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History Coorbit Spaces

This talk will be mostly about motivations, connections and
background information, and a bit of history of modulation spaces,
from a rather personal view-point.

Given the fact that on the one hand Torino is one of the
international hot-spots of modulation space theory, and on the
other hand the fact that I realize occasionally that my original
motivations cannot be read from the published papers (sometimes
because the ideas have not been made explicit at that time, or
because the results are widely spread in the literature), this talk
appears as a good opportunity to me to explain such things.
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Generalities and View-points

The talk will also shed some light on the strategies behind the
various constructions (Wiener amalgams, modulation spaces,
coorbit spaces, double module spaces, Banach Gelfand triples).
Many results have not been published explicitly because they arise
as special cases of results of a more general nature.
But I admit that one needs a guidance and detailed explanations to
understand the situation. So, for example, duality and pointwise
multiplier results on Wiener amalgam spaces (as introduced in [6])
have been only given in the framework of decomposition spaces
([9]).
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The personal view on modulation spaces

The theory of modulation spaces has been developed in the early
1980, culminating in the well-known technical 1983 report on
Modulation spaces on locally compact Abelian groups, and
the first “public appearance” of modulation spaces at the
conference in Kiew: A new family of functional spaces on the
Euclidean n-space, in the same year.
They have been first designed as Wiener amalgam spaces on the
Fourier transform side, using BUPUs, but soon the connection to
the STFT and the Heisenberg group began to play a role.
Around 1986-1989 the appearance of wavelets suggested to look
for a unified theory of wavelet analysis and time-frequency analysis,
based on the common group-theoretical basis. The results
have been published under the name of coorbit theory with
K. Gröchenig in 1988/89.
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Basic Facts about Wiener Amalgams

Wiener amalgam spaces, as the name says, had their origin in the
work of Norbert Wiener, mostly in connection with his
investigations around the Tauberian theorem (see [19]).

The so-called Wiener algebra W (Rd) , according to current
systematic conventions W (C0, `

1)(Rd), was given as an
interesting example of a so-called Segal algebra in Hans Reiter’s
book [18], see [3].

At that time J. Fournier and J. Stewart (see [12]) gave a nice
survey on the role of the spaces they called `q(Lp), while Busby
and Smith observed the convolution properties of the classical
amalgam space ([1]).
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Advantages of the family `q(Lp)

One of the draw-backs of the classical Banach spaces(
L
p(Rd), ‖ · ‖p

)
, with 1 ≤ p ≤ ∞ is the fact that there are no

inclusion relations between any two of these spaces. However, the
obstacles are if a different nature.

If p1 < p2 there are functions (locally like x−α, for a suitable value
of α > 0) which are locally in Lp1 but not in Lp2 .
In contrast, for p1 < p2 there are (step) functions in Lp1 \ Lp2 .
For Wiener amalgams the situation is quite easy:

W (Lp1 , `q1) ⊂W (Lp2 , `q2) ⇔ p2 ≤ p1 and q1 ≤ q1.

Hence W (L∞, `1) is the smallest space in this family (with
W (Rd) as the closure of the test functions), while W (L1, `∞) is
the largest, closed in the dual of W (Rd).
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The Magic Square for Wiener Amalgams

Figure: The inclusion relations: magic square

BUT overall classical Wiener Amalgams do not behave
well under the Fourier transform!
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The Hausdorff-Young Result for Amalgams

Figure: Hausdorff-Young theorem for Wiener amalgams
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Besov space (J. Peetre, H. Triebel)

Working with function space over LCA groups I was looking for a
construction of smoothness spaces and thought that one possibility
is to use (replacing dyadic intervals by uniform ones) spaces such
as W (FLp, `q) “on the Fourier transform side”, and then by
“pulling them back to the time-side. THIS was the original idea for
modulation spaces. This was the original idea for the definition of
M

p,q (the unweighted modulation spaces).

Especially the space W (FL1, `1) (introduced as Segal algebra(
S0(G ), ‖ · ‖S0

)
in 1979, see [4]) appears as an interesting special

case, among others because it is invariant under the Fourier
transform, i.e. the group FT maps S0(G ) onto S0(Ĝ).
Since I wanted to avoid the use of distribution theory (over
LCA groups one has to use the Schwartz-Bruhat theory,
which is quite involved), I choose a different way.
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BUPUs, discrete versus continuous norms

An important step taken during the study of Wiener amalgams
(see [6]) was the demonstration, that one obtains in full generality
(for arbitrary global components) two types of characterizations:

1 “discrete” characterizations using BUPUs (bounded uniform
partitions, e.g. in

(
FL1(Rd), ‖ · ‖FL1

)
), or

2 continuous norms (using a continuous control function) using
a “moving window” function g .

Of course, one has to show that different BUPUs (or localization
functions) define the same spaces and equivalent norms.
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The name MODULATION spaces

Using the continuous version of the Wiener amalgam norm one
finds that over Rd the modulation space
M

p,q(Rd) = F−1(W (FLp, `q)) can be characterized as the
subspace of f ∈ S ′(Rd) with the following finite norm:(∫

Rd

‖Msg ∗ f ‖qp
)1/q

<∞. (1)

Here g is the window function (typically 0 6= g ∈ S(Rd)) and
Ms is the modulation operator

[Msg ](x) = e2πis·x f (x), s, x ∈ Rd .
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The name MODULATION spaces II

Recalling that the Riemann-Lebesgue Lemma shows that the
Fourier transform of L1(Rd) functions tends to zero at infinity it is
clear that one has essentially

Msg ∗ f (x)→ 0 for s →∞.

So in this sense modulation spaces capture the smoothness by
quantifying the decay of the expression Msg ∗ f (x), resp. the
convolution of the signal f with the modulated window g (as a
function of x and s ∈ Rd) by certain integrability conditions.

Note that in communication theory amplitude modulation was
used to modulate a pure frequency e2πisx by the amplitude of
the function g to be transmitted!
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Compactness in Modulation Spaces

A number of results have been immediately available at the time of
the introduction of modulation spaces, because they had been
proved already in “full generality” before.
For example, all the modulation spaces are carrying two module
structures: one with respect to L1(Rd)-convolution, the other with
respect to pointwise multiplication of FL1(Rd).
Hence, whenever p, q <∞ (resp. whenever S0(Rd) is dense in
M

p,q(Rd)) one has the usual characterization of compact sets: A
bounded and closed set S ⊂Mp,q(Rd) is compact if and only if it
is equicontinuous and tight.
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Double module structures

Of course modulation spaces are also special cases of Banach
spaces with a double module structures, as studied in [8]. In
particular, one can ask the question about the so-called main
diagram for these spaces.
One of the key points is the following one (even valid for general
modulation spaces): Any such space contains the smallest space
with this L1/FL1-double module structure, namely
S0(Rd) = W (FL1, `1)(Rd) and is contained in its dual space.
The test functions are dense (i.e. the space is minimal) if and only
if translation and modulation are a strongly continuous (!) group
of isometries on these spaces. It is a dual space if and only if
w∗-limits (in the sense of S ′0) of bounded nets belong to the
Banach space itself. Finally, the space if reflexive if and only if
both the space and its dual are minimal and maximal.
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depicted
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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Various Function Spaces

SINC

box

L2

L2

FL1

S0

FL1  L1

Figure: The usual Lebesgues space, the Fourier algebra, and
the Segal algebra S0(Rd) inside all these spaces
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space (B, ‖ · ‖B), which is densely
embedded into some Hilbert space H, which in turn is contained in
B
′ is called a Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [unitary] isomorphism between H1 and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (2)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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Inclusion relations

The family of modulation spaces Mp,q(Rd) show a very similar
behaviour compared to ordinary Wiener amalgam spaces
W (Lp, `q)(Rd). Different parameters define different spaces, and
inclusion mappings are always automatically continuous.
Furthermore any automorphism (e.g. rotation or scaling operators)
leave these spaces invariant, not always isometrical, of course, as a
simple consequence of the fact that different windows define the
same space (up to equivalence of norms).
Some inclusions go in the opposite direction, because the Fourier
algebra FL1(Rd) is contained in L2(Rd) which in turn is contained
in L1(Rd) (locally!), hence within FL∞(Rd). Thus:

M
p1,q1 ⊂Mp2,q2 ⇔ p1 ≤ p2, q1 ≤ q2.
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An inclusion diagram

The fact that there are clear inclusions in both families (Wiener
amalgams resp. modulation spaces), but also a smallest and a
largest space in each of these two families, with the inclusions (we
have W (FL1, `1) = M

1,1 = M
1 and W (FL∞, `∞) = M

∞,∞):

W (FL1, `1) ⊂W (C0, `
1) ⊂ L2 ⊂W (L1, `∞) ⊂W (FL∞, `∞).

(3)
Hence for a typical space (B, ‖ · ‖B) one can ask what is set of all
parameters (p, q) such that

M
p,q ⊆ B or B ⊆Mp,q

respectively

W (Lp, `q) ⊆ B or B ⊆W (Lp, `q).
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Key aspects of my talk

1 What is the setting of coorbit theory?

2 In which sense are modulation spaces coorbit
spaces?

3 Which results on coorbit theory had been
influenced by modulation space theory?

4 Which results about modulation spaces are
implicit consequences of coorbit theory?
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The setting of Coorbit Theory

Coorbit theory has been developed by myself together with
Karlheinz Gröchenig as a reaction to the first publications on
wavelet theory (autumn 1986) by Yves Meyer, see[17, 16], and
earlier A. Grossmann and J. Morlet (see [14], [15]).
The summer school with E. Stein and R. Howe in Germany
organized by D. Poguntke clarified to us (we both took part) that
the STFT (the function that had been used to provide the
continuous description of modulation spaces) had a lot to do with
the Schrödinger representation of the reduced Heisenberg group,
while the CWT (continuous wavelet transform) was just a
representation coefficient of the affine group, the so-called
“ax + b”-group.
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Modulation Spaces as Coorbit Spaces

As already indicated modulation spaces, e.g. the by now classical
modulation spaces Ms

p,q(Rd) can be viewed as coorbit spaces, by
relating the usual definition of the short-time Fourier transform a
function on the reduced Heisenberg group (see [10] for details of
this transition).
There are two possible view-points: Group representation theory
suggest to talk about the so-called Schrödinger representation of
the reduced Heisenberg group, Hd = Rd × Rd × T, OR
(taking a more practical approach): The collection of all unitary
operators which are scalar multiples (scalars from the torus) of
time-frequency shifts.
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Coorbit Results of Modulation Spaces

There is a number of results following from the generalities of
coorbit theory, which have not been formulated before only for the
time-frequency context. We give only a short summary:

Theorem

Irregular Sampling of the STFT: Given 0 6= g ∈ S0(Rd) there
exists δ > 0 such that for any δ-dense family (xi )i∈I there is a
stable linear reconstruction of any f ∈ L2(Rd) from the samples of
(Vg f (xi ))i∈I in the form

f =
∑
i∈I

Vg f (xi )g̃i .

The convergence is unconditional in
(
L
2(Rd), ‖ · ‖2

)
for any

f ∈ L2(Rd), and absolute in
(
S0(Rd), ‖ · ‖S0

)
for f ∈ S0(Rd), and

at least w∗-convergent for f ∈ S ′0(Rd).
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Modulation Spaces inspiring Coorbit Theory

In the development of coorbit theory essentially the unification
aspect for three situations had been dominant (with further
generalizations imminent):

1 the wavelet case;

2 the Gabor (time-frequency) case;

3 Möbius invariant function spaces on the disc

We will concentrate on the comparison of the first two cases.
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The Foundations of Coorbit Theory

Coorbit Theory is based on the following assumptions:

1 There is an irreducible unitary representation π of some
locally compact group G on some Hilbert space H;

2 For so-called admissible elements ϕ (in the domain of a
densely defined possibly unbounded operator A) one can
define the continuous voice transform on H:

Vϕ(f )(x) = 〈f , π(x)ϕ〉, f ∈ H.

3 Given a solid, translation invariant Banach space of
(Y , ‖ · ‖Y ) on G one defines

4 Co(Y ) : {f |Vϕ(f ) ∈ Y }, with‖f ‖Co(Y ) := ‖Vϕ(f )‖Y .

Hans G. Feichtinger
Modulation Spaces from the View-point of Coorbit Theory



History Coorbit Spaces

The Foundations of Coorbit Theory II

An important asset for the derivation of the basic properties of
coorbit spaces are the following two consequences of the square
integrability of the representation.

For suitably normalized (admissible) atoms/windows one has
an isometric embedding of H into

(
L
2(G ), ‖ · ‖2

)
, i.e.

‖Vϕ(f )‖2 = ‖f ‖H, f ∈ H.
The range of Vϕ within L2(G ) is characterized by:

Vϕ(f ) ∗ Vϕ(ϕ) = Vϕ(f )

where ”∗” denotes convolution of functions on G;
The inverse of Vϕ on the range of is just V ∗ϕ , resp. one has
the reproducing formula

f =

∫
G
Vϕ(f )(x)π(x)ϕ dx , f ∈ H,

which is understood (first!) in the weak sense.

Clearly there are various questions:
1 how can one show completeness of Co(Y )?
2 What is the reservoir of generalized functions for which the

voice transform Vϕ(f ) is well defined?
3 Can one prove the continuous “Calderon-type reproduction

formula in the more general context?
4 Is it possible to discretize the continuous transform, in other

words, can one have (Banach) frames of the form (π(xi )ϕ)?
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Modulation Spaces inspiring Coorbit Theory
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What are Modulation Spaces?

During the preparation of the article [7] the question arose: What
are modulation spaces?
The answer that came our finally: Modulation spaces are coorbit
spaces arising from the Schrödinger representation of the reduced
Heisenberg group, resp. these are Banach spaces of distributions
characterized by the behaviour of the STFT (cf. [11]).
Thus it is not so much the particular use of (weighted) mixed-norm
spaces, or the particular order in which these norms are taken.
In this sense the generalized Wiener amalgam spaces
W (FLp, `q)(Rd) are just other (general) modulation spaces.
One can define modulation spaces also with other function spaces,
such as weighted Lorentz or Orlicz spaces, even the coordinate
system is chosen differently. Then we would describe images of
M

s
p,q-spaces under the Fractional Fourier transform.
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Key aspects of my talk

1 B
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