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Many years of Computational Gabor Analysis I

The CONTENT of this talk is based on ca. 30 years of experience
with experimental computational harmonic analyis.

The PURPOSE of this talk is to share some general ideas about
the transition between continuous and corresponding discrete
problems, to some extent concerning the connections between the
theory of function spaces, the domain of real world problems and
finally computational issues.

In the framework of Harmonic Analysis this has led me to the
development of the idea of Conceptual Harmonic Analysis, which is
more than just a synthesis of Abstract Harmonic Analysis (AHA)
and Numerical Harmonic Analysis.
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Many years of Computational Gabor Analysis II

As we will see, families of Banach spaces play a big role for a
proper description of the setting, and among them the minimal
families, sometimes called rigged Hilbert spaces or in our case the
Banach Gelfand Triple (S0,L

2,S ′0)(Rd) will serve as a good
exmpale for the illustration of our ideas.

The families of Banach spaces we have in mind are families of
weighted Lp-spaces for the reconstruction of band-limited functions
(or functions from spline-type spaces, like shifted Gaussians), in
wavelet theory this are the well-known Besov-Triebel-Lizorkin
spaces, and for time-frequency analysis we are dealing with
modulation spaces.
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Various types of SAMPLING

Sampling Theory is a wide field which has many interesting aspects
and challenges:

Given data, can one approximate a regression manifold?

How can on meet the challenge of large data sets, high
dimensions or irregular sampling?

One direction is the task to approximate/reconstruct from a
given data set (PASSIVE SAMPLING);

If one can decide about the sampling strategy: How should
one sample most efficiently? (ACTIVE SAMPLING)

Of course efficiency depends on both the reconstruction
method and the request (typically the choice of a function
space): small error in some norm, chosen by the user!;
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Irregular Sampling Algorithms

Let us just give a short summary, for the case of irregular sampling.
Here one has typically the following situation:
Assume we are given irregular samples (f (xi ))i∈I in Rd of a
function f which, as a tempered distribution has spectral support
in a ball or cube Ω of known size.
Then good results concerning iterative algorithms will tell us:
Given the size/diameter of Ω and the density of (xi )i∈I a certain,
say iterative algorithm requires so and so many interactions to
guarantee that for any of the norms which apply to f (e.g.
weighted Lp-norms, with 1 ≤ p ≤ ∞ and weights up to order 10)
the relative reconstruction error after a fixed number of iterations
with be at most 3%.
Via norm equivalences on the given space one can even
estimate Sobolev norms for the involved functions.

Hans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

What we have learned in this setting I

In the setting of irregular sampling we have - over the years - learnt
a lot. Let us list just a few issues, which allow us to describe the
situation (resp. the quality of algorithms).

Algorithms have to be universal in the sense that e.g.
band-limited functions may belong to various types of spaces,
typically weighted Lp-spaces. When applying a given
algorithm the knowledge of the user about the membership of
the function from which data are drawn must not be part of
the algorithm, i.e. it has to work automatically, with
guaranteed recovery rates (depending on the amount and
quality of information available).
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What we have learned in this setting II

As one does not have in real-world applications the exact date
one has to be able to analyze the effect of perturbation of the
assumptions: What if the function is only “approximately
band-limited”, what if the data provided are not take at
exactly described positions but only within some margin (jitter
error), what if instead of exact pointwise values small local
averages are provided, and so on. Is the algorithm still
convergent under these conditions? And is the limit close to
the limit that one would expect?

Hans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

What we have learned in this setting III

When running numerical simulations one typically chooses a
discrete setting. But then a couple of questions arise: Does
the existing continuous theory guarantee that the algorithms,
now applied to an analogue discrete situation also have to
converge in the same way? Or do we need (!in effect) a
separate discrete theory? And/but how does the computable
discrete computation help to find solutions to the
corresponding continuous problem? What kind of errors have
to be taken into account.
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The idea of CONCEPTUAL HARMONIC ANALYSIS

I am promoting since 2008 (first talk in this direction in
Cambridge!) the idea of Conceptual Harmonic Analysis

(CHA), an attempt to unify concepts from
Abstract and Computational Harmonic Analysis.

While engineers are satisfied with a simple replacement of a
continuous Fourier transform by the corresponding FFT I would like
to view things from a Constructive Approximation point if view.

Given a numerical method that allows to determine the values
of a given functions pointwise, how can one obtain
information about its Fourier transform (via FFT methods).

Given an Given some pseudo-differential operator (say via its
Weyl-symbol or Kohn-Nirenberg symbol, or as a (singular)
integral kernel, how can we reliably compute eigenvalues and
eigenvectors, or solving corresponding linear equations?
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The Setting: Mild Distributions

The setting for which I will describe a certain approach (based on
the Banach Gelfand Triple (BGT) resp. rigged Hilbert space
concept (S0,L

2,S ′0)(Rd) is related to topics such as

Fourier transforms (approximation via FFT);

Time-Frequency and Gabor Analysis (finite vs. continuous);

Gabor multipliers, Anti-Wick operators,

general linear operators between Lp-spaces,

finite dimensional approximation (in the w∗-sense);
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Active Sampling and Abstract Harmonic Analysis

I want to discuss here a particular aspect of active sampling, based
on ideas from AHA (Abstract Harmonic Analysis) and
Computational Time-Frequency Analysis (TFA) or Gabor Analysis.
AHA tells us, that we can to Fourier and Gabor analysis on any (!)
LCA (locally compact Abelian) group G . In particular on Rd , Zd

(or any other discrete lattice Λ = A ∗ Zd C Rd .
But we can also do it in the discrete and periodic setting
(engineering terminology), resp. over finite Abelian groups, which
is actually what is/can be done quite efficiently using
mathematical software (MATLAB in my case, for 30 years now!).
AHA, furthermore tells us, how to describe the analogies between
different groups: we have translations, dual groups, hence
modulations, and so on. But how should one relate
observations made over different groups to each other?
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The Classical Setting of Test Functions & Distributions

Universe including SO and SOP
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A schematic description: THE Banach Gelfand Triple

Testfunctions ⊂ Hilbert space ⊂ Distributions, like Q ⊂ R ⊂ C!

Abbildung: Compare the situation with Q ⊂ R ⊂ CHans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

The Key-players for Time-Frequency Analysis (TFA)

Time-shifts and Frequency shifts (II)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) using the
spectrogram: energy distribution in the TF = time-frequency plan:

Hans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

Gabor Analysis: Modern Viewpoint I

The fact that the set {gλ |λ ∈ Rd × R̂d} is a highly redundant
family of vectors in the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
led to the

suggestion of D. Gabor in 1946 to select a “critical” family,
namely λ ∈ Λ0 := Z× Z, hoping that in this way the properties of
a (non-orthogonal) basis (modern view-point: a Riesz basis) could
be achieved.
EVERY element f ∈ L2(R) should be representable in a unique
way, with coefficients representing the energy distribution within f
in a unique way. Equivalently, recovery of Vg (f ) and hence f from
samples at Λ0 should be (stably) possible.
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Gabor Analysis: Modern Viewpoint II

It follows from Moyal’s formula (energy preservation):

‖Vg (f )‖
L

2(Rd×R̂d )
= ‖g‖2‖f ‖2, f , g ∈ L2. (1)

This setting is well known under the name of coherent frames
when g = g0, the Gauss function. Its range is the Fock space.
Approximate reconstruction results are due to Ferenc Weisz
(appropriate fine Riemanian sums, even norm convergence in(
L

2(Rd), ‖ · ‖2

)
).

The possibility of having such tight Gabor frames is resulting from
the continuous reconstruction formula, valid for arbitrary L2-atoms
g . Writing again for λ = (t, ω) and π(λ) = MωTt , and furthermore
gλ = π(λ)g we have in fact for any g ∈ L2(Rd) with ‖g‖2 = 1:

f =

∫
Rd×R̂d

〈f , gλ〉gλdλ.
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Gabor Analysis: Modern Viewpoint III

Todays Rules of the Game

Choose a good window or Gabor atom (any g ∈ S(Rd) will do)
and try to find out, for which lattices Λ ∈ R2d the signal f resp. its
STFT (with that window) can recovered in a STABLE way from
the samples, i.e. from the values 〈f , π(λ)g〉.
We speak of tight Gabor frames (gλ) if we can even have the
expansion (for some constant A > 0)

f = A ·
∑
λ∈Λ

〈f , gλ〉gλ, ∀ f ∈ L2(Rd).

Note that in general tight frames can be characterized as
orthogonal projections of orthonormal bases of larger spaces!!!
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Gabor Analysis: Modern Viewpoint IV

Another basic fact is that for each g ∈ S(Rd) one can find, if Λ is
dense enough (e.g. aZ× bZ ⊂ Rd for ab < 1 in the Gaussian case)
a dual Gabor window g̃ such that one has at least

f =
∑
λ∈Λ

〈f , g̃λ〉gλ =
∑
λ∈Λ

〈f , gλ〉g̃λ (2)

g̃ can be found as the solution of the (positive definite) linear
system Sg̃ = g , where Sf =

∑
λ∈Λ〈f , gλ〉gλ, so using g̃ instead

of g for analysis or synthesis corrects for the deviation from the
identity operator. An important fact is the commutation relation
S ◦ π(λ) = π(λ) ◦ S , for all λ ∈ Λ.
Thus (2) is just S ◦ S−1 = Id = S−1 ◦ S in disguise!).
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A Banach Space of Test Functions (Fei 1979)

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).
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Given the very interesting properties of the Banach algebra (both
with respect to convolution and pointwise multiplication), such as
the Fourier invariance, one obtains quite similar properties for the
dual spaces, which we denote by (S ′0(Rd), ‖ · ‖S ′

0
).

We find out that

1 (S ′0(Rd), ‖ · ‖S ′
0
) is a Banach space of (tempered

distributions), and for any non-zero (Schwartz) window
uniform convergence of Vg (fn) corresponds to norm
convergence in (S ′0(Rd), ‖ · ‖S ′

0
);

2 S
′
0(Rd) contains any

(
L
p(Rd), ‖ · ‖p

)
, 1 ≤ p ≤ ∞;

3 The Fourier transform, which leaves
(
S0(Rd), ‖ · ‖S0

)
invariant

extends in a unique, w∗-w∗--continuous way to an
automorphism of (S ′0(Rd), ‖ · ‖S ′

0
), given via

σ̂(f ) := σ(f̂ ), f ∈ S0(Rd).
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ is called a
Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is [a unitary operator resp.] an isomorphism between H1

and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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Absolutely Convergent Fourier Series

In his studies Norbert Wiener considered the Banach algebra(
A(T), ‖ · ‖A

)
of absolutely convergent Fourier series. It was one

of the early Banach algebras, with Wiener’s inversion Theorem
being an important first example.
Later on it was natural to study the dual space, which of course
contains the dual space of

(
C (T), ‖ · ‖∞

)
, which by the Riesz

representation theorem can be identified with the bounded (regular
Borel) measures on the torus it was natural to call these functions
pseudo-measures.
Since A(T) can be identified with L1(T) (viewed as subspaces of
L

2(T) and `2(Z) respectively), it is natural to expect (and prove
distributionally) that PM(T) is isomorphic to `∞(Z) via the
(extended) Fourier transform.
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Preview and First Conclusions

1 Only for “good functions” one can hope to recover them from
pointwise samples;

2 Not all the “generalized functions” (including elements from
L
p(Rd)!) can be even sampled pointwise, but only after some

applying some mollifier;

3 In cases like L∞(Rd) (or more concrete exponential functions,
even the function 1) cannot be approximated uniformly (i.e. in
norm) by test functions, one has to allow w∗-convergence.

4 since regularizers are well understood (there are also many
choices) we will concentrate on the (mutual!) approximation
of test functions and discrete sequences!
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Fourier Transforms of Tempered Distributions

His construction vastly extends the domain of the Fourier
transform and allows even polynomials to have a Fourier tranform.
Among the objects which can now be treated are also the Dirac
measures δx , as well as Dirac combs tt =

∑
k∈Zd δk .

Poisson’s formula, which expresses that one has for f ∈ S(Rd)∑
k∈Zd

f (k) =
∑
n∈Zd

f̂ (n), (3)

can now be recast in the form

t̂t = tt.
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Sampling and Periodization

Typically one thinks of fine lattices in Λ C Rd as being obtained by
compression/dilation of the standard lattice, i.e. Λ = A ∗ Zd (A
non-singular).
If the function is smooth enough (Sobolev space) and the (regular)
samples are taken fine enough (e.g. on a fine, hexagonal grid in the
plane) one expects to get a very good approximation, e.g. by
smooth (quasi)-interpolation of the data.
In the same way one expects that periodization of f does not
produce a big error if the periodization lattice is course enough
compared to the decay or concentration properties of f .
Combining the two methods (properly) one obtains a discrete and
periodic signal, which in fact can be viewed naturally as a function
over some finite Abelian group!
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Sampling and Periodization on the FT side

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions.
If the so-called Nyquist criterion is satisfied (sampling distance
small enough), i.e. supp(f̂ ) ⊂ [−1/α, 1/α], then

f (t) =
∑
k∈Zd

f (αk)g(x − αk), x ∈ Rd . (4)
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A Visual Proof of Shannon’s Theorem
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It is obvious that the green graph is the better localized one. It is
obtained by convolving (on the time side) a slightly wider
rectangular or boxcar function by some small (normalized, so that
they are probability measures) rectangular functions. Each such
convolution makes the function more smooth, but also widens the
support and makes the plateau are smaller.
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How to use the Banach Gelfand Triple I

I tend to compare the situation of Gelfand triples
with the number triple Q ⊂ R ⊂ C
It is with the rational numbers where we do actually our
computations (e.g. inversion: 3/4 7→ 4/3). The real numbers have
the advantage of being complete, but inversion is only taking
place at the symbolic level: 1/π is only defined implicitly by its
property: π · 1/π = 1 (with “infinite decimal expressions”). Finally
certain things (like exponential law) are better understood in the
complex domain.

Recall some concepts from linear algebra can be transferred to
the setting of test functions in

(
S0(Rd), ‖ · ‖S0

)
. Approximate

recovery from regular samples (via quasi-interpolation or
piecewise linear interpolation) are possible;
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How to use the Banach Gelfand Triple II

Many things (like Plancherel’s) Theorem for the Hilbert space
are obtained by taking limits of Cauchy sequences, resp.
looking at

(
L

2(Rd), ‖ · ‖2

)
, defined via Lebesgue integration;

Many important objects arising in signal analysis can only be
understood well in the distributional setting of S ′0(Rd),
endowed with the w∗-convergence.
For example, tt has only a Fourier transform in the
distributional sense (via Poisson formula), convolution with
tt turns into periodization, pointwise multiplication
corresponds to regular sampling.

Now let us combine these two effects, by doing a coarse
periodication (period = n) and a fine sampling (at rate 1/n),
providing discrete signals of length N = n2.
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Test functions and finite, discrete signals

Let us start with a few important observations:

The periodic and discrete (unbounded) measures are exactly
those which arise as periodic repetitions of a fixed finite
sequence of the form

∑N−1
k=0 akδk .

The Fourier transform of such a sequence can be calculated
directly using the FFT

for any f ∈W (Rd) one has for b = 1/a:

F
[
ttNa ∗ (tt a · f )

]
= tt Nb · (tt b ∗ f̂ ) = tt b ∗ (tt Nb · f̂ )

(5)
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Approximation by finite/discrete signals I

We shall define here tt a :=
∑

k δak and tt a = 1
a

∑
n δ n

a
. Then

Ftt a = tt a. In fact, one has for a = 1 according to Poisson’s
formula Ftt 1 = tt 1, and the general formula follows from this
by a standard dilation argument: Mass preserving compression Stρ
is converted into “value-preserving” dilation Dρ on the Fourier
transform side, and Dρtt 1 = tt 1/ρ.
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w ∗-approximation

The w∗-approximation is quite crucial to describe the transition
between different settings, e.g.

periodic functions, with period going to infinity;

sampling a continuous functions, with increasing density;

approximation of a general (bounded and unbounded)
measure by discrete measures (in fact in
W (M , `∞)(Rd) = W (C0, `

1)(Rd)′).
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The w ∗− topology: approximation strategies

How to approximate general distributions by test functions:
Regularization procedures via product convolution operators,
hα(gβ ∗ σ)→ σ or TF-localization operators: multiply the
STFT with a 2D-summability kernel before resynthesis (e.g.
partial sums for Hermite expansion);

how to approximate an L1-Fourier transform by test functions:
and classical summability

how to approximate a test function by a finite disrete
sequence using quasi-interpolation (N. Kaiblinger):
QΨf (x) =

∑
i f (xi )ψi (x).
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Smooth functions, sampling, discrete measures

The transition between smooth functions and discrete (regular)
sequences (over a regular grid) are obtained by sampling, or
equivalently by multiplying with a fine Dirac comb.
This is in fact equivalent with a periodization on the Fourier
transform side.
But how can one express the fact that dense sampling contains a
good deal of information provided by the smooth function? Of
course one can (and should) think of recovery from the samples,
ideally by quasi-interpolation.
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Usually we try to approximate (in the w∗-sense) a distribution
σ ∈ S ′0(Rd) by a product-convolution operator or a convolution
product operator, i.e.we use the following relations:

σ = w∗- lim ρ→0 [(σ ∗ Stρg0) · Dρg0], (6)

σ = w∗- lim ρ→0 [(σ · Dρg0) ∗ Stρg0], (7)

based on convolution and pointwise multiplier results for
Wiener amalgam:

S0(Rd) · (S ′0(Rd) ∗ S0(Rd)) ⊆ S0(Rd), (8)

S0(Rd) ∗ (S ′0(Rd) · S0(Rd)) ⊆ S0(Rd). (9)
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Proof.

The key arguments for both of these regularization procedures, be
it convolution followed by pointwise multiplication (a CP or
product-convolution operator), or correspondingly PC operators,
are based on the pointwise and convolutive behavior of generalized
Wiener amalgam spaces, such as the relation
S0(Rd)∗S ′0(Rd) = W (FL1, `1)∗W (FL∞, `∞) ⊆W (FL1, `∞).

Hans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

The simple setting of Banach spaces (resp. dual spaces) allows also
to work with a very simple, alternative way to introduce the dual
space, namely to define

1 weak Cauchy-sequences (hn)n≥1 of test functions from
S0(Rd), in the sense that
(〈h, fn〉)n≥1 is a Cauchy sequence in C for any h ∈ S0(Rd);

2 then define equivalence classes of such sequences;

3 then define the norm of such a class (it is finite by
Banach-Steinhaus).

It is then not difficult to show that this is just another way (maybe
more intuitive to engineers) to describe (S ′0(Rd), ‖ · ‖S ′

0
)!
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How should we sample a continuous function?
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Comparing signals of length n to 4n

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
doubling period and sampling rate

Abbildung: smpvaldem3A1.eps

Hans G. Feichtinger
Approximation of continuous problems in Fourier Analysis by finite dimensional ones:The setting of the Banach Gelfand Triple



Motivation Introduction Conceptual Harmonic Analysis Gabor Analysis Segal Algebra S0 Mild Distributions! Banach Gelfand Triples First Analysis Shannon’s Theorem Regularizer Correct Sampling Comparing n to 4n Cauchy f. Samples Hermite Functions, Harmonic Oscillator Fractional Fourier Transforms References Conclusion

Another form of Cauchy condition

While samples taken over differen periods and with different
sampling rates are not immediately comparable to each other
(except via interpolation/quasi-interpolation and resampling) the
choice of particular sequences allow immediate comparison.
For example one may start to plot a Gauss function over [−3, 3]
with 144 samples taken at a rate of 1/6.
Then this discrete (periodized) Gauss function will be invariant
under the (unitary normalized) FFT.
taking now signal lengths of the form 4k ∗ 144, say n = 576 and
n = 2304 and then n = 9216 or n = 36864 one can then check
whether discretely computed functions (e.g. Hermite functions
up to some order) are compatible, which is in fact the case.
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (10)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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Discrete Hermite functions I

One of the delicate question (arising e.g. in the discussion about
finite quantum theory) is the question concerning a discrete
analogue of Hermite Functions
One can use the these functions to define e.g. Fractional Fourier
transforms. These (unitary) operators form a natural group under
composition, isomorphic to the torus, and correspond (up to phase
factors) to the rotation of the STFT (with Gaussian window, so in
the Fock space) by a given angle.
Of course the ordinary Fourier transform corresponds to a rotation
by 90 degrees, hence two times the FT corresponds to the flip
operator (rotation by 180 degrees), and four times gives the
identity operator.
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Discrete Hermite functions II

The easiest description of the FrFT is to describe it as a Hermite
multiplier, with a (suitable) pure frequency (over the index set N0).
Recall, that h0 = g0, the Gauss function.
The Hermite functions form an ONB for

(
L

2(R), ‖ · ‖2

)
and are

eigen-vectors for the Fourier tranform with eigenvalues
(−i)n, n ≥ 0.
Consequently the projection from H = L

2(R) onto the subspace of
Fourier invariant elements can be realized by just projecting on the
linear span of the Hermite functions of order k = 0mod(4).
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But how should these functions be defined or computed?
One can try to take the samples of the original Hermite functions,
obtained by three-term recursion. By sampling the orthogonality
may get lost for higher frequencies. One can also use the fact that
the form an orthonormal system for the Harmonic Oscillator, i.e.
for the operator

H(ψ) = ∆(ψ) + x2 · ψ, ψ ∈ S(Rd), (11)

which is an unbounded, but self-adjoint operator.
Often this operator is replaced by a discrete variant of the Laplace
operator (second order differences) and then the corresponding
ONB for CN are computed.
In fact, they form an ONB for CN (by the spectral theorem for
symmetric matrices), but only for lower order they are well
suited as a replacement for the continuous Hermite functions.
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As we found, a much more natural approach comes from another
property (found e.g. in work of Ingrid Daubechies, and earlier
H. Landau) on localization operators: The Hermite functions are
also joint eigenvalues for all the STFT-multipliers (Anti-Wick
operators) with radial symmetric weight. Whenever on uses a
radial weight tending to zero at infinity one has a compact and
self-adjoint operator!
Such operators can be realized in a discrete setting and provide
actually a very useful common (!) family of discrete eigenvectors
for all these Anti-Wick operators (which therefore commute!).
According to N. Vasilevskii the only commutative Banach algebras
of Anti-Wick operators are the shift invariant ones (e.g.
time-invariant ones), or the ones which commute with fractional
Fourier transforms and are consequently Hermite multipliers.
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A localized signal under fractional FT
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Book References

K. Gröchenig: Foundations of Time-Frequency Analysis, 2001.
H.G. Feichtinger and T. Strohmer: Gabor Analysis, 1998.
H.G. Feichtinger and T. Strohmer: Advances in Gabor Analysis,
2003. both with Birkhäuser.
G. Folland: Harmonic Analysis in Phase Space, 1989.
I. Daubechies: Ten Lectures on Wavelets, SIAM, 1992.
G. Plonka, D. Potts, G. Steidl, and M. Tasche.
Numerical Fourier Analysis. Springer, 2018.

Some further books in the field are in preparation, e.g. on
modulation spaces and pseudo-differential operators
(Benyi/Okoudjou, Cordero/Rodino).

See also www.nuhag.eu/talks.
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Conclusion and OUTLOOK I

1 For many branches of mathematical analysis and also
application areas I see a strong need for more extensive
numerical work, which requires constructive and realizable
approaches with guaranteed convergence resp. precision.
This means typically:
Given some linear operator T from (B1, ‖ · ‖(1)) to
(B2, ‖ · ‖(2)) and ε > 0 determine y = T (x), given x, up to ε,
or compute a approximately, given T (a) = b.

2 Of course, once such computational approaches have been
established one should be able to answer questions of
optimality (minimal resources in order to achieve this goal,
sensitivity to model assumptions, computational costs,
error analysis, scalability).
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Conclusion and OUTLOOK II

3 In signal analysis (pseudo-differential operators, Fourier
transform, etc.) one typically combines discretization with
FFT-based methods. Hence the transition from say Rn to a
suitable finite group (via sampling) and conversely (via
quasi-interpolation) have to be investigated properly.

4 The Banach Gelfand Triple (S0,L
2,S ′0)(Rd) and more

generally modulation spaces appear to be an appropriate
framework, due to its Fourier invariance and the existence of a
kernel theorem.

5 Much work is needed in order to turn the idea of Conceptual
Harmonic Analysis (marriage of Abstract and Harmonic
Analysis with Computational Harmonic Analysis) with life
and turn it into a foundation of modern Fourier and
Time-Frequency Analysis.
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Conclusion and OUTLOOK III

Let us finally collect a few more recommendations:

Good discretizations are structure preserving!
For example: a good version of a discrete Gauss function
should be (up to the normalization) be FFT invariant!

Good discretization should show as many properties already
for relatively small dimensions as close as possible to the
continuous situation;

Only then one can hope that numerical experiments and
computations are supporting the theory and vice versa!

Maybe the best estimates are not obtained for the classical
function spaces such as

(
L
p(Rd), ‖ · ‖p

)
, but maybe via

modulation spaces
(
M

s
p,q(Rd), ‖ · ‖Ms

p,q

)
.
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Thanks for your attention

maybe you visit www.nuhag.eu
and checkout other talks at
www.nuhag.eu/talks (!password)
and related material. hgfei
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