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The natural setting for time-frequency analysis and Gabor Analysis
is the world of functions/signals or distributions over LCA (locally
compact Abelian) groups G. A substantial part if the theory (the
existence of a Janssen representation for the frame operator, etc.)
has been developed in this context, making use of appropriate
function spaces, in particular the Banach Gelfand Triple based on
the Segal algebra SO(G). In this setting only occasionally a
distinction is made between the one-dimensional or the
multidimensional (e.g. Euclidean) setting.

In contrast, when it comes to implementation the situation
changes. Not because Gabor analysis wasn't interesting for the
multi-dimensional setting. In contrast, the first important papers in
the field made the connection between Gabor expansions of
images and the analogy with the visual system of humans.
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But in terms of available code the situation is rather satisfactory
for the case of 1D-signals: one can compute dual or tight Gabor
atoms, construct Gabor multipliers, and has cheap algorithms for a
cheap (and efficient) determination of approximate versions of
these objects.

The talk will discuss the obstacles and additional problem which
arise from the large dimensions (the number of pixels of the
involved images), the computational costs and above all the huge
storage requirements. One possible way out (or at least a special
family of Gabor expansions and Gabor multipliers which can be
realized) is the use of separable Gabor families. We will also try to
explain the relevance of the double preconditioning

approach in the 2D-setting.
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What are the Challenges?

We have quite a list of challenges (of different nature and different
complexity) making Gabor Analysis for the 2D (and hence even
more for the 3D and higher dimensional) setting quite challenging.

@ Phase space is now 4-dimensional, hence difficult to visualize,
and of course we suffer from the curse of dimensionality (data
structures);

@ We can handle the separalbe case relatively well, but we
would like to understand better the non-separable case (lorder
of variables, etc.)

© For the irregular case we cannot store anymore the full dual
frame, leaving aside that it takes a long time to compute;

@ Even in the regular case one has memory constraints,
approximate dual Gabor atoms might be a way out, etc.
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SOME MATLAB CODE

GABFLT2.M hgfei , 22.01.2019, Prague

INPUT: PIC = input picture, perc: default perc =1
USAGE:

[PICFLT,GFLGPICG,GFLT,G1,G2,GD1,GD2] =gabf1t2 (PIC) ;
[PICFLT,GFLGPICG,GFLT,G1,G2,GD1,GD2]=

= gabf1t2(PIC,perc,G1,G2);
[PICFLT,GFLGPICG,GFLT,G1,G2,GD1,GD2] =

= gabf1t2(PIC,perc);
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The dual group and Pontrjagin

Abstractly speaking one has a natural Fourier transform for any
LCA group G.

In the setting of finite Abelian groups or order # = N it is easy
to find out that there is a collection of N vectors which are
eigenvectors to the whole family of translation operators acting on
CN = £2(G). Each of them takes values in the torus (actually
within the group Zy of unit roots of order N), and are called the
characters of G. R

They constitute a group, the so-called dual group G. Clearly this
group (with pointwise multiplication) is of the same order N.

There is a natural embedding (hence isomorphism) from

Ginto G (see Pontrjagin for the general LCA case).
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Recall who the FFT2 works

It is a good excercise for students to check that one has a natural
identification of G; x Gy with Gi x Gp.

This is the basis for the FFT algorithm for images, named FFT2 in
MATLAB!.

As it is well known the FFT2-command realizes the FFT in a row
and then in a columnwise manner. The order does not matter, as
we easily illustrate for the case of a square image A of size N x N:

fir2(A) = F x« (Ax F) = (F x A) x F, (1)

making use of the fact that the Fourier matrix is a symmetric
(in the real sense, i.e. F = F*)!

!Recall that ££t (A) for a matrix is just the FFT applied to the
collection of column vectors of the matrix A. Hence F = fft(eye(N)) is
gives the matrix which realizing the FT: £ft(x) = F *x.
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Summarizing the landscape of spaces used
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FFT2 Spectrum of Test-Image

spectrogram of Lukas on the Stairs
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Critical Gabor Case for Images

reconstruction error critical reconstruction
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Compression using Gabor Expansions, 5%
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Compression using Gabor Expansions, 25%
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2D-Gabor Transform: Plane Waves
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2D-Gabor Transform: Test-Images 2
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2D-Gabor Analysis: Test Images
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Showing the Elementary 2D-Building Blocks
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Building blocks for Discrete Cosine Transform DCT
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The JPEG compression

The widely used JPEG standard, established by the “Joint
Photographic Experts Group” is based on the discrete cosine
transform, a real version of the Fourier transform (real images give
real coefficients).

o First a general image is decomposed into blocks of 8 x 8
pixels, (each of them in fact in the range of 0 to
255 = 28 — 1, so one Byte or 8 Bits worth);

@ Then depending on the chosen compression rate a fixed
number of coefficients, from upper left to lower right corner
(figure below) is stored and transmitted;

@ Resynthesis from this set of coefficients provides
the decoded image.
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The building blocks for the Discrete Cosine Transform
DCT
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https://en.wikipedia.org/wiki/JPEG with video demo!

DCT2 counting scheme
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original segment 21/64 JPEG compression

Figure: JPEG2164comprl.jpg m

Hans G. Feichtinger -



JPEG Compr.

[e]e] lele}

10 coefficients 28 coefficients

2 4 6 8 2 4 6 8

49 coefficients 61 coefficients

2 4 6 8 2 4 6 8

Figure: JPEG2164compr2.jpg

Hans G. Feichtinger



JPEG Compr.
0000

original, zoom 1:8 compression
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Further Variations of the Theme

@ Variable atoms, or one out of K windows, randomly;
(uniform estimates for good enough lattices);

@ Slowly changing lattices and atoms, deformations

@ Approximation by separable ones, with the chance of having
better criteria or computing approximate dual Gabor atoms.

Hans G. Feichtinger
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first 40 eigenvectors: TF-concentration last eigenvectors
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