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Key aspects of my talk

1 Linear operators and matrices

2 aj ,k = T (ek)(ej) = 〈ej ,T (ek)〉Cm ;

3 continuous variables: integral operators:

Tf (x) =

∫
Rd

K (x , y)f (y)dy .

4 Identity with K (x , y) = δx(y) = δ(y − x) (!sifting);

5 Can we have K (x , y) = δy (T (δx ))??

6 indirect description: T (f )(g) =
∫
R2d K (x , y)f (y)g(x)dydx ;

7 the Schwartz kernel theorem using S(Rd) and S ′(Rd);

8 The Banach Gelfand Triple (S0,L
2,S ′0)(Rd);

9 The Idea of Conceptual Harmonic Analysis
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Function Spaces for Fourier Analysis

Most of the mathematical books on Fourier analyis first introduce
various Lebesgue spaces, i.e. the space

(
L
p(Rd), ‖ · ‖p

)
, with their

natural norm, for 1 ≤ p ≤ ∞.
Among them of course

(
L

2(Rd), ‖ · ‖2

)
is the most important,

because it is a Hilbert space with respect to the usual scalar
product

〈f , g〉
L

2 :=

∫
Rd

f (x)g(x)dx .

For 1 ≤ p <∞ the dual space can be determined in a similar way
as Lp

′
(Rd), with 1/p + 1/p′ = 1. In particular there is a natural

identifcation (
(
L

1(Rd), ‖ · ‖1

)
)∗ =

(
L
∞(Rd), ‖ · ‖∞

)
.
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Convolution and Fourier Transforms, Schwartz spaces

There are various natural reasons for using these function spaces.
First of all Lebesgue integration rules imply that they are Banach
spaces, so in fact one could define them (for p <∞) as
completions of the space Cc(Rd) of compactly supported,
continuous complex-valued functions functions with respect to the
p-norm (

∫
Rd |f (x)|pdx)1/p.

For example one can define convolution within
(
L

1(Rd), ‖ · ‖1

)
:

[f ∗ g ](x) =

∫
Rd

g(x − y)f (y)dy , x ∈ Rd a.e.;

and satisfies

‖f ∗ g‖
L

1 ≤ ‖f ‖
L

1‖g‖
L

1 , f , g ∈ L1(Rd).

Hans G. Feichtinger, Univ. Vienna & Charles Univ. Prague hans.feichtinger@univie.ac.at www.nuhag.euA Banach space version for the kernel theorem describing linear operators



History Function Spaces Wiener’s algebra Operators and conventions STFT Def. The Segal algebra SO(Rd) Properties of SORd Basic Properties of SORd II The Space of Distributions Applications Banach Gelfand Triples (in Gabor Analysis) Kernel Theorem

Notations and Conventions

Let us collect here the normalizations of the Fourier transform and
relevant transformations of function spaces.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt. (1)

The inverse Fourier transform (resp. Fourier synthesis) then has
the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (2)

which is valid at least for those continuous, integrable functions
which have a Fourier transform f̂ ∈ L1(Rd).
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Fourier Transform and Estimates

There are some simple estimates, the so-called Riemann-Lebesgue
Lemma, with

‖f̂ ‖∞ ≤ ‖f ‖1, f ∈ L1(Rd),

and Plancherel’s Theorem describes the FT as a unitary operator
on
(
L

2(Rd), ‖ · ‖2

)
:

‖f ‖
L

2 = ‖f̂ ‖
L

2 , f ∈ L2(Rd),

although in this context the inverse Fourier transform cannot be
applied in a pointwise (a.e.) sense, using Lebesgue integrals.
By complex interpolation one obtains the Hausdorff-Young
theorem, valid for any p ∈ [1, 2] (only):

‖f̂ ‖
L
p ′ ≤ ‖f ‖p, f ∈

(
L
p(Rd), ‖ · ‖p

)
.

Hans G. Feichtinger, Univ. Vienna & Charles Univ. Prague hans.feichtinger@univie.ac.at www.nuhag.euA Banach space version for the kernel theorem describing linear operators



History Function Spaces Wiener’s algebra Operators and conventions STFT Def. The Segal algebra SO(Rd) Properties of SORd Basic Properties of SORd II The Space of Distributions Applications Banach Gelfand Triples (in Gabor Analysis) Kernel Theorem

Disadvantages of Lebesgue spaces

One of the disadvantages of the scale of spaces
(
L
p(Rd), ‖ · ‖p

)
,

1 ≤ p ≤ ∞ is the fact that these space are not contained in each
other, for any pair of different parameters!

As mentioned the inverse Fourier transform cannot be described by
Lebesgue integration in FL1(Rd) (the image of L1(Rd) within
C0(Rd)) or L2(Rd). In distribution theory the Schwartz space

S(Rd) of rapidly decreasing functions is the starting points (any
partial derivative of f ∈ S(Rd) is decaying faster than any inverse
of a polynomial). It is a nuclear Frechet space with the natural
system of semi-norms.
The dual space (continuous linear functionals) S ′(Rd) is called
the (Schwartz) space of tempered distributions.
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Fourier transform for W (L1, `2)(Rd)

Figure: xxUUUUU

Hans G. Feichtinger, Univ. Vienna & Charles Univ. Prague hans.feichtinger@univie.ac.at www.nuhag.euA Banach space version for the kernel theorem describing linear operators



History Function Spaces Wiener’s algebra Operators and conventions STFT Def. The Segal algebra SO(Rd) Properties of SORd Basic Properties of SORd II The Space of Distributions Applications Banach Gelfand Triples (in Gabor Analysis) Kernel Theorem

BUPUs: Bounded Uniform Partitions of Unity

100 200 300 400

0

0.2

0.4

0.6

0.8

1

spline of degree 1

100 200 300 400

0

0.2

0.4

0.6

0.8

1

spline of degree 2

100 200 300 400

0

0.2

0.4

0.6

0.8

1

spline of degree 3

100 200 300 400

0

0.2

0.4

0.6

0.8

1

spline of degree 4

Figure: B-spline BUPUs of variable order 1, 2, 3, 4
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The relevant space: Wiener’s Algebra

It has turned out (there is meanwhile a long list of publications on
the subject) that the most natural and simple condition on ϕ
which allows to provide such estimates is in terms of Wiener’s
algebra

(
W (C0, `

1)(Rd), ‖ · ‖W
)
.

This space (of bounded and continuous) functions on Rd can be
described roughly as the linear space of all absolutely Rieman
integrable functions, resp. the space of all continuous functions
with finite upper Riemannian sum.

A sufficient condition for a continuous function f on Rd is:

|f (x)| ≤ C (1 + |x |)−(d+ε), x ∈ Rd .
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The relevant space: Wiener’s Algebra II

Among the main reasons, why Wiener’s algebra is so important, we
can identify these two most important ones:

1 The atomic decomposition: Every f ∈W (C0, `
1) is the

absolutely convergent sum of functions (in
(
C0(Rd), ‖ · ‖∞

)
)

of functions with support in sets of the form of xn + Q
(e.g. in the unit cube Q = [0, 1]d);

2 The convolution relations between the more general Wiener
amalgam spaces and Wiener’s algebra, e.g.

W (M , `p) ∗W (C0, `
1) ⊂W (C0, `

p).
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Recalling the concept of Wiener Amalgam Spaces

Wiener amalgam spaces are a generally useful family of spaces
with a wide range of applications in analysis. The main motivation
for the introduction of these spaces came from the observations
that the non-inclusion results between spaes

(
L
p(Rd), ‖ · ‖p

)
for

different values of p are either of local or of global nature. Hence it
makes sense to separate these to properties using BUPUs.

Definition

A bounded family Ψ = (ψn)n∈Zd in some Banach algebra
(A, ‖ · ‖A) of continuous functions on Rd is called a regular
Uniform Partition of Unity if ψn = Tαnψ0, n ∈ Zd , 0 ≤ ψ0 ≤ 1,
for some ψ0 with compact support, and∑

n∈Zd

ψn(x) =
∑
n∈Zd

ψ(x − αn) = 1 for all x ∈ Rd .
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Added in May 2018, hgfei

The definition of general Wiener amalgam spaces (originally
called Wiener-type spaces, when introduced in 1980, see [3]) with
global component `q is the following one. Assume that a
(B, ‖ · ‖B) is a Banach space of (locally integrable) functions or
distributions such that the action of the elements of the BUPU is
uniformly bounded:

‖ψn · f ‖B ≤ CΨ‖f ‖B , ∀f ∈ B. (3)

Definition

W (B, `q) := {f ∈ B loc | ‖f ‖W (B,`q) := (
∑
k∈Zd

‖ψn · f ‖qB)1/q <∞}
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The usual boundedness

For the case of that (B, ‖ · ‖B) =
(
L
p(Rd), ‖ · ‖p

)
it is sufficient

to assume that the BUPU (ψn) is bounded in the pointwise sense,
e.g. that

0 ≤ ψn(x) ≤ 1, ∀x ∈ Rd , ∀n ≥ .1

For spaces B describing some smoothness it is typically a good
idea to assume that ψ = ψ0 belongs to some C (k) space of k times
continuously differentiable functions.
Finally the case (B, ‖ · ‖B) =

(
FLp(Rd), ‖ · ‖p

)
is of great interest

because it opens up the way to the definition of modulation spaces
(spaces which are of the form W (FLp, `q) on the Fourier
transform side). Since L1 ∗ Lp ⊂ Lp for 1 ≤ p ≤ ∞ (together with
the corresponding norm inequalities) it is enough assume that
ψ = ψ0 belongs to FL1(Rd), because translation is isometric in(
FL1(Rd), ‖ · ‖FL1

)
!
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Illustration of the B-splines providing BUPUs
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Recalling the concept of Wiener Amalgam Spaces II

Note that one can define the Wiener amalgam space W (B, `q)
by the condition that the sequence ‖f ψn‖B belongs to `q(Zd) and
its norm is one of the (many equivalent) norms on this space.

Different BUPUs define the same space and equivalent norms.
Moreover, for 1 ≤ q ≤ ∞ one has Banach spaces, with natural
inclusion, duality and interpolation properties.
Many known function spaces are also Wiener amalgam spaces:

L
p(Rd) = W (Lp, `p), same for weighted spaces;

Hs(Rd) (the Sobolev space) satisfies the so-called `2-puzzle
condition (P. Tchamitchian): Hs(Rd) = W (Hs , `

2),
and consequently for s > d/2 (Sobolev embedding) the
pointwise multipliers (V. Mazya) equal W (Hs , `

∞).
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Minimality of Wiener’s algebra

The Wiener amalgam spaces are essentially a generalization of the
original family W (Lp, `q), with local component Lp and global
q-summability of the sequence of local Lp norms.
In contrast to the “scale” of spaces

(
L
p(Rd), ‖ · ‖p

)
, 1 ≤ p ≤ ∞

which do not allow for any non-trivial inclusion relations we have
nice (and strict) inclusion relations for p1 ≥ p2 and q1 ≤ q2:

W (Lp1 , `q1) ⊂W (Lp2 , `q2).

Hence W (L∞, `1) is the smallest among them, and W (L1, `∞) is
the largest among them. The closure of the space of test
functions, or also of Cc(Rd) in W (L∞, `1) is just Wiener’s
algebra

(
W (C0, `

1)(Rd), ‖ · ‖W
)
, which was one of Hans

Reiter’s list Segal algebras. It can also be characterized as
the smallest of all solid Segal algebras.
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Time and Frequency Shifts

[Tt f ](x) = f (x − t), x , t ∈ Rd ; (4)

[Mωf ](x) = e2πiω·x f (x) x , ω ∈ Rd . (5)

These operators show the following behavior under the FT

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂ (6)

Combined, applying first the time-shift and then the frequency
shift we get the TF-shifts for λ = (t, ω) ∈ Rd × R̂d :

[π(λ)f ](x) = MωTt f (x) = e2πiω·t f (x − t). (7)
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Time and Frequency Shifts: on Time and Fourier Side
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Figure: Demonstrating the effect of shifts on time or frequency side
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A Summary of Operator Rules I

Although we will not use the theory based on Lebesgue integration
it is still good to know what the standard rules are on the standard
spaces, such as L1(Rd). We will come back to this space later on.

Operators
Tz Tz f (x) = f (x − z) translation by z
Ms Ms f (x) = e2πis·x f (x) modulation operator
Stρ Stρf (x) = ρ−d f (x/ρ) stretching operator
Dρ Dρf (x) = f (ρx) dilation operator

f X(x) = f (−x) flip operator

f ∗(x) = f (−x) L
1-involution

f (x) = f (x) conjugation operator
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A Summary of Operator Rules II

Translation and modulation are isometric on all the Lp-spaces,
1 ≤ p ≤ ∞. The stretching operator is isometric an(
L

1(Rd), ‖ · ‖1

)
, while Dρ is isometric on

(
Cb(Rd), ‖ · ‖∞

)
hence on

(
C0(Rd), ‖ · ‖∞

)
(or
(
L
∞(Rd), ‖ · ‖∞

)
).

Compatibility of Operators

Tz ◦Ms = e−2πis·zMs ◦ Tz translation with modulation
Ms(g ∗ f ) = Ms f ∗Msg modulation and convolution
Tx(h · f ) = Txh · Tx f translation and multiplication
Dρ(h · f ) = Dρh · Dρf dilation and multiplication
Stρ(g ∗ f ) = Stρf ∗ Stρg stretching and convolution
(f ∗ g)∗ = g ∗ ∗ f ∗ convolution and involution
Tz(f ∗ g) = [Tz f ] ∗ g convolution and translation

h · f = h · f multiplication and conjugation
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A Summary of Operator Rules III

We have for 1 ≤ p ≤ ∞

Operators
‖Tz f ‖p = ‖f ‖p translation by z
‖Ms f ‖p = ‖f ‖p modulation operator
‖Stρf ‖1 = ‖f ‖1 stretching operator
‖Dρf ‖∞ = ‖f ‖∞ dilation operator

Compatibility with Fourier Transform

F◦Ms = Ts ◦ F translation and Fourier
F◦ T−x = Ms ◦ F modulation and Fourier
F◦ Stρ = Dρ ◦ F stretching and Fourier
F◦ Dρ = Stρ ◦ F stretching and Fourier

F(f ∗) = f̂ . involution and Fourier
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A Summary of Operator Rules IV

We also have a couple of adjointness relationship (adjoint
operators in the sense of the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
an

its standard scalar product, given by 〈f , g〉 =
∫
Rd f (x)g(x)dx .

For example T ′x = T−x ,M
′
s = M−s , and Dρ

′ = Stρ resp.
(equivalently) Stρ

′ = Dρ.
Sometimes also the L2-isometric dilated version is used (e.g. in
wavelet theory, which suggest this form of the scaling opeator:

Sρf (z) = ρ−d/2f (z/ρ), ρ 6= 0.

Then one has S ′ρ = S1/ρ (adjoint operator), and

‖Sρf ‖2 = ‖f ‖2, and supp(Sρf ) = ρ · supp(f ). (8)
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A Summary of Operator Rules V

Definition (Banach spaces of continuous functions on Rd)

Cb(Rd) := {f : Rd 7→ C, continuous and bounded, ...

with norm ‖f ‖∞ = supx∈Rd |f (x)| }

The spaces Cub(Rd) and C0(Rd) are defined as the subspaces of
Cb(Rd) consisting of functions which are uniformly continuous
(and bounded) resp. decaying at infinity, i.e.

f ∈ C0(Rd) if and only if lim
|x |→∞

|f (x)| = 0.
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The Short-Time Fourier Transform

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);

We also need dilation operators:

[Stρg ](x) = ρ−dg(x/ρ), ρ 6= 0, (9)

and the value preserving dilation operator

[Dρh](x) = h(ρx), ρ 6= 0. (10)
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Creating Dirac sequences
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Figure: The stretching operator applied to a standard Gauss function,
with “compression” factors of 1 (blue),1/2 (green),1/4 (red).
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Summability kernels by dilation

-4 -3 -2 -1 0 1 2 3 4
D  applied to Gauss function,  = 1; 1/2; 1/4; 1/16 (black)
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Figure: Dilation corresponding to this on the Fourier transform side, for
ρ→ 0, exactly: ρ = 1 (blue), 1/2 (green), 1/4 (red), 1/16 (black).
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The Main Subject of the Course

The main subject of this course will be a triple of Banach spaces,
namely (S0,L

2,S ′0)(Rd), or a so-called Banach Gelfand Triple or
rigged Hilbert space, because it is the (usual) Hilbert space(
L

2(Rd), ‖ · ‖2

)
, “surrounded” by a pair of spaces, namely the

Banach space of (continuous and Riemann integrable) test
functions

(
S0(Rd), ‖ · ‖S0

)
and it dual (S ′0(Rd), ‖ · ‖S ′0 ). Thus

S0(Rd) ↪→ L
2(Rd) ↪→ S

′
0(Rd) (11)

with two continuous embeddings, and density of S0(Rd) in(
L

2(Rd), ‖ · ‖2

)
and w∗-density of S0(Rd) or L2(Rd) in S ′0(Rd),

i.e. for any σ ∈ S ′0(Rd) there exists a sequency of test functions
(hn) in S0(Rd), such that for any given g ∈ S0(Rd) on has∫

Rd

g(x)hn(x)dx → σ(g), for n→∞.
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The Overall Perspective

We could give longer courses on the following goals:

Motivate the necessity (originally coming from applications) of
allowing objects which are not “proper functions”, like the
so-called Dirac function δ(t) or δ0.

Go through the technicalities of topological vector spaces and
explain the concept of S ′(Rd), the tempered distributions and
then work within that larger reservoir;

Doing things from scratch and provide all the functional
analytic details we would have a solid basis but would not get
far enough to present interesting applications;

INSTEAD I plan to provide BACKGROUND
information, BASIC FACTS and describe TYPICAL
APPLICATION SITUATIONS.
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The Course Structure

I will try to follow roughly the following plan:

1 Provide a list of motivating properties, why do we need
Banach algebras of test functions;

2 Define then Banach space
(
S0(Rd), ‖ · ‖S0

)
(and similar spaces) and show its basic properties;

3 Derive the basic properties of the dual space S ′0(Rd);

4 Combine the three spaces to the Banach Gelfand Triple
(S0,L

2,S ′0)(Rd);

5 Show typical application situations, mostly in Fourier Analysis
and Gabor Analysis resp. time-frequency analysis (TFA).
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Comparison with the Number System I

The trio of “function spaces” can be compared with the trio of
number systems (fields of numbers), namely the chain

Q ⊂ R ⊂ C (12)

While there is a obvious distinction in their appearance it is also
clear how to interpret each of these objects as a subset of the
larger ones (e.g. rationals as periodic infinite decimal expressions),
and all the computations which can be done at a lower level can be
expanded in a natural unique way to the larger one.

The best example is multiplication and inversion, think of the
number 1/π2, or the claim that e2πi = 1. This is not as simple
as forming the multiplicative inverse of 3/4, which is 4/3
(observe transition from actual to symbolic computation!).
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!

Figure: Compare the situation with Q ⊂ R ⊂ C
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Comparison with the Number System II

There are many good reasons to extend the rational numbers
(which already are a field and thus allow for quite a variety of
operations) to the field of real numbers. It is lack of completeness
which is the problem with Q. It is easy to find a Cauchy sequence
of rationals qn, n ≥ 1 with the property that q2

n → 2 for n→∞.
BUT there is no rational number q such that q2 = 2!
The abstract way which allows to embed each metric space into a
complete metric space (where every Cauchy-sequence has a limit)
makes use of equivalence classes of Cauchy-sequences.
In the case of the rational number Q with the distance
d(q1, q2) = |q1 − q2| each such equivalence class contains
(more or less) exactly one infinite decimal expression.
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Comparison with Fourier Analysis for Engineers I

We will see that the use of certain symbols, specifically integrals
within an engineering context is better understood at the
“symbolic level”, e.g. the Fourier inversion formula.
Let us give an example: Sometimes the validity of the Fourier
inversion formula is justified by the (so-called) validity of the
following formula ∫ ∞

−∞
e2πistds = δ(t). (13)

Such a claim is of course very problematic to mathematicians
who try to take it literal and object to the existence of the integral
on the left hand side as a Lebesgue integral (the best possible
one), and the pointwise interpretation of the equality, because
the “delta-function” should not be described pointwise.
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Comparison with Fourier Analysis for Engineers II

Instead of just discarding the equation (13) as non-sense we can
take it as a symbol, but we have to learn to read it properly.

Expressions of the form
∫ ∞
−∞ h(s)e2πistds are generally useful and

allow us to regain g from its Fourier transform h = ĝ , given by
ĝ(s) =

∫ ∞
−∞ g(t)e−2πistdt, at least for (good, i.e.) test functions.

In this sense we can read (13) as the claim that F−1(1) = δ0, the
inverse Fourier transform of the function contant one is the Dirac
delta (distribution or measures).
This sounds reasonable if we assume that the forward or inverse
Fourier transform of objects like 1 of δ0 “exist”1, since the
convolution theorem suggest that for test functions f one has

δ0 ∗ f = f ⇔ δ̂0 · f̂ (clearly = 1 · f̂ ).

1Another problematic setting with the danger of drifting into
philosophical discussions about the existence of objects!
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Comparison with Fourier Analysis for Engineers III

So one of goals of this course will be to build a bridge between
engineering intuition and “symbolic manipulations” and strict
mathematical description, without going too deep into complicated
mathematical theory (involving Lebesgue integration, which does
not help here, or topological vector spaces, which are used as the
foundation to the Schwartz theory of tempered distributions,
indicating how they can be replaced to a large extent by Banach
space arguments.
Coming back to (13) let us indicate our plan:
First we have to extend the domain of the forward and inverse
Fourier transform from the space of test functions to a larger
vector space of generalized functions. Then we have to show that
δ0 and 1 correspond to each other! Finally we can verify the
validity of the convolution theorem in this more general context,
justifying claim (13) in a different way.
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Comparison with Fourier Analysis for Engineers IV

But the fact that the (generalized) inverse Fourier transform has
the (necessary) property of bringing 1 back to δ0 by itself does not
guarantee that the classical Fourier inversion formula is giving a
description of the inverse mapping to the Fourier transform, if we
change (and specifically expand) the domain.
This is like saying, that it is obvious that we have

π · 1

π2
· π = 1 inR.

Such a claim is trivial at the symbolic level, but would have to be a
bit complicated if realized “numerically” (or constructively).
We can justify formula (13) later on also by verifying that the
so-called w∗-w∗-continuity of the extended Fourier transform on
S
′
0(Rd) enforces that (13) is not only valid but characteristic for

the inverse (of the) Fourier transform!
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What can we learn from the Number Systems

Multiplication and division (correctly interpreted as inversion of the
multiplication for non-zero elements!), well defined on Q, can be
extended in a very natural way once we know a few things:

1 how to create the generalized objects from the given set of
object (e.g. infinite decimal expression viewed as sequences of
their approximations with finite precision);

2 how to embed the original structure into to new object,
including the algebraic properties (e.g. multiplication, or
Euclidean distances) in a compatible way !2

3 show how new objects are approximated by old ones;

4 extend the structures and demonstrate that the extended
structure is characterized by these natural properties.

2Like (3/4)2 = 9/16 = 0.5625 = 0.752.
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Papoulis comment on distribution theory

It is very interesting to read to introduction to the original version
of A. Papoulis on The Fourier Transforms and its Applications
(first published in 1962), one of the standard works for applied
Fourier Analysis, specifically for Engineers, in the second half of
the last century, see [11].
Note that at this time the theory of Schwartz distributions was still
quite fresh, that Papoulis argues that it is a powerful but a theory
which is too complicated for engineers. Note also that this book
has been written shortly before the time the FFT was even
invented (by Cooley and Tuckey, see [1]), which clearly has a deep
impact on modern (computational) Fourier Analysis.
Papoulis writes in his preface:
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Possible way to introduce Generalized Functions 1a

There are two different ways to introduce generalized functions.

The first one is through equivalence classes of sequences of test
functions, while the second one uses functional analytic ideas, i.e.
defines the space of distributions as a set of linear functionals on
some topological vector space. This means one takes all linear
functionals which respect the convergence (typically describe by
families of seminorms on the vector space), i.e. which are
continuous. We will follow this second approach, but with a simple
Banach space approach, where continuity can be expressed simply
by boundedness, the function σ has to satisfy |σ(f )| ≤ C‖f ‖S0 for
some C > 0 and all f ∈ S0(Rd).

The main advocate of the sequential approach is the
was J. Ligthill, whose book [9] appeared first in 1958.
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Benefits and Problems with the Sequential Approach 1b

It is clear that the sequential approach is modeled after the
construction of the real numbers R from the rationals Q, resp. by
applying the general concept of completion of metric spaces.
Unfortunately (unlike one has the infinite decimal representation
for R) the general situation does not allow to work with a specific
representative or a unique sequence of test functions, but one has
to work effectively with equivalence classes of so-called regular
(meaning “somehow convergent”) sequences.
This makes the handling in this approach quite involved and even
for simple (if not almost trivial statements) one has to work hard
(or leave the details to the reader, so that she/he is left with a lot
of work).
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Comments on the Approach by Duality, 2a

Aside from the fact that one has to make use of a few basic
principles from the theory of Banach (and perhaps Hilbert) spaces
the introduction of generalized functions, or perhaps better
distributions is to define them as linear spaces of linear functionals.
What is a bit less convenient at first sight is the necessity of
embedding ordinary functions into which can be done using the
Riemann integral (or Haar meausure), or more generally the
Lebesgue integral for the most general examples of regular
distributions (e.g. bounded measures with density in L1(Rd)).
We define the distribution induced by a function h on Rd via

σh(f ) =

∫
Rd

f (x) h(x)dx , (14)

i.e. by integration of the argument f ∈ S0(Rd) against h.
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Benefits of the Approach based on Duality, 2b

Aside from the fact that perhaps the view-point that signals ARE
IN SOME SENSE linear functionals, which can be measured,
without having necessarily a pointwise value (what about room
temperature as a function of time and space coordinates: we can
only measure some averages!) and pointwise defined functions are
perhaps more of an idealization (compare to concrete linear
functionals) one has several advantages from the duality approach.

First of all it is easy to verify completeness of the space of
distributions. Secondly one has in addition to the norm
convergence in the dual space also the so-called w∗-convergence.

We will see that with a couple of basic facts from linear
functional analysis we can prove quite a few things (partially
based on linear algebra considerations).
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depictured
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images), for 1 ≤ p ≤ ∞, and dense for p <∞.
Later on we will make use of the fact that

(
S0(Rd), ‖ · ‖S0

)
coincides with the Wiener amalgam space W (FL1, `1)(Rd).e In
fact it was introduced in this way by the author ([2], see [?]).
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Various Function Spaces

SINC

box

L2

L2

FL1

S0

FL1  L1

Figure: The usual Lebesgues space, the Fourier algebra, and
the Segal algebra S0(Rd) inside all these spaces
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space (B, ‖ · ‖B), which is densely
embedded into some Hilbert space H, which in turn is contained in
B
′ is called a Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 T is an isomorphism between B1 and B2.

2 T is [unitary] isomorphism between H1 and H2.

3 T extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!

Figure: Compare the situation with Q ⊂ R ⊂ C
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′ is space of pseudo-measures. One can
extend the classical Fourier transform to this space, and in fact
interpret this extended mapping, in conjunction with the classical
Plancherel theorem as the first unitary Banach Gelfand triple
isomorphism, between (A,L2,PM)(T) and (`1, `2, `∞)(Z).
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (15)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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Some concrete computations (M.DeGosson: Wigner
Transform)

For φ ∈ S(Rn) the short-time Fourier transform (STFT) Vφ with
window φ is defined, for ψ ∈ S ′(Rn), by

Vφψ(z) =

∫
Rn

e−2πip·x ′ψ(x ′)φ(x ′ − x)dx ′. (16)

The STFT is related to a well-known object from quantum
mechanics, the cross-Wigner transform W (ψ, φ), defined by

W (ψ, φ)(z) =
(

1
2π~
)n ∫

Rn

e−
i
~p·yψ(x + 1

2y)φ(x − 1
2y)dy . (17)

In fact, a tedious but straightforward calculation shows that

W (ψ, φ)(z) =
(

2
π~
)n/2

e
2i
~ p·xVφX√2π~

ψ√2π~(z
√

2
π~) (18)

where ψ√2π~(x) = ψ(x
√

2π~) and φX(x) = φ(−x);
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This formula can be reversed to yield:

Vφψ(z) =
(

2
π~
)−n/2

e−iπp·xW (ψ1/
√

2π~, φ
∨
1/
√

2π~)(z
√

π~
2 ). (19)

In particular, taking ψ = φ one gets the following formula for the
usual Wigner transform:

Wψ(z) =
(

2
π~
)n/2

e
2i
~ p·xVψ1(ψ2)(z

√
2
π~).

with ψ1 = ψX√
2π~ and ψ2 = ψ√2π~.
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Another reference is the book of K. Gröchenig [7], which contains
(in the terminology used there) in Lemma 4.3.1 the following
formula, using the convention gX(x) = g(−x):

W (f , g)(x , ω) = 2de4πixωVgXf (2x , 2ω). (20)

Charly (in [7]) also provides the following covariance property

W (TuMηf ) = Wf (x − u, ω − η). (21)

W (f̂ , ĝ)(x , ω) = W (f , g)(−ω, x). (22)

The Wigner approach to S0(Rd) is also used in [8].
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Usefulness of S0(Rd) in Fourier Analysis

Most consequences result form the following inclusion relations:

L
1(Rd) ∗ S0(Rd) ⊆ S0(Rd); (23)

FL1(Rd) · S0(Rd) ⊆ S0(Rd); (24)

(S ′0(Rd) ∗ S0(Rd)) · S0(Rd) ⊆ S0(Rd); (25)

(S ′0(Rd) · S0(Rd)) ∗ S0(Rd) ⊆ S0(Rd); (26)

S0(Rd)⊗̂S0(Rd) = S0(R2d). (27)

1 S0(Rd) is a valid domain of Poisson’s formula;

2 all the classical Fourier summability kernels are in S0(Rd);

3 the elements g ∈ S0(Rd) are the natural building blocks
for Gabor expansions;
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The Banach Gelfand Triple

The Banach Gelfand Triple (S0,L
2,S ′0)(Rd) is for many

applications in theoretical physics and engineering, but also for
Abstract Harmonic Analysis a good replacement for the Schwartz
Gelfand Triple (S,L2,S ′).

Lemma

(S ′0 ∗ S0) · S0 ⊆ S0, (S ′0 · S0) ∗ S0 ⊆ S0, (28)

Clearly
(
S0(Rd), ‖ · ‖S0

)
is a Banach space and NOT a nuclear

Frechet space, but still there is a kernel theorem!
The main exception are applications to PDE where S0(Rd) is not
well suited, but there is a family of so-called modulation spaces
which allows also to overcome this problem, and even go for the
theory of ultra-distributions, putting weighted L1-norms on the
STFT (see [7] for a first glimpse!).
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A large variety of characterizations

There is a large variety of characterizations of
(
S0(Rd), ‖ · ‖S0

)
and

(S ′0(Rd), ‖ · ‖S ′0 ) (see e.g. [8]).

For example, a tempered distribution in S ′(Rd) belongs to S ′0(Rd)
if and only if its STFT (well defined for g ∈ S(Rd)!) is a bounded
function. Norm convergence is equivalent to uniform convergence
of spectrograms, while w∗-convergence (!very important)
corresponds to uniform convergence over compact sets of the
corresponding STFTs. It is again independent of the choice of the
window, even any non-zero g ∈ S0(Rd) can be used here.
There are atomic characterizations, or characterizations via Wiener
amalgam spaces, for example

S0(Rd) = W (FL1, `1)(Rd).
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The Space S ′0(Rd) of distributions

In this section we will show that the dual space S ′0(Rd) is a quite
natural object, and that the Fourier transform can be extended in a
unique and natural way to S ′0(Rd), using w∗-convergence. Since
the space

(
S0(Rd), ‖ · ‖S0

)
is separable the restriction to sequences

is in fact well justified (as opposed to convergence of nets or filters
in general topological vector spaces).
First of all we start with a trivial remark: A linear functional
σ : f 7→ σ(f ) from

(
S0(Rd), ‖ · ‖S0

)
into (C, | · |) is continuous if

and only if it is bounded. In other words, it satisfies

‖fn − f0‖S0 → 0 for n→∞ ⇒ σ(fn − f0)→ 0 inC

if and only if there exists C > 0 such that

|σ(f )| ≤ C‖f ‖S0 ∀f ∈ S0(Rd). (29)
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The Space S ′0(Rd) of distributions

The minimal constant can be also characterized as

‖σ‖S ′0 = sup
f :‖f ‖S0

≤1
{|σ(f )|}. (30)

Making use of the atomic characterization of S0(Rd) one can show:

Theorem

For any nonzero g ∈ S0(Rd) the S ′0-norm is equivalent to the
sup-norm ‖Vg (σ)‖∞, in other words:
Norm convergence in (S ′0(Rd), ‖ · ‖S ′0 ) is the same as uniform
convergence at the spectrogram level.

Again using Wiener amalgams suggests (correctly) to identify the

dual space as S ′0 = W (FL1, `1)
′

= W (FL∞, `∞) ⊃W (M , `∞).
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w ∗-convergence in S ′0(Rd)

Thm. 8 suggests to look for a weaker concept of convergence
compared to norm convergence, because it will never be possible to
e.g. approximated a periodic function by compactly supported
ones, even if the norm is a relatively weak norm compared to the
ordinary Lp-norms.
The answer is of course provided by the w∗-convergence.
Recall that σ0 = w∗- limn→∞σn if and only if

lim
n→∞

σn(f ) = σ0(f ), ∀f ∈ S0. (31)

As a first observation note that ‖δ1/n − δ0‖S ′0 = 2 while
δ0 = w∗- limn→∞δxn for any sequence xn → 0 for n→∞.
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Characterizing w ∗-convergence and approximation

Note that a bounded sequence (σn)n≥1 in (S ′0(Rd), ‖ · ‖S ′0 ) is
w∗-convergent if and only if convergence takes place on a dense or
just total subset of

(
S0(Rd), ‖ · ‖S0

)
.

Thus for example is it enough to test the validity of (31) for any
compactly supported function f with f̂ ∈ L1(Rd), or for all the
band-limited functions in f ∈ L1(Rd).
The theory of Gabor frames on the other hand implies that it is
enough to verify pointwise convergence of the STFT with respect
to the Gaussian window g0(t) = e−π|t|

2
for all the lattice points of

any fixed lattice Λ of the form Λ = aZd × bZd with a · b < 1, i.e.

Vg0(σn)(λ)→ Vg0(σ0)(λ) for n→∞.

Comment: A closed subset of S0(Rd) is compact if and only if
the convergence takes place uniformly in `1(Λ).
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Interesting examples of w ∗-convergence

It is often the w∗-convergence (sometimes appearing in disguise)
which is used for handwaving arguments in Fourier Analysis.

1 One has limα→∞ttα = δ0 (as is easily verified by applying it
to compactly supported functions in S0(Rd));

2 The absolute Riemann-integrability of
f ∈ S0(Rd) ⊂W (C0, `

1)(Rd) implies that limβ→0β
dttβ = 1;

3 For any g ∈ S0(Rd) one has

limα→∞ ttα ∗ g = g .

4 The same relation on the Fourier transform (with β = 1/α) is
used to explain the form of the continuous Fourier transform
(by letting the “period go to infinity”).
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How can we DEFINE Generalized Functions

The theory of generalized functions is clearly supposed to allow
certain “objects” which are beyond the scope of the usual concept
of a pointwise well-defined functions f (or f (t) as engineers would
write in order to emphasize the character of the domain of f ).
The Dirac “function” δ(t) (engineering way of writing) is an
example, and is usually described as the limit of a sequency of
box-functions, with shrinking basis (to zero), and constant area 1.
In general there are two ways of defining linear spaces of
generalized function, or we will call them “distributions”3

3Even if they are not distributions in the classical setting, e.g. because they
are defined over LCA groups, without reference to differentiability.
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Overall Perspective, Versatile Tools

When it comes to applications it is like real life: We would like to
have the most universal and reliable tool at for a good price.
Translated into the scientific world: Even if mathematicians are
willing to create the most complicated and and fancy tools these
tools might not be used by other (more applied) scientist. If they
are lucky they may receive great respect, but this does not mean
that the applied scientist have the patience or skill or just
willingness to learn and then use such a tools.
Of course sometimes only complicated tools do the job and one
needs the top experts and specialists to tackle those few problems,
but the daily life one should ideally have a good equipment helping
the users to solve their problems themselves.
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Regularization of Distributions I

We have claimed in the introduction that distributions can be
approximated by test functions. In fact a good example is
tt= ttZd =

∑
k∈Zd δk , which is a well defined element of S ′0(Rd)

(it is even Fourier invariant, according to Poisson’s formula!).
It cannot be viewed as a regular distributions coming from any
possible test functions because it has two defects

First of all it is not a continuous function, because it is a sum
of Dirac measures;

Secondly it does not have decay at infinity, since all the
involved Dirac measures have the same coefficient 1.

Whenever we want to approximate (in fact in the w∗-sense) we
have to improve both the t local and the global properties of the
distribution!
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Regularization of Distributions II

There are various ways to improve the local and global properties.
Typically it is convolution by a test function which helps to
improve the local properties while pointwise multiplication by a test
function improves the decay at infinity, i.e. the global properties.
Let us therefore recall the two version of the dilation operatot that
will be useful for this purpose. One is the L1-norm preserving,
where the index describes the shrinkage or expansion of the
support, also stretching operator (for ρ > 1):

[Stρg ](x) = ρ−dg(x/ρ), ρ 6= 0, (32)

and the value preserving dilation operator

[Dρh](x) = h(ρx), ρ 6= 0. (33)
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Regularization of Distributions III

While the first is compatible with the structure of the Banach
convolution algebra

(
L

1(Rd), ‖ · ‖1

)
the second is compatible with

the pointwise structure of
(
C0(Rd), ‖ · ‖∞

)
or
(
FL1(Rd), ‖ · ‖FL1

)
(the Fourier algebra). We have in particular

‖Stρf ‖1 = ‖f ‖1 and ‖Dρh‖∞ = ‖h‖∞.

Stρ(g ∗ f ) = Stρ(g) ∗ Stρ(f )

Dρ(h · f ) = Dρ(h) · Dρ(f ).

Of course
(
S0(Rd), ‖ · ‖S0

)
is invariant with respect to any

automorphism of the underlying group, so in particular with
respect to both of these (commutative) dilation groups, but of
course not in the isometric sense (like Stρ on

(
L

1(Rd), ‖ · ‖1

)
and Dρ on

(
C0(Rd), ‖ · ‖∞

)
).
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Regularization of Distributions IV

The approximation of distributions requires the application of both
of these regularizes, in any order.
So let us look at the Product-Convolution (short: PC) operator

σ 7→ Stρg ∗ (Dρh · σ), for ρ→ 0.

Here g ∈ S0(Rd) should satisfy
∫
Rd g(x)dx = 1, while h ∈ S0(Rd)

is has to satisfy the condition h(0) = 1. Since Ŝtρf = Dρf̂ one
could be the (inverse) FT of the other. In a similar way one has
Convolution-Product (CP) operators of the form

σ 7→ Dρh · (Stρg ∗ σ), for ρ→ 0,

with the same conditions on g and h in S0(Rd).
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Regularization of Distributions V

So we finally just have to verify that these operators map in fact
(for fixed) ρ 6= 0 the space (S ′0(Rd), ‖ · ‖S ′0 ) into

(
S0(Rd), ‖ · ‖S0

)
,

even in the sense that a w∗-convergent and bounded sequence (or
net) in S ′0(Rd) with w∗- limσn = σ0 is mapped into a norm
convergent sequence within

(
S0(Rd), ‖ · ‖S0

)
.

Note that these operators act uniformly bounded (w.r.t. ρ) on
each of the spaces

(
S0(Rd), ‖ · ‖S0

)
,
(
L

2(Rd), ‖ · ‖2

)
and

(S ′0(Rd), ‖ · ‖S ′0 )!!
A similar behaviour (we call it a regularizing sequence for the
Banach Gelfand Triple (S0,L

2,S ′0)(Rd)) can be verified for the
partial sum operator for a Gabor expansion, with Gabor atom
g ∈ S0(Rd) and canonical dual (or minimal `2-norm coefficients) g̃
(which also automatically belongs to S0(Rd)).
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Typical Applied Questions

Let us thus list a couple of questions where Fourier Analysis has to
play a role and doing it properly may be appreciated even by very
applied persons from the engineering or physics community:

1 The theory of Translation Invariant Systems works with
convolution by the impulse response or alternatively with the
transfer function (i.e. multiplication on the Fourier transform
side);

2 The Shannon-Sampling Theorem, allowing to reconstruct
band-limited functions from regular samples at or above the
Nyquist rate; it is based on Poisson’s Formula;

3 Generalized Stochastic Processes can be seen as a
combination of distribution theory with classical stochastic
processes. They can be modelled as linear operators from
S0(Rd) to some Hilbert space H (of random variables).
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Sampling and Periodization on the FT side

The convolution theorem can then be used to show that sampling
corresponds to periodization on the Fourier transform side, with
the interpretaton that

tt· f =
∑
k∈Zd

f (k)δk , f ∈ S(Rd).

In fact, we have
t̂t· f = t̂t∗ f̂ = tt∗ f̂ .

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
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Recovery from Regular Samples: Shannon’s Theorem

If we try to recover a real function f : R→ R from samples, i.e.
from a sequence of values (f (xn))n∈I , where I is a finite or
(countable) infinite set, we cannot expect perfect reconstruction.
In the setting of

(
L

2(R), ‖ · ‖2

)
any sequence constitutes only set

of measure zero, so knowing the sampling values provides zero
information without side-information.
On the other hand it is clear the for a (uniformly) continuous
function, so e.g. a continuous function supported on [−K ,K ] for
some K > 0 piecewise linear interpolation (this is what MATLAB
does automatically when we use the PLOT-routine) is providing a
good (in the uniform sense) approximation to the given function f
as long as the maximal distance between the sampling points
around the interval [−K ,K ] is small enough.
Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions.
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A Visual Proof of Shannon’s Theorem
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Shannon’s Sampling Theorem

It is kind of clear from this picture that one can recover the
spectrogram of the original function by isolating the central copy
of the periodized version of f̂ by multiplying with some function ĝ ,
with g such that ĝ(x) = 1 on spec(f ) and ĝ(x) = 0 at the shifted
copies of f̂ . This is of course only possible if these shifted copies of
spec(f ) do not overlap, resp. if the sampling is dense enough (and
correspondingly the periodization of f̂ is a coarse one). This
conditions is known as the Nyquist criterion. If it is satisfied, or
supp(f ) ⊂ [−1/α, 1/α], then

f (t) =
∑
k∈Zd

f (αk)Tαkg(x), x ∈ Rd .
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Proof an extension of the Shannon Sampling Theorem

Although the Hilbert space is very nice we will often encounter
non-perfect situations, in the following respect:

the sampled function may not belong to L2(Rd) but rather
some Lp(Rd), or in some weighted Lp-space;

the function might not be strictly band-limited, but only
approximately, with “small tails” on the Fourier transform
side, e.g. f ∈ Hs(Rd), some Sobolev space;

the samples might not be regular, either due to jitter error, or
generically irregular sampled, perhaps with some outliers, so
that one has to perform scattered data approximation of the
underlying function f from the data (f (xi )).

In all these cases we should have suitable mathematical tools and
algorithms in order to analytically study the problem. As we will
see Wiener amalgam spaces are a highly appropriate tool.
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Band-limited functions in Lp(Rd)

Let us begin with the case of band-limited functions in Lp(Rd), for
some p ∈ [1,∞]. The first question is, what does it mean for the
Fourier transform to be zero outside some cube Q0? Especially for
p > 2 where the Hausdorff-Young inequality (implying that
FLp(Rd) ⊂ Lq(Rd), for 1/p + 1/q = 1)
Since Lp(Rd) ↪→ S

′
0(Rd) it is clear that the Fourier transform exists

in the sense of S ′0(Rd) and hence we assume that supp(f̂ ) ⊆ Q0.
If we want to cover the case p = 1 we should avoid the SINC
function (not in L1(Rd)!) but rather choose some function h in
S0(Rd) with ĥ(q) ≡ 1 on Q0 and ĥ(q + k/α) = 0 for k ∈ Zd \ {0},
for example some plateau-type function. Then

(tt1/α ∗ f̂ ) · h = f̂ ,

or by the the inverse Fourier transform, for g = CαF−1h ∈ S0(Rd):

f = (ttα · f ) ∗ g .

Hans G. Feichtinger, Univ. Vienna & Charles Univ. Prague hans.feichtinger@univie.ac.at www.nuhag.euA Banach space version for the kernel theorem describing linear operators



History Function Spaces Wiener’s algebra Operators and conventions STFT Def. The Segal algebra SO(Rd) Properties of SORd Basic Properties of SORd II The Space of Distributions Applications Banach Gelfand Triples (in Gabor Analysis) Kernel Theorem

Band-limited functions in Lp(Rd) II

But are all the infinite sums convergent, and are the limits (of their
partical sums) convergent in the given space

(
L
p(Rd), ‖ · ‖p

)
?

After all, the choice of g resp. h does not depend on the parameter
p ∈ [1,∞], but only on α and Q0 (as long as on has
Q0 ∩ k/α + Q0 = ∅ for k ∈ Zd , k 6= 0).
First of all we see that h · f̂ = f̂ for obvious reasons, or
equivalently h ∗ g = g for some g ∈ S0(Rd). Since we assume that
f ∈ Lp = W (L1, `p) this implies that one actually has

f = f ∗ g ∈W (L1, `p) ∗W (C0, `
1) ⊂W (C0, `

p)(Rd). (34)

Consequently the samples belong to `p(Zd), but it is better to
argue that ttα ∈W (M , `∞) and hence

ttα · f ∈W (M , `∞) ·W (C0, `
p) ⊂W (M , `p)(Rd). (35)
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Band-limited functions in Lp(Rd) III

Finally we prove the convergence of the Shannon sampling series:

(ttα · f ) ∗ g =

∑
k∈Zd

f (αk)δαk

 ∗ g =
∑
k∈Zd

f (αk)Tαkg . (36)

Since ttα · f ∈W (M , `p) the convergence in W (C0, `
p)(Rd), and

hence in
(
L
p(Rd), ‖ · ‖p

)
and uniformly follows from

W (M , `p)∗S0 ⊂W (M , `p)∗W (C0, `
1) ⊂W (C0, `

p)(Rd). (37)

For p =∞ minor modifications may apply (if f /∈ C0(Rd)).
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Band-limited functions in Lp(Rd) IV

We cannot go into details about the irregular case, but at least we
mention that instead of an orthonormal basis of shifte
SINC-functions one has a frame of shifted SINC functions
describing the situation, since

f (ti ) = f ∗ SINC (ti ) = 〈f ,TtiSINC 〉, i ∈ I .

For the case of irregular samples (f (ti )) of a band-limited function
in Lp(Rd) (with high enough density, depending only on Q0!) one
can write a Shannon-like series of the form Af =

∑
i∈I wiTtig for

well chosen adaptive weights (see [5]) and then goes on the prove

‖Af − f ‖W (C0,`
p) ≤ γ · ‖f ‖W (C0,`

p), for some γ < 1

and for all Q0 band-limited functions in Lp(Rd), so that Banach’s
fix point theorem can be applied to do the rest ([4]).

Hans G. Feichtinger, Univ. Vienna & Charles Univ. Prague hans.feichtinger@univie.ac.at www.nuhag.euA Banach space version for the kernel theorem describing linear operators



History Function Spaces Wiener’s algebra Operators and conventions STFT Def. The Segal algebra SO(Rd) Properties of SORd Basic Properties of SORd II The Space of Distributions Applications Banach Gelfand Triples (in Gabor Analysis) Kernel Theorem

Overall perspective

In this section we will explain how the setting of the Banach
Gelfand Triple (S0,L

2,S ′0)(Rd) can be used to formulate a number
of important general principles, most of which actually extend to
the setting of LCA (locally compact Abelian) groups, even if they
do not have arbitary fine lattices.
In many cases this setting allows for compact formulations of
natural statements, combined with a unified principle of proof!
The Fourier transform will be the prototypical example, the kernel
theorem for linear operators the other one, but there are many
more of these statements, also in connection with the theory of
Banach frames and Riesz projection bases.
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Fourier Transform as Banach Gelfand Triple Automorphism

First of all we can describe the Fourier transform on Rd as a
unitary Banach Gelfand Triple automorphism of (S0,L

2,S ′0)(Rd),
meaning that it is

well defined (and isometric) on
(
S0(Rd), ‖ · ‖S0

)
;

extending to a unitary automorphism of
(
L

2(Rd), ‖ · ‖2

)
;

with a unique w∗-w∗-extension to S ′0(Rd).

As you see the classical Lebesgue space (aside from the Hilbert
space

(
L

2(Rd), ‖ · ‖2

)
) do not play an important role now, because

we see the Fourier transform in a wider context than just being an
integral transform. Only the view that the Fourier transform
should be an integral transform suggest to choose

(
L

1(Rd), ‖ · ‖1

)
as a domain, but this is not good enough to find out that the
Fourier transform of a pure frequency is just a Dirac.
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which then is naturally embedded (and w∗dense
in) B ′ is called a Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 T is an isomorphism between B1 and B2.

2 T is [a unitary operator resp.] an isomorphism between H1

and H2.

3 T extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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A schematic description: the simplified setting

In our picture this simple means that the inner “kernel” is mapped
into the ”kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w∗)!
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The prototypical examples over the torus

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier
series. It is also not surprising in retrospect to see that the dual
space PM(T) = A(T)′, known as the space of pseudo-measures,
appears. One can extend the classical Fourier transform to this
space, and in fact interpret this extended mapping, in conjunction
with the classical Plancherel theorem as the first unitary Banach
Gelfand triple isomorphism, namely between (A,L2,PM)(T) and
(`1, `2, `∞)(Z).
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The KERNEL THEOREM for S(Rd)

The kernel theorem for the Schwartz space can be read as follows:

Theorem

For every continuous linear mapping T from S(Rd) into S ′(Rd)
there exists a unique tempered distribution σ ∈ S ′(R2d) such that

T (f )(g) = σ(f ⊗ g), f , g ∈ S(Rd). (38)

Conversely, any such σ ∈ S ′(R2d) induces a (unique) operator T
such that (38) holds.

The proof of this theorem is based on the fact that S(Rd) is a
nuclear Frechet space, i.e. has the topology generated by a
sequence of semi-norms, can be described by a metric which
turns S(Rd) into a complete metric space.
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The KERNEL THEOREM for S0 I

Tensor products are also most suitable in order to describe the set
of all operators with certain mapping properties. The backbone of
the corresponding theorems are the kernel-theorem which reads as
follows (!! despite the fact that

(
S0(Rd), ‖ · ‖S0

)
is NOT a nuclear

Frechet space)
One of the corner stones for the kernel theorem is: One of the
most important properties of S0(Rd) (leading to a characterization
given by V. Losert, [10]) is the tensor-product factorization:

Lemma

S0(Rk)⊗̂S0(Rn) ∼= S0(Rk+n), (39)

with equivalence of the corresponding norms.
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The KERNEL THEOREM for S0 II

The Kernel Theorem for general operators in L(S0,S
′
0):

Theorem

If K is a bounded operator from S0(Rd) to S ′0(Rd), then there
exists a unique kernel k ∈ S ′0(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉
for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S ′0(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .
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The KERNEL THEOREM for S0 III

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L

2(R2d)-kernels.
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The KERNEL THEOREM for S0 IV

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if
the corresponding operator K maps S ′0(Rd) into S0(Rd), but not
only in a bounded way, but also continuously from w∗−topology
into the norm topology of S0(Rd).

In analogy to the matrix case, where the entries of the matrix

ak,,j = T (ej)k = 〈T (ej), ek〉

we have for K ∈ S0 the continuous version of this principle:

K (x , y) = δx(T (δy ), x , y ∈ Rd .
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The Kernel Theorem as a BGT isomorphism

The different version of the kernel theorem for operators between
S0 and S ′0 can be summarized using the terminology of Banach
Gelfand Triples (BGTR) as follows.

Theorem

There is a unique Banach Gelfand Triple isomorphism between the
Banach Gelfand triple of kernels (S0,L

2,S ′0)(R2d) and the operator
Gelfand triple around the Hilbert space HS of Hilbert Schmidt
operators, namely (L(S ′0,S0),HS,L(S0,S

′
0)), where the first set is

understood as the w∗ to norm continuous operators from S
′
0(Rd)

to S0(Rd), the so-called regularizing operators.
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Spreading function and Kohn-Nirenberg symbol

1 For σ ∈ S ′0(Rd) the pseudodifferential operator with
Kohn-Nirenberg symbol σ is given by:

Tσf (x) =

∫
Rd

σ(x , ω)f̂ (ω)e2πix ·ωdω

The formula for the integral kernel K (x , y) is obtained

Tσf (x) =

∫
Rd

(∫
Rd

σ(x , ω)e−2πi(y−x)·ωdω
)
f (y)dy

=

∫
Rd

k(x , y)f (y)dy .

2 The spreading representation of Tσ arises from

Tσf (x) =

∫∫
R2d

σ̂(η, u)MηT−uf (x)dudη.

σ̂ is called the spreading function of Tσ.
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Further details concerning Kohn-Nirenberg symbol

(courtesy of Goetz Pfander (Eichstätt):)

· Symmetric coordinate transform: TsF (x , y) = F (x + y
2 , x −

y
2 )

· Anti-symmetric coordinate transform: TaF (x , y) = F (x , y − x)

· Reflection: I2F (x , y) = F (x ,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

The kernel K (x , y) can be described as follows:

K (x , y) = F2σ(η, y − x) = F−1
1 σ̂(x , y − x)

=

∫
Rd

σ̂(η, y − x) · e2πiη·xdη.
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Kohn-Nirenberg symbol and spreading function II

operator H Hf (x)
l =

kernel κH
∫
κH(x , s)f (s) ds

l =

Kohn–Nirenberg symbol σH
∫
σH(x , ω)f̂ (ω)e2πix ·ω dω

l =
time–varying impulse response hH

∫
hH(t, x)f (x − t) dt

l =
spreading function ηH

∫ ∫
ηH(t, ν)f (x − t)e2πix ·ν dt dν

=∫ ∫
ηH(t, ν)MνTt f (x), dt dν ,
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Spreading representation and commutation relations

The description of operators through the spreading function and
allows to understand a number of commutation relations.
If an operator is a limit (in the strong operator topology) of
translation operators it is just a convolution operator with some
τ ∈ S ′0(Rd), resp. its spreading representation is just an element
concentrated on the time axis (more or less representing τ̂ , the
“individual frequency contributions”.
Similarly, multiplication operators require just the use of
modulation operators, so their spreading function is concentrated
in the frequency axis of the TF-plane.
Finally typical Gabor frame operators arising from a family of
Gabor atoms (gλ), where λ ∈ Λ, some lattice within Rd × R̂d

typically commute with TF-shift operators, one can say that
they are obtained by periodizing the projection operator
f 7→ 〈f , g〉g along the lattice.
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The symplectic Fourier transform

The symplectic Fourier transform connects the Kohn-Nirenberg
symbol with the spreading function, i.e.

Fs(σ(T )) = η(T ) resp. Fs(η(T )) = σ(T ). (40)

(Fsympf )(k , l) =

∫
Rd

∫
Rd

f (x , y)e−2πi(k·y−l ·x); f ∈ S0(Rd × R̂d).

(41)
It is completely characterized by its action on elementary tensors:

Fsymp(f ⊗ ĝ) = g ⊗ f̂ , f , g ∈ S0(Rd), (42)

and extends from there in a unique way to a w∗ − w∗

continuous mapping from S
′
0(R2d) to S ′0(R2d), also Fs2 = Id .
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Understanding the Janssen representation

The spreading representation of operators has properties
very similar to the ordinary Fourier expansion for functions!
Periodization at one side corresponds to sampling on the transform
side, if we understand “translation” either at the level of ordinary
translation of the Kohn-Nirenberg symbol (which is the symplectic
Fourier transform of the spreading function), OR by conjugation of
an operator by the corresponding TF-shifts.
In other words: for any given operator T and λ ∈ Rd × R̂d we can
define [recall π(x , ω) = MωTx for λ = (x , ω)]

π ⊗ π∗(T ) = π(λ) ◦ T ◦ π(λ)∗, (43)

providing the important covariance property for KNS:

σ[π ⊗ π∗(λ)(T )] = Tλ[σ(T )], λ ∈ Rd × R̂d . (44)
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Periodization goes over to sampling

If we have a “nice operator” T0 we can form its periodic version∑
λ∈Λ π ⊗ π∗(λ)(T0) and it is still a well defined operator from

S0(Rd) to S ′0(Rd). Its KNS is just the Λ-periodization of T0.
Consequently its spreading function is obtained by sampling of
η(T ) ∈ S0(Rd × R̂d), over the adjoint lattice Λ◦ and obtain in this
case an `1-sequence.
The adjoint lattice Λ◦ can be characterized by the fact that

Fs(ttΛ) = CΛttΛ◦ . (45)

For the projection on the Gabor atom Pg : f 7→ 〈f , g〉g the
spreading functions is essentially

[η(Pg )](λ) = Vg(g)(λ) = 〈g , π(λ)g〉, λ ∈ Rd × R̂d .
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Janssen representation II

An important insight concerning the connection between the Gabor
atom g , the TF-lattice Λ C Rd × R̂d and the quality of the
resulting Gabor frame resp. Gabor Riesz basis (e.g.condition
number) clearly comes from the Janssen representation of the
Gabor frame operator for any g ∈ S0(Rd) with ‖g‖2 = 1:

Sg ,Λ(f ) =
∑
λ∈Λ

Pgλ(f ) =
∑
λ∈Λ

π ⊗ π∗(λ)[Pg ]. (46)

The periodization principle gives the Janssen representation

Sg ,Λ =η−1[η(Sg ,Λ)] = CΛ

∑
λ◦∈Λ◦

Vg (g))(λ◦)π(λ◦), (47)

as an absolutely convergent sum of TF-shifts from Λ◦.
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Fourier Standard Spaces of Operators

The kernel theorem allows to identify many spaces of linear
operators (with different forms of continuity) with suitable FouSSs
over R2d .
For example, there are the so-called Schatten classes of operators
on the Hilbert space L2(Rd) which are compact operators with
singular values in `p, for 1 ≤ p <∞. These spaces are operator
ideals within L(H), i.e. they are Banach spaces, continuously
embedded into the space of compact operators over the Hilbert
space H, as well as two-sided Banach ideals, i.e. whenever one has
an operator T in such a space, and two bounded operators S1,S2

on H, then S1 ◦ T ◦ S2 also belongs to that operator ideal and the
operator ideal norm is bounded by the operator ideal norm of
T multiplied with the operator norms of S1 and S2.
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H. G. Feichtinger, K. Gröchenig, and T. Strohmer.
Efficient numerical methods in non-uniform sampling theory.
Numer. Math., 69(4):423–440, 1995.

H. G. Feichtinger and T. Strohmer.
Gabor Analysis and Algorithms. Theory and Applications.
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