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Abstract. To visualize and manipulate musical signals time-frequency
transforms have been used extensively. The Large Time Frequency Anal-
ysis Toolbox is an Octave/Matlab toolbox for modern signal analysis and
synthesis. The toolbox provides a large variety of linear and invertible
time-frequency transforms like Gabor, MDCT, constant-Q, filterbanks
and wavelets transforms, and routines for modifying musical signal by
manipulating coefficients by linear and non-linear methods. Combined
with this the toolbox also supplies a framework for real-time processing
of sound signals. It also provides demo scripts devoted either to demon-
strating the main functions of the toolbox, or to exemplify their use in
specific signal processing applications.

1 Introduction

Time-Frequency analysis has been used extensively in musical signal processing
to visualize music signals and, if a reconstruction algorithm exists, to modify and
manipulate them. A common tool is the phase vocoder [14], which for example
can be used for time stretching or pitch shifting. This algorithm relies on the
Short Time Fourier Transform (STFT) as signal processing background.

While the STFT is very useful for musical signal processing, for some appli-
cation the rigid structure, resulting in a fixed time-frequency resolution, might
not be optimal. Therefore several other time-frequency representation like the
wavelet transform [17] or the non-stationary Gabor transform [5] have been used.
In particular for the manipulation of musical signals directly in the analysis coef-
ficient domain, for example amplifying or attenuating particular time-frequency
regions, a reconstruction method is necessary. And, because if no modification
is done, the original signal should be kept, perfect reconstruction is necessary.
To guarantee that for adapted time-frequency transforms, the concept of frames
has been proved to be very useful [3].

The concept of frames was introduced in [15], made popular by [10], and
became a very active field of mathematics [8]. Frames allow redundant repre-
sentations, i.e. having more coefficients than samples. Finding and constructing
frames, given certain a-priory properties, is easier than for orthonormal basis
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transforms (ONBs). This can readily be experienced in time-frequency analy-
sis: The widely used Gabor transform [16] can be much better localized in the
time-frequency domain if it constitutes a redundant frame rather than a basis.
We note that even if it is impossible to find an ONB with certain properties, it
is often possible to find a frame. Moreover, analysis with redundant frames can
have the advantage that it is easier to directly interpret the coefficients, e.g. for
Gabor sequences by the time-frequency localization. This is advantageous for
many applications.

The Large Time Frequency Analysis Toolbox (LTFAT) is an Octave/Matlab
toolbox built upon frames. By using frame theory as a unifying common lan-
guage, it provides a plethora of signal transforms like Gabor frames, Wavelet
bases and frames, filterbanks, non-stationary Gabor systems etc. using common
interfaces.

In this paper we present a preview of the next major version (2.0) of LTFAT,
the major linear transforms, the analysis and synthesis methods and the block-
processing framework. In comparison to the first major version [36] the toolbox
further includes wavelets, block processing and the object-oriented framework
for frames.

Overall, LTFAT combines a large and well-documented mathematical knowl-
edge with an easy to use programming language and a real-time sound sound pro-
cessing framework. This allows students, researchers and musicians to learn the
underlying mathematical concepts by reading the documentation, programming
their own experiments in Octave and Matlab and getting immediate feedback
while listening to the output of their experiments.

2 Frames

Formally, a frame is a collection of functions Ψ = (ψλ)λ∈Λ in a Hilbert space H
such that 0 < A ≤ B < ∞ exist with A‖f‖2 ≤

∑
λ |〈f, ψλ〉|2 ≤ B‖f‖2 for all

f ∈ H and is called tight, if A = B. The basic operators associated with frames
are the analysis and synthesis operators given by (CΨf)[λ] = 〈f, ψλ〉 and DΨ c =∑
λ cλψλ, for all f ∈ H and (cλ) ∈ `2(Z), respectively. Their concatenation

SΨ = DΨCΨ is referred to as the frame operator. Any frame admits a, possibly
non-unique, dual frame, i.e. a frame Ψd such that I = DΨdCΨ = DΨCΨd . The
most widely used dual is the so called canonical dual that can be obtained by
applying the inverse frame operator S−1Ψ to the frame elements ψdλ = S−1Ψ ψλ.
When we prefer to have a tight system for both analysis and synthesis, we can

instead use the canonical tight frame Ψ t = (ψtλ)λ, defined by ψtλ = S
− 1

2

Ψ ψλ and
satisfying I = DΨtCΨt . For algorithmical purposes, like considered in this paper,
sampled functions, i.e. H = `2(Z) are considered, for the concrete computations
finite dimensional signals are used, H = CL, see e.g. [2].

2.1 Frames and Object Oriented Programming

The notion of a frame fits very well with the notion of a class in programming
languages. A class is a collection of methods and variables that together forms
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a logical entity. A class can be derived or inherited from another class, in such a
case the derived class must define all the methods and variables of the original
class, but may add new ones. In the framework presented in this paper, the
frame class serves as the base class from which all other classes are derived.

A frame class is instantiated by the user providing information about which
type of frame is desired, and any additional parameters (like a window function,
the number of channels etc.) necessary to construct the frame object. This is
usually not enough information to construct a frame for CL in the mathematical
sense, as the dimensionality L of the space is not supplied. Instead, when the
analysis operator of a frame object is presented with an input signal, it deter-
mines a value of L larger than or equal to the length of the input signal and
only at this point is the mathematical frame fully defined. The construction was
conceived this way to simplify work with different length signals without the
need for a new frame for each signal length.

Therefore, each frame type must supply the framelength method, which
returns the next larger length for which the frame can be instantiated. For in-
stance, a dyadic wavelet frame with N levels only treats signal lengths which are
multiples of 2N . An input signal is simply zero-extended until it has admissible
length, but never truncated. Some frames may only work for a fixed length L.

The frameaccel method will fix a frame to only work for one specific space
CL. For some frame types, this allows precomputing data structures to speed up
the repeated application of the analysis and synthesis operators. This is highly
useful for iterative algorithms, block processing or other types of processing
where a predetermined signal length is used repeatedly.

Basic information about a frame can be obtained from the framebounds

methods, returning the frame bounds, and the framered method returning the
redundancy of the frame.

2.2 Analysis and Synthesis

The workhorses of the framework are the frana and frsyn methods, providing
the analysis CΨ and synthesis operators DΨ of the frame Ψ . These methods
use a fast algorithm if available for the given frame. They are the preferred
way of interacting with the frame when writing algorithms. However, if direct
access to the operators are needed, the framematrix method returns a matrix
representation of the synthesis operator.

For some frame types, e.g. filterbank and nsdgt, the canonical dual frame
is not necessarily again a frame with the same structure, and therefore it cannot
be realized with a fast algorithm. Nonetheless, analysis and synthesis with the
canonical dual frame can be realized iteratively. The franaiter method imple-
ments iterative computation of the canonical dual analysis coefficients using the
frame operator’s self-adjointness via the equation 〈f,S−1φλ〉 = 〈S−1f, φλ〉. More
precisely, a conjugate gradients method (pcg) is employed to apply the inverse
frame operator S−1 to the signal f iteratively, such that the analysis coefficients
can be computed quickly by the frana method. Note that each conjugate gradi-
ents iteration applies both frana and frsyn once. The method frsyniter works
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in a similar fashion to provide the action of the inverse of the frame analysis op-
erator. Furthermore, for some frame types the diagonal of the frame operator
S can be used as a preconditioner, providing significant speedup whenever the
frame operator is diagonally dominant.

While both methods franaiter and frsyniter are available for all frames,
they are recommended only if no means of efficient, direct computation of the
canonical dual frame exists or its storage is not feasible. Their performance is
highly dependent on the frame bounds and the efficiency of frana and frsyn

for the frame type used.

3 Filters and Filterbanks
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Fig. 1: Two redundant signal representations of the same signal, an excerpt of the
glockenspiel test signal. The figure on the left shows a classical spectrogram with
a linear frequency scale, while the figure on the right shows an ERBlet transform,
where the centre frequencies are equidistantly spaced on the ERB-scale and the
bandwidth of the channels are constant if measured in ERB.

Filterbanks are more general constructions than Gabor frames, allowing for
independent filters in each frequency channel. The output coefficients c of an
M -channel filterbank is given by

cm (n) =

L−1∑
l=0

f (l) g (a(m)n− l) , (1)

If the same time-shift a = a(m) is used across all channels, the filterbank is said
to be uniform [7]. Uniform filterbank frames have the advantage that canoni-
cal dual and tight frames are again uniform filterbanks, making perfect recon-
struction filter construction somewhat easier. On the other hand, the uniformity
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usually means than too many coefficients are kept for subband channels with a
small bandwidth.

Another approach to filterbank inversion is to construct the filterbank in such
a way that it becomes a painless frame [10]. A painless frame has the property
that its frame operator is a diagonal matrix. This makes it easy to find the
canonical dual and tight frames, and in the case of painless filterbanks they
are again painless filterbanks. A filterbank is painless if the filters are strictly
bandlimited with a bandwidth (in radians) that is less than or equal to 2π/a(m).

In a general filterbank, the user must provide filters to cover the whole fre-
quency axis, including the negative frequencies. For users working with real-
valued signals only, a real filterbank construction exists in LTFAT. These con-
structions work as if the filterbank was extended with the conjugates of the given
filters. They work entirely similar as the real valued Gabor frames.

ERBlets [28] is a family of perfect reconstruction filterbanks with a frequency
resolution that follows the ERB-scale [19]. The ERBlets are included in LTFAT
through a routine that generates the correct filters and downsampling rates. To
aid researchers working with auditory signal processing, the toolbox contains
a small collection of routines to generate the most common auditory scales,
range compression and specialized auditory filters. An highly redundant ERBlet-
representation of a common test signal is shown on Figure 1b, to create an
auditory “spectrogram”.

4 Gabor Analysis: Linear Frequency Scales

The Discrete Gabor Transform (DGT) with M channels, time-shift of a and
window function g ∈ CL is given by

c(m,n) =

L−1∑
l=0

f (l) g (l − na) e−2πiml/M ,

where m = 0, . . . ,M−1 and n = 0, . . . , L/a. An overview of the theory of Gabor
frames can be found in [21]. The toolbox supports two types of Gabor systems:
the normal type dgt and a type dgtreal which only works for real-valued signals.
This type of frame simply returns the coefficients of the positive frequencies in
the time-frequency plane. For practical applications it is a convenient way of
not having to deal with the redundant information in the negative frequencies.
An highly redundant DGT-representation of a common test signal is shown on
Figure 1a, this is simply a normal spectrogram.

4.1 The Discrete Wilson Transform and the MDCT

The wilson frame type represents a type of time-frequency basis known as a
Wilson basis [12]. Wilson bases were proposed as substitutes for Gabor frames,
because of the impossibility of constructing Gabor systems that would be simul-
taneously generated using well-behaved windows, and bases of the considered
signal spaces.
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A Wilson basis is formed by taking linear combinations of appropriate basis
functions from a Gabor frame with redundancy 2, [6]. Essentially Gabor atoms
of positive and negative frequencies are combined, with suitable fine tuning of
their phases. This remarkable construction turns a tight Gabor frame into an
real, orthonormal basis, or turns a non-tight Gabor frame into a Riesz basis
(corresponding to a bi-orthogonal filterbank). In [25] this system is described as
a “linear phase cosine modulated maximally decimated filter bank with perfect
reconstruction”.

The MDCT (modified discrete cosine transform) is another substitute for the
non-existent well localised Gabor bases that has become extremely popular re-
cently for its numerous applications, in audio coding for instance [27,31,30]. Both
Wilson and MDCT bases are variations of the same construction, the notable
difference being that the basis vectors of a Wilson basis with M channels are
centered on the M roots of unity in frequency, while the MDCT basis functions
are centered in between.

The coefficients c ∈ CM×N computed by the MDCT of f ∈ CL are given by:
For m+ n even:

c (m,n) =
√

2

L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (2)

For m+ n odd:

c (m,n) =
√

2

L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (3)

MDCT coefficients of a common test signal are shown on Figure 2a.

4.2 Adaptable Time Scale

Non-stationary Discrete Gabor Systems (NSDGS) [5] is a generalization of Ga-
bor frames, where window and time-shift are allowed to change over time, but
the frequency channels are always placed on a linear scale (through the proper
application of a Discrete Fourier Transform).

Similar to filterbanks, an NSDGT must be either uniform or painless to a
have a fast linear reconstruction. A uniform NSDGS has the same frequency
resolution for all time-shifts and a painless NSDGT always has a window length
that is less than or equal to the corresponding number of channels. In these
cases, the dual and tight systems are again NSDGTs. As for Gabor systems, the
real-valued NSDGT provides only the positive frequencies of the DFT.

NSDGTs are usefull for adapting the time and frequency resolution over time,
for instance for tracking the pitch changes in a voice or musical signal.

5 Wavelet Analysis: Logarithmic Frequency Scale

The newly added wavelet module extends the one-dimensional time-frequency
signal processing capabilities of the toolbox. The module is intended to be in-
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Fig. 2: Two non-redundant signal representations of the same signal, a piece
of the glockenspiel test signal. The figure on the left shows the output from a
Modified Discrete Cosine Transform with 64 channels, while the figure on the
right shows a Discrete Wavelet transform with a depth of J = 10. The MDCT
has a linear, while the DWT has a logarithmic frequency scale.

tuitive, self-contained (in a sense that all dependencies are within the LTFAT
toolbox) and compatible with some of the existing routines. The term wavelets
should be understood vaguely in this context, because in the discrete wavelet
transform setting the routines in the Wavelet module are capable of calculating
all transforms build upon and extending the basic iterated two-channel filter-
bank scheme (Mallat’s algorithm [26]) such as Framelets [11], dual-tree CWT
[35], M-band wavelets [24] and even more complex constructions.

Note that the discrete wavelet transform routines can be directly used for
framelet-type transforms with an arbitrary number of filters in the basic iteration
filterbank. Building custom wavelet filterbank trees including any tree shape and
different elementary filterbanks is also possible. A smooth transition between
the custom wavelet filterbank trees and the non-uniform non-iterated identical
filterbanks is another feature of the module.

5.1 The Discrete Wavelet Transform (DWT)

The DWT provides a multiresolution decomposition into J octaves of the discrete
signal f ∈ `2(Z) in terms of coordinates in a basis given by

f(n) =

J∑
j=1

∑
k∈Z

dj(k)g̃j(n− 2jk) +
∑
k∈Z

aJ(k)h̃J(n− 2Jk), (4)

where g̃j is the synthesis wavelet sequence and h̃J is the synthesis scaling se-
quence. The wavelet (detail) coefficients dj(k), for j = 1, . . . , J and scaling (ap-
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proximation) coefficients aJ(k) are given by

dj(k) =
∑
n

f(n)g∗j (n− 2jk) (5)

and
aJ(k) =

∑
n

f(n)h∗J(n− 2Jk) (6)

respectively, where g∗j (n) is the complex conjugate of the analysis wavelet se-
quence and h∗J(n) is the complex conjugate of the analysis scaling sequence. The
analysis sequences are related in such a way that they are built from the two
suitably designed half-band elementary filters g1(n) (high-pass, also referred to
as the discrete wavelet) and h1(n) (low-pass) as follows

hj+1(n) =
∑
k

hj(k)h1(n− 2k), (7)

gj+1(n) =
∑
k

gj(k)h1(n− 2k). (8)

The same procedure holds for the synthesis sequences but with the different
elementary filters g̃1(n) and h̃1(n). Perfect reconstruction is possible if the ele-
mentary filters have been suitably designed. The equations (7),(8) are in fact an
enabling factor for the well-known Mallat’s algorithm (also known as the fast
wavelet transform). It comprises of an iterative application of the time-reversed
elementary two-channel FIR filter bank followed by a factor of two subsampling

dj+1k(k) = (aj ∗ g1(· − n))↓2 (k), (9)

aj+1(k) = (aj ∗ h1(· − n))↓2 (k), (10)

make where ∗ is the convolution operation and a0 = f . The iterative application
of the elementary filterbank forms a tree-shaped filterbank, where just the low-
pass output is iterated on. The signal reconstruction from the coefficients is then
done by applying a mirrored filterbank tree using the synthesis filters g̃1(n) and
h̃1(n).

In practice when f ∈ CL, the signal boundaries have to be taken into ac-
count. Usually the periodic extension is considered (which means the convolu-
tions (9),(10) are circular), which requires L to be an integer multiple of 2J . In
this case, the number of coefficients is halved with each iteration and the overall
coefficient count is equal to L. The approach to considering any other extension
(symmetric, zero-padding, etc.) exploits the fact that the filters are FIR and
thus the information about the signal extensions can be saved in the additional
coefficients. The coefficients are obtained by the full linear convolution with (now
causal) filters. The resulting wavelet representation is called expansive because
the number of coefficients at level j becomes Lj = b2−jL + (1 − 2−j)(m − 1)c
[34], where m is the length of the filters, with no restrictions on L.

DWT coefficients of a common test signal are shown on Figure 2b.
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5.2 General Filterbank Trees

The DWT is known to have several drawbacks. First, it is merely 2J -shift in-
variant, which becomes a burden in denoising schemes. Secondly, the critical
subsampling introduces aliasing which is supposed to be cancelled by the syn-
thesis filterbank. Provided some modification of the coefficients has been done,
the aliasing may no longer be compensated for. Finally, the octave frequency res-
olution may not be enough for some applications. The first two shortcomings can
be avoided by the undecimated DWT with a cost of a high redundancy and the
frequency resolution may be improved by the use of the wavelet packets, where
on the other hand the aliasing is an even greater issue. Several modifications of
the DWT filterbank tree were proposed to avoid the mentioned shortcomings
still maintaining the wavelet filter tree structure but using different numbers of
the elementary filters, adding parallel wavelet filter trees, alternating different
elementary filter sets etc. All these alternative constructions in both decimated
and undecimated versions are incorporated in the Wavelet module by means of
the general filterbank tree framework.

The framework also encompasses building custom wavelet packets and wavelet
packet subtrees, which differ from the DWT-shaped trees by allowing further re-
cursive decomposition of the high-pass filter output creating possibly a full tree
filterbank. The wavelet packet coefficients are outputs of each of the nodes in
the tree. Such a representation is highly redundant, but leaves of any admis-
sible subtree form a basis. The best subtree (basis) search algorithm relies on
comparing the entropy of the wavelet packet coefficient subbands.

5.3 CQT

Additionally, LTFAT provides the method cqt for perfectly invertible constant-
Q (CQ) filterbanks [22]. While conceptually reminiscent of Wavelet transforms,
CQ techniques use a much higher number of channels per octave, resulting in a
more detailed, redundant representation. The filters in a CQ transform are placed
along the frequency axis with a constant ratio of center frequency to bandwidth,
or Q-factor. Particularly interesting for acoustic signal processing, they provide a
much finer frequency resolution than classical Wavelet techniques and harmonic
structures are left invariant under a shift across frequency channels.

6 Operations on Coefficients

6.1 Frame multipliers

A frame multiplier [4] is an operator constructed by multiplying frame coeffi-
cients with a symbol m:

Mmf =

K−1∑
k=0

mk 〈f, Ψak 〉ψsk,
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(d) Effect of the multiplier using the inverse
symbol.

Fig. 3: Deleting/isolating object in a spectrogram using a frame multiplier. Val-
ues of the mask (symbol) on (b) are between 0 (white) and 1 (black). The results
on (c) and (d) are obtained by an analysis of the outcome of the multiplier op-
erator.

where Ψak and Ψsk are simply the kth elements of the analysis and synthesis
frames, respectively. The analysis and synthesis frames need not be of the same
type, but they must have the exact same redundancy. The method framemul is
the basic method that applies a frame multiplier, given an appropriate frames
and a symbol. Its adjoint can be computed by framemuladj, useful for iterative
algorithms.

Figure 3 shows an example of an effect of a frame multiplier on the glock-
enspiel test signal using the CQT frame (and its dual) producing coefficients as
shown on Figure 3a and using symbol shown on Figure 3b and its inverse.

Figure 4 shows an example of editing the CQT spectrogram in order to
isolate and transpose (two semitones up) a separate harmonic structure. Three
separate masks are used: 4c to isolate transient part of the structure, 4d to isolate
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Fig. 4: Transposition of a single harmonic structure of the test signal glockenspiel.

harmonic part of the structure and 4e to remove the structure to be replaced
with the transposed version. The result of the masking operation is shown on
4f, 4g and 4h respectively. The only modification done is a frequency shift of
the harmonic part 4f by 8 bins upwards. The transient part is left as is to avoid
phasing effects. The inverse transform is applied to the element-wise sum of the
transient, the remainder and the modified harmonic coefficients layers. The CQT
spectrogram of the result is shown on 4b.

The CQT used in both examples was defined for the frequency range 50 Hz
– 20 kHz with 48 bins per octave.
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Sound examples can be found at http://ltfat.sourceforge.net/notes/

022.

6.2 Non-linear Analysis and Synthesis
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Fig. 5: The figure on the left shows a spectrogram of the test signal greasy. The
figure on the right shows the difference between the phase of a STFT of the
original signal, and the phase of the STFT of a reconstructed signal obtained by
the Griffin-Lim algorithm.

Reconstruction from magnitude only: For a generic frame more than 4
times redundant, it has been shown in [1] that a signal can be reconstructed
from the magnitude of its coefficients. A classical method for finding a solution
to this problem is the Gerchberg–Saxton algorithm, [18] originally developed
for image diffraction. For the short-time Fourier transform, a similar algorithm
by Griffin and Lim was proposed in [20]. The frsynabs method attempts to
reconstruct a signal from the magnitude of the given frame coefficients using the
Griffin-Lim algorithm or more recent algorithms [13,29]. An example is shown
on Figure 5. Theoretically, the algorithm should reproduce the original phase,
up to a single, global phase shift, instead one obtains a pattern of local regions
of constant phase shifts like the one visible on 5b. This phenomenon is due to
the numerical limitations and the finite running time of the algorithm.

Separation of tonal and transient parts: Another nonlinear approach to
analysis is searching for a sparse coefficient representation of the input sig-
nal. The franalasso achieves this by means of a LASSO method [9] to min-
imize the l1-norm of the coefficients. Alternatively, the group LASSO method
franagrouplasso [23] can be used to sparsify either transients or tonal com-

http://ltfat.sourceforge.net/notes/022
http://ltfat.sourceforge.net/notes/022
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Fig. 6: Splitting of a piece of the glockenspiel test signal into transient and har-
monic parts by use of the group LASSO method and and two MDCT sys-
tems with 256 and 32 channels, respectively. These figures are reproduced by
demo audioshrink.

ponents of a frame representation. An example is shown on Figure 6. For more
information on that refer to [3].

7 Block-processing

The unified LTFAT block-processing framework allows supported transforms to
be carried out on blocks of the input data. The output blocks can be assembled
to generate the result. Using the chosen transform type, the input data block is
first analyzed, producing the transform coefficients and then synthesized. During
the process, the coefficients in the transform domain are free to be modified.
However, block synthesis using the modified coefficients can introduce audible
blocking artefacts due to the possible long/infinite analysis filter time-domain
supports. Therefore, the transform calculations need to be done carefully or
even modified to avoid or at least compensate for the blocking artefact. The
general approach used in the framework exploits overlapped “slicing” windows
introduced in [22], originally for the CQT transforms. The disadvantage of this
approach is that the coefficient processing algorithms have to take into account
the fact that the coefficients reflects the shape of the slicing window. The blocking
artefacts can be avoided completely when working with transforms using finite
filters such as DWT, DGT with finite-length windows and FIR filterbanks in
general. The price to pay is an increased processing delay roughly equal to the
longest filter length.

For a solution of this problem the SegDWT [33] algorithm employs an overlap-
save principle for the analysis part and an overlap-add principle for the synthesis
part. Simply put, prior to the analysis, it extends the segment from the left side
using the previous samples. This extension ensures that after the analysis, the
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obtained coefficients are exactly the ones one would get analyzing the whole in-
put signal and picking up just those coefficients belonging to the processed block.
Because of this feature, any coefficient processing algorithm can be applied with
the same impact as if the same algorithm was applied to coefficients without
dividing the data into blocks at all. The reconstructed segments have the length
of the extended analyzed ones and the overlapping parts are simply added. As
for the SegDWT algorithm itself, the left extension length required prior to the
analysis of a given block is

L(Sn) = r(J) + (Sn mod 2J), (11)

where J stands for the number of the wavelet filterbank iterations, Sn for first
sample index of the segment n in the global point of view and r(J) = (2J −
1)(m−2), where m is the wavelet filter length. Note that the SegDWT algorithm
accepts any block size s (up to a minimum length s = 2J) and the block sizes
can even vary among each other. After processing the wavelet coefficients and
application of the inverse Mallat’s algorithm, the last L(Sn + s) samples should
be saved to be added to the respective reconstructed samples of the following
block. In case L(Sn + s) > s, additional and more complex buffering have to be
employed. The algorithm delay is r(J) samples for block lengths restricted to
values s = k2J , k = 1, 2, 3, . . . and r(J) + 2J − 1 otherwise.

The LTFAT block-processing framework combined with suitable open-source
audio I/O libraries, like Portaudio http://www.portaudio.com/ and Playrec
http://www.playrec.co.uk/ allows for the true real-time audio stream pro-
cessing in Matlab/Octave. The libraries provide interfaces for the cross-platform
non-blocking audio recording and playback. Such processing requires the trans-
form routines to be fast enough to deliver the processed blocks on time to assure
gapless playback. Not only for this purpose, many of the transforms included in
LTFAT were implemented separately in C programming language.

An accompanying contribution [32], presented at this conference, demon-
strates capabilities of the block-processing framework in the real-time setting.
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