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OVERVIEW

We will concentrate on the setting of the LCA group G = Rd ,
although all the results are valid in the setting of general locally
compact Abelian groups as promoted by A. Weil.
Occasionally the Schwartz space S(Rd) is used and its dual
S ′(Rd), the space of tempered distributions (e.g. for PDE and the
kernel theorem, identifying operators from S(Rd) to S ′(Rd) with
their distributional kernels in S ′(R2d)).
In the last 2-3 decades the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
(equal to the modulation space (M1(Rd), ‖ · ‖

M
1)) and its dual,

(S ′0(Rd), ‖ · ‖S ′0 ) or M∞(Rd) have gained importance for many
questions of Gabor analysis or time-frequency analysis.
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OVERVIEW II

The spaces in this family are useful for a discussion of questions in
Gabor Analysis, which is an important branch of
time-frequency analysis, but also for problems of
classical Fourier Analysis, such as the discussion of
Fourier multipliers, Fourier inversion questions (requiring to work
with the space L1(Rd) ∩ FL1(Rd)), and many other spaces.

Within the family there are two subfamilies, namely the Wiener
amalgam spaces and the so-called modulation spaces, among them
the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
or Wiener’s algebra(

W (C0, `
1)(Rd), ‖ · ‖W

)
.
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT
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Demonstration using GEOGEBRA (very easy to use!!)
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Spectrogramm versus Gabor Analysis

Assuming that we use as a “window” a Schwartz function
g ∈ S(Rd), or even the Gauss function g0(t) = exp(−π|t|2), we
can define the spectrogram for general tempered distributions
f ∈ S ′(Rd)! It is a continuous function over phase space.

In fact, for the case of the Gauss function it is analytic and in fact
a member of the Fock space, of interest within complex analysis.

Both from a pratical point of view and in view of this good
smoothness one may expect that it is enough to sample this
spectrogram, denoted by Vg (f ) and still be able to reconstruct f
(in analogy to the reconstruction of a band-limited signal from
regular samples, according to Shannon’s theorem).
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So let us start from the continuous spectrogram

The spectrogram Vg (f ), with g , f ∈ L2(Rd) is well defined and
has a number of good properties. Cauchy-Schwarz implies:

‖Vg (f )‖∞ ≤ ‖f ‖2‖g‖2, f , g ∈ L2(Rd),

in fact Vg (f ) ∈ C0(Rd × R̂d). Plancherel’s Theorem gives

‖Vg (f )‖2 = ‖g‖2‖f ‖2, g , f ∈ L2(Rd).

Assuming that g is normalized in L2(Rd), or ‖g‖2 = 1 makes
f 7→ Vg (f ) isometric, hence we request this from now on. Note:
Vg (f ) is a complex-valued function, so we usually look
at |Vg (f )|, or perhaps better |Vg (f )|2, which can be viewed as

a probability distribution over Rd × R̂d if ‖f ‖2 = 1 = ‖g‖2.
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The continuous reconstruction formula

Now we can apply a simple abstract principle: Given an isometric
embedding T of H1 into H2 the inverse (in the range) is given by
the adjoint operator T ∗ : H2 → H1, simply because ∀h ∈ H1

〈h, h〉H1 = ‖h‖2
H1

= (!) ‖Th‖2
H2

= 〈Th,Th〉H2 = 〈h,T ∗Th〉H1 ,
(1)

and thus by the polarization principle T ∗T = Id .
In our setting we have (assuming ‖g‖2 = 1) H1 = L

2(Rd) and
H2 = L

2(Rd × R̂d), and T = Vg . It is easy to check that

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)g dλ, F ∈ L2(Rd × R̂d), (2)

understood in the weak sense, i.e. for h ∈ L2(Rd) we expect:

〈V ∗g (F ), h〉
L

2(Rd ) =

∫
Rd×R̂d

F (x) · 〈π(λ)g , h〉
L

2(Rd )dλ. (3)
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Continuous reconstruction formula II

Putting things together we have

〈f , h〉 = 〈V ∗g (Vg (f )), h〉 =

∫
Rd×R̂d

Vg (f )(λ) · Vg (h)(λ) dλ. (4)

A more suggestive presentation uses the symbol gλ := π(λ)g and
describes the inversion formula for ‖g‖2 = 1 as:

f =

∫
Rd×R̂d

〈f , gλ〉 gλ dλ, f ∈ L2(Rd). (5)

This is quite analogous to the situation of the Fourier transform

f =

∫
Rd

〈f , χs〉χs ds, f ∈ L2(Rd), (6)

with χs(t) = exp(2πi〈s, t〉), t, s ∈ Rd , describing the “pure
frequencies” (plane waves, resp. characters of Rd).

Hans G. Feichtinger Robustness Considerations based on
(
S0(Rd ), ‖ · ‖S0

)



Discretizing the continuous reconstruction formula

Note the crucial difference between the classical formula (6)
(Fourier inversion) and the new formula formula (5). The building
blocks gλ belong to the Hilbert space L2(Rd), in contrast to the
characters χs /∈ L2(Rd). Hence finite partial sums cannot
approximate the functions f ∈ L2(Rd) in the Fourier case, but they
can (and in fact do) approximate f in the L2(Rd)-sense.
The continuous reconstruction formula suggests that sufficiently
fine (and extended) Riemannian-sum-type expressions approximate
f . This is a valid view-point, at least for nice windows g (any
Schwartz function, or any classical summability kernel is OK:
see [F. Weisz] Inversion of the short-time Fourier transform
using Riemannian sums for example [6]).
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Modulation spaces, in particular S0(Rd) and S ′0(Rd)

The reconstruction of f from its STFT (Short-time Fourier
Transform) suggests that at least for “good windows” g one can
control the smoothness (and/or decay) of a function or distribution
by controlling the decay of Vg (f ) in the frequency resp. the time
direction.
A polynomial weight depending on the frequency variable only can
be used to describe Sobolev spaces, and (weighted) mixed-norm
conditions can be used to define the (now classical) modulation
spaces

(
M

s
p,q(Rd), ‖ · ‖Ms

p,q

)
.

We will put particular emphasis on the modulation spaces
S0(Rd) = M

1,1 = M
1, characterized by the membership of

Vg (f ) ∈ L1(R2d) and S ′0(Rd) = M
∞,∞ = M

∞, with uniform
convergence describing norm convergence in S ′0(Rd), while
pointwise convergence corresponds to the w∗-convergence in
S
′
0(Rd).
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Modulation spaces Mp(Rd) and Gabor analysis

Just as an alternative let us remind of the following situation
concerning Gabor frames:

Theorem

Assume that (g ,Λ) generators a Gabor frame with generator
g ∈ S0(Rd) = M

1(Rd), with dual Gabor atom g̃ . Then
f ∈ S ′0(Rd) belongs to Mp(Rd) if and only if one of the following
expressions (equivalent norms) are finite:

1 |Vg (f )|Λ‖`p ;

2 ‖Vgd(f )|Λ‖`p .
Alternatively, f ∈Mp(Rd) if and only if it has an atomic
representation of the form

∑
λ∈Λ cλπ(λ)g, with

c = (cλ)λ∈Λ ∈ `p(Λ).
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Tensor products

Given two functions f 1 and f 2 on Rd respectively, we set f 1 ⊗ f 2

f 1 ⊗ f 2(x1, x2) = f 1(x1)f 2(x2), xi ∈ Rd , i = 1, 2.

For distributions this definition can be extended by taking
w∗-limits or by duality, just like µ1 ⊗ µ2 is defined, for two
bounded measures µ1, µ2 ∈Mb(Rd).
It is important to know that we have σ1 ⊗ σ2 ∈ S ′0(R2d) for any
pair of distributions σ1, σ2 ∈ S ′0(Rd).
In particular S ′0(Rd)⊗̂S ′0(Rd) is well defined and a (proper)
subspace of S ′0(Rd).
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The KERNEL THEOREM for ScRd

The kernel theorem for the Schwartz space can be read as follows:

Theorem

For every continuous linear mapping T from S(Rd) into S ′(Rd)
there exists a unique tempered distribution σ ∈ S ′(R2d) such that

T (f )(g) = σ(f ⊗ g), f , g ∈ S(Rd). (7)

Conversely, any such σ ∈ S ′(R2d) induces a (unique) operator T
such that (7) holds.

The proof of this theorem is based on the fact that S(Rd) is a
nuclear Frechet space, i.e. has the topology generated by a
sequence of semi-norms, can be described by a metric which
turns S(Rd) into a complete metric space.
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The KERNEL THEOREM for S0 I

Tensor products are also most suitable in order to describe the set
of all operators with certain mapping properties. The backbone of
the corresponding theorems are the kernel-theorem which reads as
follows (!! despite the fact that

(
S0(Rd), ‖ · ‖S0

)
is NOT a nuclear

Frechet space)
One of the corner stones for the kernel theorem is: One of the
most important properties of S0(Rd) (leading to a characterization
given by V. Losert from 1980) is the tensor-product factorization:

Lemma

S0(Rk)⊗̂S0(Rn) ∼= S0(Rk+n), (8)

with equivalence of the corresponding norms.
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The KERNEL THEOREM for S0 II

The Kernel Theorem for general operators in L(S0,S
′
0):

Theorem

If K is a bounded operator from S0(Rd) to S ′0(Rd), then there
exists a unique kernel k ∈ S ′0(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉
for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S ′0(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .

Hans G. Feichtinger Robustness Considerations based on
(
S0(Rd ), ‖ · ‖S0

)



The KERNEL THEOREM for S0 III

The kernel theorem as well as many other important properties and
linear correspondences within Fourier and Time-frequency analysis
can be nicely described by means of the Banach Gelfand Triple
(S0,L

2,S ′0)(Rd).
We will not make extensive use of this fact, although in the long
run it is a very important and compact way of describing many of
these correspondences (say integral kernel of the linear operator or
spreading resp. Kohn-Nirenberg symbol of the linear operator).
For example, the kernel theorem as described above “outer shell”
of the Gelfand triple isomorphism. The “middle = Hilbert” shell
which corresponds to the well-known result that Hilbert Schmidt
operators on L2(Rd) are just those compact operators which
arise as integral operators with L2(R2d)-kernels.
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The KERNEL THEOREM for S0 IV

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if
the corresponding operator K maps S ′0(Rd) into S0(Rd), but not
only in a bounded way, but also continuously from w∗−topology
into the norm topology of S0(Rd).

In analogy to the matrix case, where the entries of the matrix

ak,,j = T (ej)k = 〈T (ej), ek〉

we have for K ∈ S0 the continuous version of this principle:

K (x , y) = δx(T (δy ), x , y ∈ Rd .
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The Kernel Theorem as a BGT isomorphism

The different version of the kernel theorem for operators between
S0 and S ′0 can be summarized using the terminology of Banach
Gelfand Triples (BGTR) as follows.

Theorem

There is a unique Banach Gelfand Triple isomorphism between the
Banach Gelfand triple of kernels (S0,L

2,S ′0)(R2d) and the operator
Gelfand triple around the Hilbert space HS of Hilbert Schmidt
operators, namely (L(S ′0,S0),HS,L(S0,S

′
0)), where the first set is

understood as the w∗ to norm continuous operators from S
′
0(Rd)

to S0(Rd), the so-called regularizing operators.

Hans G. Feichtinger Robustness Considerations based on
(
S0(Rd ), ‖ · ‖S0

)



Advantages over Schwartz Theory

(
S0(G ), ‖ · ‖S0

)
is defined on LCA groups(

S0(G ), ‖ · ‖S0

)
is a Banach space, not just a nuclear Frechet

space with a rich family of semi-norms;

w∗-convergence in S ′0(Rd) is useful and easy to explain
(uniform convergence of Vg (σn)→ Vg (σ0));(
S0(Rd), ‖ · ‖S0

)
plays a universal role for many specific

questions in Fourier analysis (Gabor analysis, classical
summability, etc.);

there is a long list of equivalent characterizations;

there are many sufficient conditions;

sampling and periodization are unproblematic.d
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Disadvantages over Schwartz Theory

It is not possible to treat PDEs, because functions in S0(Rd)
need not be differentiable, e.g. the triangular function is
compactly supported and has integrable Fourier transform,
hence belongs to S0(R) = W (FL1, `1)(R).

S
′
0(Rd) ⊂ S ′(Rd), but sometimes the smallness is even an

advantage;

more?
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Poisson’s Formula

For general lattices (discrete, co-compact subgroups) Λ within any
LCA groups G the following is true. Denoting by Λ⊥ the
orthogonal lattice, given by

Λ⊥ := {χ ∈ Ĝ |χ(λ) ≡ 1 ∀λ∈Λ}

[4]

Theorem

For f ∈ S0(Rd) one has∑
k∈Zd

f (k) =
∑
n∈Zd

f̂ (n), (9)

the sum being absolutely convergent on both sides.
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Reservoir of Classical Summability kernels

Recall that I like to denot the L1-normalized dilation operator by
Stρ, which applied to L1(Rd)-functions via

[Stρg ](z) = 1/ρd f (x/ρ), ρ > 0, x ∈ Rd ,

satisfying ‖Stρ(g)‖
L

1(Rd ) = ‖g‖
L

1(Rd ).

On the Fourier transform side it goes into value-preserving dilation:

[Dρh](z) = h(ρz), ρ > 0, z ∈ Rd .
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Classical Summability II

Summability kernels allow to recover an L1(Rd)-function (equiv.
class of measurable functions) by applying the inverse Fourier
integral ∫

Rd

h(s)e2πistds

to the Fourier transform f̂ (for some given f ∈
(
L

1(Rd), ‖ · ‖1

)
),

multiplied with Dρh, for some h ∈ S0(Rd) with h(0) = 1 (resp.
h = ĝ , for some g ∈ L1(Rd) with

∫
Rd g(x)dx = 1).

Since the pointwise product Dρh · f̂ corresponds on the time-side
to the convolution product Stρg ∗ f we only have to verify that for
any f ∈ L1(Rd) we have limρ→0 Stρg ∗ f = f ! Since Dρh ∈ S0(Rd)

is is clear that Dρh · f̂ belongs to S0(Rd), hence the ordinary
Fourier inversion theorem can be applied (for any fixed ρ > 0).
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Classical Summability III

The ingredients for this argument are

On the FT side: f̂ · Dρg ∈ FL1(Rd) · S0(Rd) ⊂ S0(Rd);

On the time-side: continuous shift, i.e. ‖Tx f − f ‖
L

1(Rd ) → 0
for |z | → 0, because this implies

‖Stρg ∗ f − f ‖B → 0, for ρ→ 0.

Thus the same argument is valid for any (!) Segal algebra
(B, ‖ · ‖B) (in the sense of H. Reiter), because they all share these
properties, and some of them still do not satisfy FB ⊂ L1(Rd).
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How to COMPUTE approximate duals

The idea behind many approximation procedures is to have a
STRUCTURAL PRESERVING approximation. In our case we want
to reduce, up to some approximation error the computation of
Gabor coefficients of a given function with respect to a given
Gabor family G(g , a, b) to the (numerical exact or approximate)
computation of appropriate sets of coefficients. Note that for the
case of an irrational quotient a/b (eccentricity) no pair of integer
lattice constants will have exactly that same eccentricity, so some
approximations are needed.
We restrict our attention here to the separable case, being aware
that also the separable case (e.g. hexagonal lattices) deserve
equal attention nowadays!
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Similar time-frequency lattices
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... generate similar dual atoms
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... generate similar dual atoms
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Families of Gabor families

As a first step towards the question of “varying the lattice
constants” (or more generally varying the lattice) one has to ask,
whether the Bessel property, namely the estimate∑

λ∈Λ

|Vg (f )(λ)|2 ≤ C‖f ‖2
2, ∀f ∈ H = L

2(Rd)

is valid for any given (decent) family of lattices Λ, say
Λ = aZd × bZd , for a, b ∈ [γ, 1] for some γ > 0.
The answer is again: aside from more complicated but hardly
much larger spaces that universal answer (even in the context of
LCA groups) is: Assume that the window is in S0(Rd)!
For details see [1].
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Varying the TF-lattice Λ

The key-result of [1] describes the fact, that the set of all lattices
Λ, such that G(g ,Λ) gives rise to a Gabor frame is an open subset
of the product domain, with atoms takein in

(
S0(Rd), ‖ · ‖S0

)
and

lattices described by suitable 2d × 2d , non-singular matrices, i.e.
Λ = A ∗ Z2d , for det(A) 6= 0.
Moreover, the dual atom depends continuously, in the sense of(
S0(Rd), ‖ · ‖S0

)
, on the ingredients. In particular, a small change

in the matrix results only in a small change of the dual window g̃
(which depends on g ∈ S0(Rd) and A.
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Jitter error stability

The result just mentioned is remarkable in the sense that it is not
just a simple consequence of the fact that similar Gabor families
create similar (with respect to the operator norm on(
S0(Rd), ‖ · ‖S0

)
) Gabor frame operators.

Such an argument is only valid for a fixed TF-lattice Λ, whenever
the atom g is replaced by a similiar (e.g. compactly supported
one) in S0(Rd). In contrast, different lattices create operators,
which have a large deviation from the original Gabor frame
operator, when considered in the operator norm over(
S0(Rd), ‖ · ‖S0

)
or even just

(
L

2(Rd), ‖ · ‖2

)
!

Small perturbations (jitter error) however are valid for the case of
S0(Rd)-atoms and are verified by the usual perturbation argument
applied within the Banach algebra of invertible operators on(
S0(Rd), ‖ · ‖S0

)
.
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Approximate reconstruction with good windows

Moyal’s equality, which can be expressed as

‖Vg (f )‖
L

2(Rd×R̂d )
= ‖g‖

L
2(Rd )‖f ‖L2(Rd ), f , g ∈ L2(Rd),

hence f 7→ Vg (f ) is an isometric linear embedding of(
L

2(Rd), ‖ · ‖2

)
into

(
L

2(R2d), ‖ · ‖2

)
as long as ‖g‖2 = 1.

Therefore V ∗g is the inverse of Vg on its range, or in other words
we have the continuous reconstruction formula

f =

∫
Rd×R̂d

Vg (f )(λ)π(λ)g dλ.

It is therefore natural to assume that it can be approximated
(for any given f ∈ L2(Rd) by corresponding Riemannian sums!
(see [6]).
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The Fundamental Formula for Gabor Analysis

The so-called FIGA is discussed in great detail in the paper [3]
It relies on the application of the Poisson formula for the
symplectic Fourier transform.
Even if one is interested in L2-windows it is important to make use
of the fact, that for g ∈ S0(Rd) and f ∈ L2(Rd) the STFT Vg (f )

belongs to the Wiener amalgam space W (FL1, `2)(Rd × R̂d).
Hence the pointwise product of two such short-time Fourier
transform (as it is needed in the evaluation of the scalar products
in `2(Λ)) involves functions in

W (FL1, `2) ·W (FL1, `2) ⊂W (FL1, `1)(Rd) = S0(Rd)

hence samples are in `1(Λ) and Poisson’s formale applies!!
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Approximate dual Gabor atoms

Let us shortly mention here, why it is important to find
approximate dual atoms which are close to the true (canonical)
dual atom g̃ or at least close to some (valid) dual atom which
guarantees perfect reconstruction in the S0(Rd)-sense!
This again has to do with the possibility to estimate the error on
the Bessel bound of the synthesis operator. Assume again, we are
only interested in Gabor analysis for signals in L2(Rd) (a
narrow-minded view-point anyway).
Then, assuming we have only an approximation to g̃ in the sense
of the L2(Rd)-norm, we could only argue that the reconstruction
procedure, starting from the true samples of Vg f over Λ are given,
we would use the synthesis with respect to the replacement of g̃ ,
close to g̃ in the L2-sense. What comes out is that one would
be able only to estimate the S ′0-error in the reconstruction.
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Quasi-interpolation in
(
S0(Rd), ‖ · ‖S0

)

An important result concerning discretization resp. approximtion is
the result with Kaiblinger about quasi-interpolation in(
S0(Rd), ‖ · ‖S0

)
. Let us discuss the most simple case, which is

piecewise linear interpolation in
(
S0(R), ‖ · ‖S0

)
.

The typical first application of this principle is the approximate
factorization of the Fourier transform (given on S0(Rd) as integral
transform) by the FFT, applied to samples of the function over a
sufficiently wide range, at a sufficiently high sampling rate!
Results in this direction have been given in the paper with
N. Kaiblinger (see [2]).
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Robustness for Banach Gelfand Triples

It is no surprise that practically all the robustness considerations
formulated so far concering S0-atoms, or approximatin in the
S0(Rd)-sense, provide not only stability and robustness (e.g. with
respect to the choice of the lattice, etc.) in the operator norm on(
L

2(Rd), ‖ · ‖2

)
, but also for the space

(
S0(Rd), ‖ · ‖S0

)
and its

dual space (S ′0(Rd), ‖ · ‖S ′0 ), which together form the Banach

Gelfand Triple (S0,L
2,S ′0)(Rd).
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Gabor Frames without Inequalities

The triple (S0,L
2,S ′0) also allows to describe the usual properties

of a set of vectors in a finite dimensional Hilbert spaces, at least
concerning Gabor frames, see Gröchenig’s paper: Gabor frames
without inequalities, [5].
Frames are a strong for of “generating systems of vectors”, coming
with a control on the set of coefficients. This can be expressed
equivalently at the level of

(
S0(Rd), ‖ · ‖S0

)
with `1-coefficients.

In the same way, the Riesz property (for the adjoint case) can be
formulated as injectivity problem, and this should be considered for
the pair `∞(Λ) and S ′0(Rd), according to [5].
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Further information, LINKS

A lot of further material can be found through the NuHAG
web-page, in particular at

www.nuhag.eu/talks

E.g. selecting one the following filters:

BanGelTriples

FeiTalks

FeiConcept

or one of the (drafts of) lecture notes found at
http://www.univie.ac.at/nuhag-php/home/skripten.php
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