on (M(RY), || - [|m)

Having identified now on the one hand Hpa(Co(RY)) with M(RY)
(isometrically) and also realized that - as the strong closure of a
commutative algebra of discrete convolution operator - we can
transfer the commutitive multiplicative structure onto

(M(RY), | -|[m)- In other words we check that the convolution can
be defined reflecting the composition laws of the corresponding
operators T, thus turning the Banach space (M(RY), || - ||m) into
a Banach algebra!

Clearly we get associativity for free (in the same we get
associativity of matrix multiplication for free as soon as we have
verified that matrix multiplication just corresponds to the
composition of the corresponding linear mappings). We also can
prove (using natural arguments) that

lim D *D *f — * Lo * f.
o w1 w2 M1 * 2 m
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Consistency considerations

Within the “convolution” that we obtain by transfer of structure
we can now check what the concrete action of a given measure on
function is, resp. on measures.

Important starting point:

Sy xf=Tyf, feCRY),xeR
Just look at
Ox # £(2) = 6:(ToF") = 6x([T-2f1")) = [T-2F1(—x)
= f(—x = (=2)) = f(z = x) = T.f(2)
Since Tyo T, = T, o T, we have

Ox * 0y = Oxty, x,y € RY, m
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Comparing our approach with L'(R?)-theory

recall: MB = CO* and LINF=LI*

Ao

Figure: LILINFCOMB.eps
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Comparing the situation

So far we have (Co(RY), ||+ ||o) and its dual (M(RY), || - ||m).
We have also seen that w*-convergence of measures (elements) of
the dual space is relevant, because the discrete measures form a
proper, closed subspace of My(RY).

There are different ways of characterizing L(R?) within M(RY),
mostly (measure theoretic) as the “"absolutely continuous”
measures, alternatively via || Tuxp — pul| pyrey — 0 for x — 0.

This viewpoint will help us to understand (L'(R?), ||+ 1) as a
closed ideal within (M(RY), | - ||m)-

We will have of course a dual of (L*(R9), ||-[1).

The embedding k — i, resp. the realization of C,(RY) as a
part of the dual space of (L'(R9), ||- 1) requires the Haar
measure on RY (i.e. the Riemann integral, not more!).
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lllustration of the Dy operator

Given a probability density and a relatively course BUPU we have
this situation in a discrete situation. The density was created from
a random lowpass signal, be raising the real part and then
normalizing the sum of these non-negative values to 1.

s %107 a probability density
T : A AT
4k / O\ ~ [N /N
/ \,/ NARY \
2t / \/ =\
/ \
0 .
2 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

some partition of unity
T T T

50 100 150 200 250 300 350 400 450 m

Figure: probBUP1.eps
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The corresponding distribution functions

The corresponding distribution functions then look like this. The
jumps (Dirac measures) arise here at regular sampling positions,
coordinates 1 : 20 : 480 , so the BUPU has 24 entries.

s %1073 recalling the probability distribution plus discretization
T T T T T
/I /R \
4 / o/ ANED A 0 o
il ’T T T\// 7T T\ |
. 7 %
2 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

distribution function of density plus discretization
T

1 T T T T T T
05 P |
,k—r’_‘
,_‘_4;_!
0 1 —_— 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450
Figure: probBUP2.eps ]
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Concerning the inequivalence of sup-norm and FL'-norm

atest signal composed of TF-shifts of some Gauss function

-200 -150 -100  -50 0 50 100 150 200

the normalizzed (unitary) FFT of the test signal
T T T T T T

-200 -150 -100  -50 0 50 100 150 200

1 " £
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Things that you should forget! (dislearn!?)

The concept of linear independence
Definition
A set M C V within (any given) vector space is linear independent

if every finite (!) subset F C M is linear independent in the usual
sense, i.e. if

daw=0 in V = E=0eC" (62)
k=1

SHORTCOMING OF THIS WELL ESTABLISHED CONCEPT: Once
transferring the question to infinite-dimensional spaces, in
particular to normed spaces, one should adapt the concept by
allowing “infinite linear combinations”.
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Note: There are books (cf. I.Singer, [30]) on the concept of bases
in a Banach space. We would like to say that “every element is
uniquely expanded into a series of elements using the elements of a
basis”, but what does it mean “being represented”? Should we
assume unconditional convergence, and/or norm convergence.
Should conditional convergence in some weaker topology (e.g.
pointwise convergence) be admitted? Due to the large variety of
concepts even the notion of a basis in a Banach space appears to
be non-trivial! (hence even more the concept of linear
independence).
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PROBLEM: How should one generalize this to the infinite
dimensional settings. Which sequences should be allowed. Exactly
£?-sequences? Should this be done only for so-called Bessel
sequences (f;) which are such that the mapping

CHZC,‘f,’

is bounded from £2(1) to some Hilbert space H, implying
unconditional convergence of the series. Or just (un?)conditional
convergence (in norm or weakly?).
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Gabor's suggestion from 1946 (!)

A good example for problems with infinite dimensional spaces is
the collection (let us call it call D. Gabor’s classical family):

Take the family of TF-shifted copies of the standard Gaussian (i.e.
we take the density of the normal distribution, shift it by integers,
and multiply it with pure frequencies which are compatible with
the time-shifts), so each “atom” has a well-defined position on the
integer grid Z and a well defined integer frequency, also in Z if we
use the description of pure frequencies using complex exponential
functions

ek = cos(2mkx) + i - sin(2mkx).
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This family has the following properties:

(pos0) the family is linear independent in the classical sense;

(posl) the family is total, i.e. the linear combinations of these
building blocks allow to approximate any f € LQ(R) to any
precision € > 0.

@ (negla) if the required precision is increased, i.e. for e — 0
the corresponding coefficients do not converge, so there is no
“final /limiting” set of coefficients.

o (neglb) the set is not minimal, i.e. one can remove e.g. one
element (!but not two!) such that the remaining set is still
total.

o (neg2) If one wants to represent arbitrary elements from the

Hilbert space L?(R) one should not restrict the attention to
coefficients from £2(Z>29)!

N/
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@ (pos3) the building blocks are optimally localized in the
TF-sense, because the Gauss-function is providing the
minimizer (Fourier invariant) for the Heisenberg uncertainty
relation.

o (neg3a) the coefficients can be obtained using a (quasi-)
biorthogonal system, which can be “computed” (Bastiaans
dual window), but it is in fact not anymore an L2-function,
but only L*(R).

@ (neg3b) so strictly speaking we cannot even determine “the
coefficients” by taking ordinary scalar products (should the be
taken using summability methods? and/or should we allow
alternative forms of convergence??)
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Various forms of weak convergence

@ Another well trained sentence is this one:

A series is convergent if the sequence of partial sums is convergent.
Coming to Fourier series this view-point brings a lot of trouble
(or if you prefer: challenging mathematical problems, only
resolved by Carleman in 1972!, after conjectures due to Lusin
from around 1922).
In fact, the interpretation of a series (of function) in the
classical (i.e. the pointwise almost everywhere) setting makes
the problem a (very) hard one, while it is easily resolved if one
puts oneself in the context of a Hilbert space setting, with
convergence being taken in the quadratic mean (the L2-norm).
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Various forms of weak convergence

In the case of general, so-called weakly dual Gabor windows
without the so-called Bessel condition we find the following form of
convergence (see [18] for details):

Only for functions f € Sy(RY) the STFT-samples are in £2(A) and
consequently (even without a Bessel condition on the Gabor family
from a general L?(R9)-function ) one has w* convergence of the
resulting Gabor sum (using ~y for synthesis).

In the case of Bastiaans window the situation is similar: Since it is
the dual of the Gauss function one can say that for f € Sy(RY)
one has STFT samples for the Gaussian in £1(A), and consequently
absolute convergence in L>(R).
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Problem with Bastiaan's dual Gabor Window BBB

M. Bastiaans suggested to compute, despite the problems
mentioned above a kind of dual Gabor window for the critical case,
g = 8o (Gaussian) and a =1 = b. Two discrete versions:

SIGNAL 1 (unitary) FFT-1
0.2 0.2
AT 1 T S T W I T
| [ T I
-0.2 -0.2
-100 0 100 -100 0 100
SIGNAL 2 (unitary) FFT-2
0.06
0.05 0.04
0 .lhﬁj LJ’.n'. 002 SR N VAN N
[ | -0.02 TTY YTT
-0.05 0.04
-100 0 100 -100 0 100

Figure: Bastiaan y-functions in L°°(R), but not in L?(R), p < oo

N/
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Left over Material

[15],
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