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official abstract I

Central objects of classical Fourier Analysis are the Fourier
transform (often just viewed as an integral transform defined on
the Lebesgue space L1(Rd)), convolution operators, periodic and
non-periodic functions in Lp-spaces and so on. Distribution theory
widens the scope by allowing larger families of Banach spaces of
functions or generalized functions and extending many of the
concepts to this more general setting. Although, according to
A. Weil the natural setting for Fourier Analysis (leading to the
spirit of Abstract Harmonic Analysis: AHA) most of the time one
works in the setting of the Schwartz space S(Rd) of rapidly
decreasing functions and its dual space, the tempered distributions.
In this setting weighted L2-spaces and Sobolev spaces correspond
to each other in a very natural way.
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official abstract II

In this talk we will summarize the advantages with respect to the
level of technical sophistication and theoretical background which
is possible when one uses instead of the Schwartz-Bruhat space
S(G ) the Segal algebra S0(G ) and the resulting Banach Gelfand
Triple (S0, L

2, S ′0), which appears to be suitable for the description
of most problems in AHA as well as for many engineering
applications (this part is beyond the scope of the current talk).
Among others the use of Wiener amalgam spaces W (Lp, `q) and
modulation spaces Mp,q (introduced by the author in the 1980s)
belong to a comprehensive family of Banach spaces (B, ‖ · ‖B)
embedded between S0 and S ′0, which we call Fourier Standard
Spaces. These spaces have a double module structure, with
respect to convolution by L1-functions and pointwise
multiplication with functions from the Fourier algebra FL1.
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official abstract III

The most interesting examples are Banach spaces of (generalized)
functions containing S0(G ) (or just S(Rd) for the Euclidean case)
as a dense subspace and such that time-frequency shifts
f 7→ π(t, ω)f are isometric on (B, ‖ · ‖B), where

π(t, ω)f (x) = e2πiω·x f (x − t), x , t, ω ∈ Rd ,

or the dual of such a space.

There is a long list of examples of such spaces. Any reflexive
Banach space (of tempered) distributions belongs to this family,
hence in some sense this family allows to derive statements
typically valid for

(
L
p(Rd), ‖ · ‖p

)
, with 1 < p <∞.
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Personal Background

Educated in Abstract Harmonic Analysis (H. Reiter);

I got interested in Function Spaces (H. Triebel);

Started to do Numerical Harmonic Analysis in College
Park/MD (since 1989, using MATLAB);

Realizing a number of real world applied projects, with
colleagues from image processing, communication theory,
astronomy, geophysics, etc.;

Current goal: CONCEPTUAL HARMONIC ANALYSIS
(sythesis of ABSTRACT and NUMERICAL resp.
COMPUTATIONAL harmonic analysis);

Using MATLAB to do explorative simulations, but also
to develop efficient algorithms.
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Motivation concerning natural function spaces I

In this talk I would like to take a fresh look at the various function
spaces which arose from Fourier Analysis. It is true that they have
shaped the early phase of Functional Analysis (with strong
contributions from Hungary). Speaking in Budapest I assume that
the audience is familiar with the classical theory of Fourier Series
and Fourier transforms.
Let me start to mention a couple of function spaces which play a
role in Fourier analysis. The most natural function space on the
torus is certainly

(
C (T), ‖ · ‖∞

)
, the space of continuous,

complex-valued functions on T endowed with the sup-norm.

‖f ‖∞ := max
x∈T
|f (x)|,

corresponding to uniform convergence.
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Motivation concerning natural function spaces II

It is used to formulate the Theorem of (Stone)-Weierstrass:
Polynomial functions form a DENSE subalgebra of

(
C (T), ‖ · ‖∞

)
.

In fact also the Riemanian integral is well defined on this space,
defined as the strong limit of linear combinations of discrete
measures (the finite Riemannian sums), with the speed of
convergence depending on (the smoothness of) f .
With the work of H. Lebesgue the notation of an integral has been
pushed to its natural limit, i.e. to what is nowadays called the
Lebesgue space

(
L

1(T), ‖ · ‖1

)
(of equivalence classes of

measurable functions). By the Riesz representation theorem it is a
closed subspace of the dual of

(
C (T), ‖ · ‖∞

)
.

Looking from the Hilbert space perspective we observe (following
F. Riesz) that the Fourier transform, defined properly on L2(T),
defines a unitary isomorphism onto (`2(Z), ‖ · ‖2), and a unitary
automorphism for

(
L

2(Rd), ‖ · ‖2

)
.
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Motivation concerning natural function spaces III

From there it was natural to look for other exponents, which lead
to the theory of Lp-spaces. They are all Banach spaces, with the
dual being just another member of this family, with the well-known
relation 1/q + 1/p = 1.
Next one can look for other case, where

(
L
p(T), ‖ · ‖p

)
is mapped

onto `r (Z), but there is no other such pair. The best we can say is
the Hausdorff-Young inequality with allows to estimate the range
of the Fourier transform applied to

(
L
p(T), ‖ · ‖p

)
(with

1 ≤ p ≤ 2) by the dual space `q(Z).
Consequently it becomes interesting to ask for the space of all
pointwise multipliers (on the FT side) from F(Lp(T)) into
F(Lr (T)), for different values of p, r ∈ [1,∞], i.e. turn to the
question of Fourier multipliers.
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Motivation concerning natural function spaces IV

An important family of such multipliers is concerned with
multipliers from F(L1(T)) into `1(Z), the so-called summability
kernels.
These Fourier multipliers are in fact much more important,
because they require functions with good decay, so that they are
integrable (hence the Fourier inversion formula makes sense), but
in order to ensure that one has convergence on the “time-side” one
also needs that these corresponding family (inverse Fourier
transforms of the summability kernels) form a “Dirac sequence”,
hence in particular are uniformly bounded in

(
L

1(Rd), ‖ · ‖1

)
.
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Lorentz and Orlicz Spaces

One may of course ask whether it is possible to have a refinement
of the scale of Lp-spaces, i.e. generate spaces with more
parameters. In retrospect one can say that the so-called Lorentz
spaces are those spaces which are obtained by applying general real
interpolation methods with parameters (θ, q) (with 1 ≤ q <∞) to
the ordinary Lp-spaces. Usually the resulting spaces are denoted by
L(p, q).
Another family, the so-called Orlicz spaces arises by replacing the
exponential function u 7→ |u|p in the definition of Lp-spaces by
another function. To define a suitable norm on these spaces turns
out to be non-trivial.
Nevertheless all the resulting spaces have the property of being
rearrangement invariant (with respect to measure preserving
transformations).
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Abstract Harmonic Analysis

Abstract Harmonic Analysis provides a good framework for Fourier
Analysis - even for applied Fourier Analysis - when it comes to a
comparison if different, still quite similar in an ABSTRACT sense.

There is always a commutative group, and corresponding
translation operators of the functions on that group, and a dual
group, which consists of the (bounded and continuous) joint
eigenvectors for these (unitary) operators on

(
L

2(G ), ‖ · ‖2

)
.

Engineers make a distinction between discrete and continuous
variables, between periodic and non-periodic signals, while AHA
talks about compact or discrete groups resp. dual groups. The
discrete + periodic case is naturally identified with the “finite”
case, i.e. with signals over ZN (group of unit roots of order N).
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Discrete and Fast Fourier Transform

For this finite case the situation is quite simple:
The Discrete Fourier Transform (DFT) can be viewed as a change
of basis, with the natural basis of unit vectors (obtained by
applying the cyclic shift operator to any one of them) is replaced
by the “pure frequencies”, resp. the DFT matrix.

This matrix is (up to the scaling factor
√
N) a unitary matrix. It

can be also viewed as a Vandermonde Matrix, describing the
mapping from a vector [a1, ..., aN ] to the value of the polynomial
pa(z) =

∑N
k=1 akz

k−1 at the unit roots of order N, taken in the
mathematical positive sense, starting with 1 = ω0

N .

From there many properties (like the sampling theorem) are
easily derived! Also Poisson’s formula is valid in this setting.
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Non-compactness: Problems for the Euclidean Situation

Let us shortly reflect that situation concerning

Fourier Analysis over the Euclidean setting.

DIRECT FOURIER TRANSFORM: f̂ (s) =
∫
Rd f (t)χs(t)dt

INVERSE FOURIER TRANSFORM: f (t) =
∫
Rd f̂ (s)χs(t)ds

Compared to the finite dimensional setting we have new problems:

1 The pure frequencies or characters χs(t) := exp(2πis · t) do
not belong to the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
,

leave alone to
(
L

1(Rd), ‖ · ‖1

)
.

So do they HAVE (?) a Fourier transform?

2 Even for f ∈ L1(R) it is not guaranteed that the Fourier
transform f̂ belongs to L1(R) as well. This is why in the
classical setting summability kernels have to be invoked.
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Ways to deal with this situation I

Pure mathematicians have spent a lot of energy in trying to
develop methods of analysis that allow to turn the intuition (up to
the point that it gets almost lost, e.g. in the discussion of spectral
analysis!) into correct mathematical statements, leading to
highlights such as the results of L. Carleson or the theory of
tempered distributions by L. Schwartz.
Of course it is not enough to NAME the inversion formula as such.
One has to show in fact for which domains and target spaces the
Fourier transform is well defined and the “inverse transform” is
taking correctly the role of an “inverse mapping”.

Looking ahead:
(
S0(Rd), ‖ · ‖S0

)
(and its dual) as an appropriate

setting for such a claim, allowing to work with ordinary
Riemann integrals, but still in a distributional setting.
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Ways to deal with this situation II

Engineers and physicists rely more their “intuition” and
avoid the technical approach (using Lebesgue’s theory,
topological vector spaces, heavy functional analytic arguments)
and argue on a more symbolic level.
In this spirit one finds claims such as

The family (δx)x∈R is a continuous ONB for L2(R);

The family (χs)s∈R is a continuous ONB for L2(R);

The (forward and inverse) Fourier transform describe a change
of bases between these two natural bases.

One of the formulas appearing frequently in this context is:∫ ∞
−∞

e2πisxds = δ(x).
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Ways to deal with this situation III

Transition from periodic to non-periodic

Another element of concern in this context is the usual description
and motivation for formulas describing the “continuous” (forward
and inverse) transform.
Starting from the periodic case, which can be well described using
the rather concrete complete orthonormal system of pure
frequencies from a lattice (compatible with the periodicity of the
functions to be expanded, so with a spacing which is the inverse of
the periodicity) the argument is to let the period go to infinity and
to use some vague arguments “justifying” the continuous formulas.

Again, S ′0 (with the w∗-topology) can be used to provide a
mathematical correct justification, but this goes beyond the
scope of this talk.
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BUPUs: Bounded Uniform Partitions of Unity

Definition

A bounded family Ψ = (ψi )i∈I in a Banach algebra (A, ‖‖A) is
called a Bounded Uniform Partition of Unity in (A, ‖‖A) (a
BUPU in A, for short), if there are a relatively separateda

family X = (xi )i∈I and some R > 0 such that

1 supp(ψi ) ⊆ BR(xi ) for each i ∈ I , and

2
∑

i∈I ψi (x) = 1 for all x ∈ Rd

ai.e. a finite union of γ-separated sets.

The most useful variant are the so-called regular BUPUs with
I = Λ C Rd , a lattice, with ψi = Tλ(ϕ), for some ϕ = ϕ0,
such as a cubic B-spline.
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BUPUs: Bounded Uniform Partitions of Unity
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Wiener Amalgam Norms Vizualized

50 100 150 200 250 300 350 400 450
0

0.02
0.04
0.06
0.08

one possible partition of unity, a C 2 curve

50 100 150 200 250 300 350 400 450
-0.1

0

0.1
the local pieces of the smooth signal

Hans G. Feichtinger The Banach Gelfand Triple and Fourier Standard Spaces



History Introduction Lp -spaces Abstract HA BUPUs, WAMS Wiener Amalgams Homogeneous BSP Banach Modules SO-BGTr FourSS Compactness Multipliers lower/upper index Intersections Kernel Thm. References

Recalling the Wiener Amalgam Concept

We recall the concept of BUPUs ideally as translates along a
lattice (Tλϕ), with compact support and a certain amount of
smoothness, perhaps cubic B-splines.
The Wiener amalgam space W (B, `q) is defined as the setf ∈ B loc | ‖f |W (B, `q)‖ :=

(∑
λ∈Λ

‖f · Tλϕ‖qB

)1/q
 .

There are many “natural results” concerning Wiener amalgam
spaces, namely coordinatewise action, e.g.

duality (if test functions are dense and q <∞);

convolution and pointwise multiplication;

interpolation (real or complex).
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The classical Wiener algebra

In the context of Segal algebras the space W (C0, `
1)(Rd) (the

closure of the test functions in W (L∞, `1)(Rd)) appears early on
in the literature (e.g. in the work of N. Wiener on the Tauberian
Theorems), also known as Wiener’s algebra.
We can describe it as the space of continuous, complex-valued
functions whose absolute value has a finite upper Riemannian sum
(over the full Euclidean space Rd).
It can be shown to be the smallest Segal algebra which is in
addition also allows pointwise multiplications with bounded,
continuous functions or just by elements h ∈ C0(Rd). The classical
norm in Reiter’s book is

‖f ‖W (R) = maxz∈R
∑
k∈Z

maxy∈[k,k+1]|f (y − z)| <∞.
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The local maximal function
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The Classical Amalgams W (Lp, `q)

The first observation (see the survey article of Fournier/Stewart in
Bull. AMS from 1985) is that one has nice inclusion relations for
amalgam spaces, but in different directions, depending on the local
(p) resp. global argument (q).
There are also Hausdorff-Young Theorems for Wiener Amalgams:

Theorem

1 F(W (Lp, `q)) ⊆W (Lq
′
, `p

′
) , for 1 ≤ p, q ≤ 2;

2 F(W (FLp, `q)) ⊆W (FLq, `p) , for 1 ≤ q ≤ p ≤ ∞;

3 In particular, the spaces W (FLp, `p)(Rd) form an increasing
family of Fourier invariant Banach spaces of (mild)
distributions, equal to L2(Rd) for p = 2, and with

W (FL1, `1)(Rd) = S0(Rd) ⊂W (FLp, `p)(Rd) ⊂ S ′0(Rd).
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Homogeneous Banach Spaces

In his book on Fourier Analysis (which first appeared in 1968)
Y. Katznelson describes homogeneous Banach spaces as one
possible generalization of ordinary Lp(G )-spaces.

Definition

A Banach space (B, ‖ · ‖B) of locally integrable functions is called
a homogeneous Banach space on Rd if it satisfies

1 ‖Tx f ‖B = ‖f ‖B ∀f ∈ B, x ∈ Rd ;

2 ‖Tx f − f ‖B → 0 for x → 0, ∀f ∈ B.

EX: B = L
p(Rd) for 1 ≤ p <∞, or reflexive BF spaces.

Via vector-valued integration one derives

‖g ∗ f ‖B ≤ ‖g‖L1‖f ‖B , ∀g ∈ L1(Rd), f ∈ B. (1)
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Segal Algebras

For his work related to spectral analysis over LCA groups H. Reiter
introduced in his book the so-called Segal algebras.
Using the terminology of Homogeneous Banach Spaces one can
abbreviate their characterization as follows:

Definition

A homogeneous Banach space is called a Segal Algebra (in the
sense of H. Reiter) if it has the additional properties

1 (B, ‖ · ‖B) is continuously embedded into
(
L

1(G ), ‖ · ‖1

)
;

2 B is dense in
(
L

1(G ), ‖ · ‖1

)
.

Alternatively one can characterize them as dense, essential
Banach ideals in the Banach algebra

(
L

1(G ), ‖ · ‖1

)
.
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Banach Module Terminology

Definition

A Banach space (B, ‖ · ‖B) is a Banach module over a Banach
algebra (A, ·, ‖ · ‖A) if one has a bilinear mapping (a, b) 7→ a • b,
from A× B into B bilinear and associative, such that

‖a • b‖B ≤ ‖a‖A‖b‖B ∀ a ∈ A, b ∈ B, (2)

a1 • (a2 • b) = (a1 · a2) • b ∀a1, a2 ∈ A, b ∈ B. (3)

Definition

A Banach space (B, ‖ · ‖B) is a Banach ideal in (or within, or of)
a Banach algebra (A, ·, ‖ · ‖A) if (B, ‖ · ‖B) is continuously
embedded into (A, ·, ‖ · ‖A), and if in addition (2) is valid with
respect to the internal multiplication inherited from A.
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Double Modules

Over the years it has turned out that for the discussion of
translation invariant operators pointwise multiplicative structures
are helpful, and conversely. Hence we will take a look at Banach
spaces having a double module structures.
Usually we refer to convolution operators as smoothing operators
or mollifiers. In contrast pointwise multipliers (such as
multiplication with a summability kernel) improves locality, so they
are sometimes also called “localizers”.
If the convolution structure comes from

(
L

1(Rd), ‖ · ‖1

)
, with the

usual convolution (extending naturally to the convolution of
bounded, regular Borel measures), we do not have an identity
element, but we have bounded approximate units ( Dirac
sequences), via dilation. Their Fourier transforms (stretched
summability kernels) provide BAUs for

(
FL1(Rd), ‖ · ‖FL1

)
.
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Minimality of
(
S0(Rd), ‖ · ‖S0

)
Within this family of double modules (

(
L

1(Rd), ‖ · ‖1

)
acts via

convolution,
(
FL1(Rd), ‖ · ‖FL1

)
via pointwise multiplication) the

Segal algebra
(
S0(Rd), ‖ · ‖S0

)
is the smallest member.

Theorem

There is a smallest member in the family of all TF-homogeneous
Banach spaces, namely the Segal algebra(
S0(Rd), ‖ · ‖S0

)
= W (FL1, `1)(Rd).

It is also a modulation space, i.e. it can be characterized as

S0(Rd) = {f ∈ L2(Rd) |Vg f ∈ L1(R2d)}

for some/any non-zero Schwartz function g , with norm

‖f ‖S0 = ‖Vg f ‖1.
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Justifying the properties of the family

There is a large number of results concerning S0(Rd)
(defined for any dimension, but in fact for any LCA group):

FGS0(G ) = S0(Ĝ).

There is a tensor product property, namely

S0(R2d) = S0(Rd)⊗̂S0(Rd).

Multipliers are easily characterized:

Theorem

The continuous linear operators from S0(Rd) to S ′0(Rd) are exactly
the convolution operators by “kernels” σ ∈ S ′0(Rd), with
equivalence of norms (the operator norm of the convolution
operator, resp. translation invariant linear system) and the S ′0-norm
of the corresponding convolution kernel ‖σ‖S ′

0
.
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Fourier Invariant Spaces

Figure: FOURinv2.jpg
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Fourier Invariant Spaces II

Figure: fourinv4.jpg
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Minimal Spaces

Given any Fourier standard space one can apply
product-convolution and convolution-product operators, which
both approximate (in some sense) the identity operators:
Convolution with elements of a Dirac sequence (bounded in(
L

1(Rd), ‖ · ‖1

)
) acts as mollifier, while multiplication with

(essentially) summability kernels (belonging to(
FL1(Rd), ‖ · ‖FL1

)
, bounded there) provide localizers.

Combining them we obtain operators of the form

f 7→ h · (g ∗ f ) resp. f 7→ g ∗ (h · f ),

with g , h ∈ S0(Rd).
Since these regularizing operators are (individually) bounded
operators from (S ′0(Rd), ‖ · ‖S ′

0
) to

(
S0(Rd), ‖ · ‖S0

)
they also

map (B, ‖ · ‖B) into
(
S0(Rd), ‖ · ‖S0

)
↪→ (B, ‖ · ‖B).
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SO-BGTr

The rest of this talk will be concerned with the so-called Banach
Gelfand Triple (S0,L

2,S ′0)(Rd). It can be defined over general
LCA groups.
Together with its dual the Segal algebra

(
S0(Rd), ‖ · ‖S0

)
provides

an appropriate setting for (unweighted) Banach spaces of
“functions” suitable for Fourier Analysis and applications
(in the spirit of H. Triebel).

For comparison the Banach Gelfand Triple situation can be
compared with the inclusion of number systems Q ⊂ R ⊂ C.

We can only outline some of the general topics in the
subsequent slides.
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Fourier Standard Spaces

Definition

A Banach space (B, ‖·‖B) of (tempered) distributions is called a
Fourier standard space if it satisfies the following conditions:

1 S0(Rd) ↪→ B ↪→ S
′
0(Rd),

2 B is translation and modulation isometrically invariant, i.e.

‖MωTx f ‖B = ‖π(λ)f ‖B = ‖f ‖B , λ = (x , ω).

3 The Fourier algebra A defines pointwise multipliers on B:

‖h · f ‖B ≤ ‖h‖A‖f ‖B , h ∈ A := FL1(Rd), f ∈ B.

4 B is a Banach convolution module over L1(Rd), with

‖g ∗ f ‖B ≤ ‖g‖1‖f ‖B , g ∈ L1(Rd), f ∈ B.
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Some Remarks

Remark

Assuming (3) and (4) one can start equivalently from the situation

S(Rd) ↪→ (B, ‖ · ‖B) ↪→ S ′(Rd).

Remark

If S(Rd) (hence S0(Rd) ⊃ S(Rd)) is dense in (B, ‖ · ‖B) then (2)
implies automatically (3). In fact, from the continuity of
translation (and modulation) one could obtain the “integrated
group action” by standard vector-valued integration methods.

Remark

Combining the two actions into the group action of the reduced
Heisenberg group (via the so-called Schrödinger representation)
one has in fact Heisenberg modules.

Hans G. Feichtinger The Banach Gelfand Triple and Fourier Standard Spaces



History Introduction Lp -spaces Abstract HA BUPUs, WAMS Wiener Amalgams Homogeneous BSP Banach Modules SO-BGTr FourSS Compactness Multipliers lower/upper index Intersections Kernel Thm. References

Operations within the family I

The setting of Fourier standard spaces allows to treat a large
number of “derived spaces” in a unified viewpoint. In fact, most of
the operations which play a role in Fourier Analysis, but also in
Gabor or Time-Frequency Analysis can be applied to Fourier
Standard Spaces.
Hence one can treat those questions in a more systematic way,
avoiding the purely technical questions of integrability and
concentrate on various interesting, and sometimes completely
overlooked questions.
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Constructions within the FSS Family

1 Taking Fourier transforms;

2 Conditional dual spaces, i.e. the dual space of the closure of
S0(G ) within (B, ‖ · ‖B), i.e. only for minimal spaces;

3 With two spaces B1,B2: take intersection or sum

4 forming amalgam spaces W (B, `q); e.g. W (FL1, `1);

5 forming modulation spaces Mp,q = F(W (FLp, `q));

6 defining pointwise or convolution multipliers;

7 using complex (or real) interpolation methods, so that we
get the spaces Mp,p = W (FLp, `p) (all Fourier invariant);

8 Applying automorphism such as dilations, rotations;

9 any metaplectic image of such a space, e.g. the
fractional Fourier transform.
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Compactness in (B, ‖ · ‖B)

Lemma

S0(Rd) is a dense subspace of a FouSS (B, ‖ · ‖B) if and only if
the corresponding operators converge to f for any f ∈ B.

We call such space minimal double modules.
In a paper published in Analysis Mathematica in 1982 I have shown
a result which implies in our context:

Theorem

A bounded and closed subset M of a FouSS (B, ‖ · ‖B) is compact
if and only if it is equicontinuous and tight, i.e. for any ε > 0 there
exists g ∈ L1(Rd) and h ∈ FL1(Rd) such that

‖g ∗ f − f ‖B ≤ ε ∀f ∈ M;

‖h · f − f ‖B ≤ ε ∀f ∈ M.
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Fourier Multipliers I

Let (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) be two Fourier standard spaces
(think of B1 = L

p and B2 = L
q). Then we can define the space of

multipliers from B
1 to B2.

Definition

M
B

1,B2 := {T : B1 → B
2, T ◦ Tx = Tx ◦ T for all x ∈ Rd}.

Given the properties of S0(Rd) and its dual S ′0(Rd) one can verify
that this is another Fourier standard space. The generalized
Fourier transform in the sense of S ′0(Rd) maps M

B
1,B2 onto the

space of pointwise multipliers between the Fourier images FB1

and FB2, mapping “convolution kernels” into “transfer functions”
(engineering terminology).
For B1 = L

p(Rd) = B
2 this is exactly the classical space of

Fourier multipliers.
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Fourier Multipliers II

Since S0(Rd) is a subspace of the so-called quasi-measures
(according to M. Cowling they can be identified with the dual
space for the space of test functions from the Fourier algebra with
compact support) this last result implies that the action of a
multipliers T (at least on test functions) can be described as the
convolution with some element from S

′
0(Rd): Tf (x) = σ(Tx f

X).
The reader can find a lot of other examples about multiplier spaces
between Lp-spaces in the book of R. Larsen (1972).

Hans G. Feichtinger The Banach Gelfand Triple and Fourier Standard Spaces



History Introduction Lp -spaces Abstract HA BUPUs, WAMS Wiener Amalgams Homogeneous BSP Banach Modules SO-BGTr FourSS Compactness Multipliers lower/upper index Intersections Kernel Thm. References

Questions arising from local/global considerations?

There are at least two major type of questions which one can ask,
related to the possibility of creating new spaces within the family.
The key constructions have to do with

Wiener amalgam spaces of the form W (B, `q);

Let us recall that for the construction of Wiener amalgam spaces
we only need the possibility of applying a BUPU (a bounded
partition of unity), in our case boundedness refers to(
FL1(Rd), ‖ · ‖FL1

)
.

Moreover there is a clear chain of proper inclusions with the scale
of space of the form W (B, `p), with increasing p, with W (B, `1)
as the smallest, certainly embedded into (B, ‖ · ‖B), and
contained in W (B, `∞).
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Lower and Upper Index of a Function Space

We define a lower resp. upper index for a Fourier Standard space:

Definition

low(B) := sup{r |B ⊆W (B, `r )}.

Definition

The upper index of B is defined as follows:

upp(B) := inf{s |W (B, `s) ⊆ B}.

For B = FLp(Rd) or B = FLq(Rd) (1/p + 1/q = 1), with
1 ≤ p ≤ 2 one has low(B) = p and upp(B) = q.
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Intersections, tempered Lp-spaces

Clearly the intersection (but also the sum, related by duality) of
two FouSS is again FouSS, with the norm for B1 ∩ B2:

‖f ‖
B

1∩B2 := ‖f ‖
B

1 + ‖f ‖
B

2 .

Since it still has to contain S0(Rd) it cannot be trivial. A classical,
non-trivial example is found in the work of K. McKennon in the
early 70th, who - from the point of view of FouSS - was studying
the Banach algebra Ltp := L

p ∩ Convp of all elements of
(B, ‖ · ‖B) =

(
L
p(G ), ‖ · ‖p

)
which at the same time define

bounded “multipliers” on
(
L
p(G ), ‖ · ‖p

)
.

The interesting finding of his work was (valid at least for
Abelian groups): The space of multipliers of this new space
can be identified with the Lp-multipliers.
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The Kernel Theorem

So-called Kernel Theorems can be viewed as the continuous
analogue of a matrix representation of a general linear operator.
In the finite dimensional setting the situation is quite simple. Every
finite dimensional vector space V is isomorphic to Cn or Rn, with
n = dim(V ) because ANY basis has the same number of elements.
Consequently it is enough to describe linear operators from Rn to
Rm (or Cn to Cm) by real resp. complex m × n-matrices.
Thinking of a function oveer R is a “continuous collection of point
values” f (x), x ∈ R, it is natural to consider (linear) INTEGRAL
operators of the form

Tf (x) =

∫
Rd

K (x , y)f (y)dy , x , y ∈ Rd , (4)

but is quickly clear that even some simple operators cannot be
described in this way (e.g. multiplication operator, even the
identity operator).
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Kernel Thm., more

On the other hand, one may expect, that it is possible to regain
the integral kernel K (x , y) from the operator in a similar way as in
the matrix case.
Recall that the k-th column of the matrix associated with T (given
a basis) is the coordinate vector of T (ek) in the target space.
Hence the expected “rule” to find the kernel reads:

K (x , y) = T (δy )(x) = δx(T (δy )) (5)

but there is only a chance if δy is in the domain of the operator
and the result, i.e. T (δy ) is a continuous function, which can be
evaluated pointwise at x .
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The Hilbert Schmidt Version

There are two ways out of this problem

restrict the class of operators

enlarge the class of possible kernels

The first one is a classical result, i.e. the characterization of the
class HS of Hilbert Schmidt operators.

Theorem

A linear operator T on
(
L

2(Rd), ‖ · ‖2

)
is a Hilbert-Schmidt

operator, i.e. is a compact operator with the sequence of singular
values in `2 if and only if it is an integral operator of the form (4)
with K ∈ L2(Rd × Rd). In fact, we have a unitary mapping
T → K (x , y), where HS is endowed with the Hilbert-Schmidt
scalar product 〈T ,S〉HS := trace(T ◦ S∗).
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Fourier Standard Spaces of Operator Kernels I

The Kernel Theorem for the Banach Gelfand Triple allows to
identify many spaces of operators with the corresponding Banach
spaces of integral kernels. The unitary mapping between
L

2(R2d) and HS, the Hilbert space of Hilbert-Schmidt
operators on H =

(
L

2(Rd), ‖ · ‖2

)
, K 7→ TK :

TK (f )(x) =

∫
Rd

K (x , y)f (y)dy , x , y ∈ Rd ,

extends to a Banach Gelfand Triple isomorphism between the
(S0,L

2,S ′0)(R2d) and the operator Banach Gelfand Triple
(B,HS,B′). For K ∈ S0(R2d) one has

K (x , y) = T (δy )(x) = δx(T (δy ).

(in analogy to the matrix case: ak,l = 〈T (el), ek〉.
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Fourier Standard Spaces of Operator Kernels II

Theorem

For any pair (B1,B2), with B1 minimal, the set

K(B1,B2) := {σT ∈ S ′0(G ×G ), T ∈ L(B1,B2)}

of all kernels corresponding to bounded linear operators from
(B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) is again a standard space on G × G ,
endowed with the operator norm |‖T |‖

B
1→B2 .

If (B2, ‖ · ‖(2)) is a dual space of another (minimal) space
(B3, ‖ · ‖(3)) it is not difficult to identify the set of kernels with the
dual of the projective tensor product B1⊗̂B3, which is a well
defined subspace of S ′0(Rd)⊗̂S ′0(Rd) ⊂ S ′0(R2d), thus avoiding
the abstract definition of tensor products of Banach spaces
using certain norms and completions.
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Thanks and LINKS

More at www.nuhag.eu

All relevant papers are downloadable from
www.nuhag.eu/bibtex

This talk and many other talks on related subjects can be
downloaded from

www.nuhag.eu/talks

User: visitor, PWD: nuhagtalks

Thank you for your attention!
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