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Orientation for the reader

This first page is mostly meant for those who read the slides,
without having the chance to attend the talk.

To focus of this talk will be on the problem of multipliers, i.e.
operators which commute with translations between Banach
spaces of functions over LCA groups (locally compact Abelian).
It is organized roughly as follows:

1 First a pseudo-historical review of the subject;

2 Then a modern, distributional view on the subject;

3 Finally some attempts to simplify the traditional approach.

Let us start with a recapitulation of the abstract provided
for the conference describing the intentions in more detail.
For sake of simplicity we will mostly talk about G = Rd .
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Offical Abstract was ... I

The purpose of this talk is to popularize the concepts of Banach
Gelfand Triples and Fourier Standard Spaces. For any LCA (locally
compact Abelian) group G the Banach Gelfand triple
(S0,L

2,S ′0)(G ) can be introduced, consisting of the Segal algebra
SO(G), the Hilbert space L2(G) and the dual space S ′0(G ),
consisting of so-called “mild” distributions. These space form a
chain of natural inclusions via SO in L2 in SO’ (density in norm or
in the w*-sense), and Wilson basis allow to identify the triple with
the prototypical Banach Gelfand Triple (`1, `2, `∞). Obviously, for
G = T (the torus group) this is just (AT ,L2,PM) using Wiener’s
algebra of absolutely convergent Fourier series, whose dual is the
space of all pseudo-measures, resp. periodic distributions with
bounded Fourier coefficients.
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Offical Abstract was ... II

Fourier Standard Spaces are Banach spaces (B, ‖ · ‖B) which are
sandwiched between S0(G ) and S ′0(G ), and which are (roughly
speaking) in addition isometrically invariant with respect to
time-frequency shifts. In fact, S0 is the smallest such space, and
any space of tempered distributions with this property sits inside of
S ′0(G ). These space form a rich family, including Lp-spaces,
Wiener amalgam spaces, modulation spaces, and many others.
In this talk we will focus on spaces of Convolvers (i.e. kernels of
convolution operators) between two such Fourier Standard Spaces
or Fourier Multipliers (pointwise multpliers on the Fourier
transform side). In doing so we can provide a new approach to the
characterization of convolvers for Lp-spaces as members of the
dual of the so-called Herz algebra A′(G ). This characterization
extends to a class of reflexive Banach function spaces.
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The Multiplier Problem

According to R. Larsen (see his book on multipliers from 1971
citela71) one can ask for any pair of translation invariant spaces on
a LCA group, in which way one could characterize the Banach
space of all operators from (B1, ‖ · ‖(1)) to (B2, ‖ · ‖(2)) which
commute with translations.
If G is discrete the answer to this problem is quite easy, at least if
the unit vectors {eg | g ∈ G} are a basis for the sequence space
(B1, ‖ · ‖(1)), because they are just translates of the unit vector e0,
with 0 ∈ G begin the neutral element of the group, hence
b =

∑
g∈G bgTge0 in B1, a sum of translates of e0, and thus

T (b) =
∑
g∈G

bgTg (T (e0)) = b ∗G h

for the “impulse response” h := T (e0), where ∗T denotes
convolution in the sense of the group G .
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Wendel’s Theorem I

It is well known that convolution operators commute with
translations, in fact we have

Tx(f ∗ g) = (Tx f ) ∗ g = f ∗ (Txg).

In a certain sense also the converse is true, as suggested by:
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Wendel’s Theorem II

Theorem

The space of H
L

1(L1,L1) all bounded linear operators on L1(G )
which commute with translations (or equivalently: with
convolutions) is naturally and isometrically identified with
(Mb(G ), ‖ · ‖Mb

). In terms of our formulas this means

H
L

1(L1,L1)(Rd) ' (Mb(Rd), ‖ · ‖Mb
),

via T ' Cµ : f 7→ µ ∗ f , f ∈ L1, µ ∈Mb(Rd).
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Wendel’s Theorem III

Lemma

Let us define

B
L

1 = {f ∈ B | ‖Tx f − f ‖B → 0, for x → 0}.

Consequently we have (Mb(Rd))
L

1 = L1(Rd), the closed ideal of
absolutely continuous bounded measures on Rd .

This is in contrast to the situation, where the dual spaces(
Lp(Rd), ‖ · ‖p

)
with 1 < p ≤ ∞ are the target.
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Wendel’s Theorem IV

Theorem

The space of HG(L1,Lp) all bounded linear operators from L1(G )
to Lp(G ) which commute is naturally and isometrically identified
with Lp(G ).

T ' Ch : f 7→ h ∗ f , f ∈ L1, h ∈ Lp(G ).
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The relevance of Lp-spaces

If one asks, which function spaces have been used and relevant in
those days the list will be quite short: Aside from BV and absolute
continuity mostly the family of Lebesgue spaces appeared to be
most useful for a study of the Fourier transform.
There are “good reasons”. The Fourier transform is given by:

f̂ (s) :=

∫
Rd

f (t)e2πis·tdt

appears to require f ∈ L1(Rd), same with convolution (integrals):

f ∗ g(x) :=

∫
Rd

f (x − y)g(y)dy ,

which turns
(
L1(Rd), ‖ · ‖1

)
into a Banach algebra.
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and some 50 years later ...

Hans Reiter’s book on Classical Harmonic Analysis and
Locally Compact Groups appeared in 1968, and was describing
Harmonic Analysis as the

STUDY OF THE BANACH ALGEBRA
(
L1(G ), ‖ · ‖1

)
,

its behaviour under the Fourier transform, the study of closed
ideals (with the hint to the problem of spectral synthesis).

Around that time (1972) Lennart Carleson was able to prove the
a.e. convergence of Fourier series in

(
L2(T), ‖ · ‖2

)
.

Of course we saw the books of Katznelson, Rudin, Loomis and in
particular Hewitt and Ross at the same time. Carl Herz called the
comprehensive book by C. Graham and C. McGehee a
“tombstone to Harmonic Analysis” (1979) (Book Review by
C. Herz: Bull. Amer. Math. Soc. 7 (1982), 422425).
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Where did Fourier Analysis play a role?

Not to say “everywhere in analysis” let us mention some important
developments:

1 L. Schwartz theory of tempered distributions extended the
range of the Fourier transform enormously (it was not
anymore an integral transform!)

2 L. Hörmander based on this approach (influence of Marcel
Riesz!) his treatment of PDEs;

3 J. Peetre an H. Triebel started the theory of function spaces,
interpolation theory: Besov-Triebel-Lizorkin spaces;

4 E. Stein and his school developed the theory of maximal
functions, Hardy spaces, singular integral operators;
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Consequences of Plancherel’s Theorem I

One of the cornerstones of Fourier Analysis (especially over Rd) is
Plancherel’s Theorem, describing the (extended) Fourier transform
as a unitary automorphism of the Hilbert space

(
L2(Rd), ‖ · ‖2

)
.

It is quite clear that one cannot define it as a pointwise (a.e.)
integral transform anymore. Instead one has to resort to the use of
Cauchy sequences. In other words one makes (mostly) use of the
characterization of

(
L2(Rd), ‖ · ‖2

)
as the (abstract) completion of

any dense subspace (e.g. L1 ∩ L2(Rd)) with respect L2-norm.

F(Ts f ) = χ−s f̂ , f ∈ L2(Rd), s ∈ Rd ,

with χs(t) = exp(2πis · t), implies that the study of translation
invariant operators on L2(Rd) is equivalent to the study (on
the FT side) of operators which commute with multiplication
by arbitrary trigonometric polynomials.
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Consequences of Plancherel’s Theorem II

As it is not hard to verify that any such operator has to be a
multiplication operator, and subsequently that pointwise multiplier
(or transfer function) on the Fourier transform has to belong to
L∞(Rd) in order to be bounded:

Theorem

Any operator on
(
L2(Rd), ‖ · ‖2

)
commuting with translations (or

equivalently, with convolutions by g ∈ L1(Rd)-functions) can be
described as Fourier multiplier:

T (f ) = F−1(h · f̂ ), f ∈ L2(Rd),

for some h ∈ L∞(Rd). The identification is isometric:

‖h‖L∞(Rd ) = |‖T |‖
L

2(Rd )→L2(Rd ) .
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Consequences of Plancherel’s Theorem III

Traditionally one needs then the theory of tempered distributions
to describe the operator T as a convolution operator with some
distribution. More precisely, it tempting (and OK in the framework
of S ′(Rd)) to denote σ := F−1(h) the inverse Fourier transform of
h (it is thus an element of FL∞(Rd), and may be called a
peudo-measure).
It is not hard to find out that FL∞(Rd) can be naturally identified
with the dual space of FL1(Rd) (a Banach space) and since
FL1(Rd) is dense in

(
C0(Rd), ‖ · ‖∞

)
it is clear that the space

(Mb(Rd), ‖ · ‖Mb
) =

(
C ′0(Rd), ‖ · ‖C ′

0

)
(of bounded, regular Borel

measures) is continuously (and w∗-densely) embedded into
PM(Rd).
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Consequences of Plancherel’s Theorem IV

However, one must be careful here with pointwise interpretations.
For example, one only can expect that

Tf (x) = σ ∗ f (x) = σ(Tx f
X), f ∈ S(Rd).

The chirp signal h = exp(2πis2) in L∞(R) is a good example. It
has the property of being Fourier invariant (in the distributional
sense), i.e. we have σ = F−1(h) = h. Since SINC = F−1(boxcar)
is clearly in L2(R) one might hope for a pointwise convolution,
which of course does not make sense, since there is not a single
x ∈ R such that ∫ ∞

−∞
sinc(y − x) exp(ix2) dx

exists in the Lebesgue sense, since sinc /∈ L1(R).
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Convolvers for
(
L
p(Rd), ‖ · ‖p

)
It is natural to analyze not the general situation, i.e. with
p ∈ (1,∞), since the case p =∞ requires special consideration
related to the “scandal in system’s theory” observed by
I. Sandberg (in a series of papers). Essentially, the Hahn-Banach
theorem allows to describe operators on

(
L∞(Rd), ‖ · ‖∞

)
which

commute with translations, but act trivially on test functions and
thus cannot be “represented as convolution operators”.
Since Rd is an Abelian group it very easy to show that any Fourier
convolver for

(
Lp(Rd), ‖ · ‖p

)
is also a convolver for the conjugate

index
(
Lq(Rd), ‖ · ‖q

)
(with 1/p + 1/q = 1, as usual).

An application of the Riesz-Thorin (complex) interpolation
theorem then implies that any such operator is also bounded
on Lr (Rd), for any r ∈ [p, p′] (for 1 < p < 2).
In other words, the space of Fourier multipliers is getting
(strictly) bigger as p approaches p = 2 (from below).
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Quasi-measures and Convolvers I

The inclusion just mentioned imply that for bounded linear
operators on any of the space

(
Lp(Rd), ‖ · ‖p

)
, with 1 ≤ p <∞

one can find a representation as a convolver (convolution kernel)
by some σ ∈ PM(Rd), resp. a (pointwise) Fourier multiplier by
some h ∈ L∞(Rd).
But clearly this is not possible anymore, as soon as one allows the
use of a target space different from the domain. For example, it is
clearly that any h ∈ L2(Rd) defines a bounded linear operator from(
L1(Rd), ‖ · ‖1

)
into

(
L2(Rd), ‖ · ‖2

)
via

T (f ) = F−1(h · f̂ ), f ∈ L2(Rd),

even for f /∈ L∞(Rd).
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Quasi-measures and Convolvers II

This was the motivation of G. Gaudry (in the 60th of the last
century) to introduce an even larger space, the space of so-called
quasi-measures.
Only few years later it was M. Cowling who was able to show that
one can identify the space of quasi-measures (defined in a
non-trivial way) coincides with space of local pseudo-measures, i.e.
with the set of all distributions
In the book of Larsen one finds the following double claim
(summarized here in words):
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Quasi-measures and Convolvers III

Theorem

Given two parameters p, q ∈ [1,∞), and a bounded linear operator
from

(
Lp(Rd), ‖ · ‖p

)
into

(
Lq(Rd), ‖ · ‖q

)
which commutes with

translation, then the following two claims are valid:

1 There exists some quasi-measure σ such that

T (f ) = σ ∗ f ,

for certain elements f from a dense subspace of Lp(Rd).

2 There exists a quasi-measure τ such that one has

F(T (f )) = τ · f̂ ,

for all f in a specified, dense subset of Lp(Rd).
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Puzzling Questions

Despite the fact that one has a representation on the time-side ‘as
well as on the frequency (or Fourier) side there is a number of
issues that remain open:

general quasi-measures do not have a Fourier transform, since
there is no global control on the growth; any continuous
function defines a quasi-measure;

hence it is not possible to show that F(σ) = τ .

it is even unclear whether the formula

T (f ) = F−1(τ · f̂ )

makes sense, and for which functions f ∈ Lp(Rd).
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Marcinkiewicz-type Theorems

There are of course many interesting, sufficient conditions (on the
Fourier transform side) which ensure that a given function which is
smooth enough (essentially) defines a Fourier multiplier (sufficient
conditions).
Such results are often based on the Paley-Littlewood
characterizations of

(
Lp(Rd), ‖ · ‖p

)
(dyadic blocks on the Fourier

transform side), and go e.g. by the name of Marcinkiewicz results.
From a modern point of view one could argue, that wavelet
expansions are better suited to characterize Lp-spaces and not the
Fourier transform as such, and that the dyadic decompositions help
to bridge this gap. But this would be another, lengthly discussion.
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Rieffel’s use of Banach Modules

In his paper on Induced Representations (JFA, 1967) M. Rieffel has
provided a very powerful, but abstract view on the subject (mostly
referring to E. Hewitt)
It is based on the theory of Banach modules over Banach algebras,
in our case Banach modules over the Banach convolution algebra(
L1(Rd), ‖ · ‖1

)
, such as

(
Lp(Rd), ‖ · ‖p

)
.

Aside from other (mostly algebraic) properties (such as
associativity of convolution in the given context) we are viewing
Lp-spaces as Banach modules over

(
L1(Rd), ‖ · ‖1

)
, satisfying

‖g ∗ f ‖B ≤ ‖g‖L1‖f ‖B , f ∈ B. (1)

Families of Banach spaces of (locally integrable) functions with
this property appear in the book of Katznelson by the name of
Homogeneous Function Spaces and in the work of H. Reiter as
Segal algebras.
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Double modules and FouSS

In retrospect it is not surprising – from the point of view of
time-frequency analysis (going back to D. Gabor) – that in
addition to Banach convolution modules over

(
L1(Rd), ‖ · ‖1

)
that

one should also look into the corresponding property on the Fourier
transform side, i.e. pointwise Banach modules over the Fourier
algebra

(
FL1(Rd), ‖ · ‖FL1

)
.

In fact, in an (almost forgotten) paper with W. Braun in JFA from
1983 we have studied double modules, i.e. Banach spaces which
have BOTH module structures (which do NOT commute)!
Again, for simplicity we work with the unweighted case here only,
and call those spaces Fourier Standard Spaces.
The advantage of the setting G = Rd is the fact, that in a first
explanation one can rely on Schwartz spaces S(Rd) and S ′(Rd)
for a quick explanation.
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Fourier Standard Spaces

Definition

A Banach space (B, ‖·‖B) of (tempered) distributions is called a
Fourier standard space if it satisfies the following conditions:

1 S(Rd) ↪→ B ↪→ S ′(Rd),

2 B is translation and modulation isometrically invariant, i.e.

‖MωTx f ‖B = ‖π(λ)f ‖B = ‖f ‖B , λ = (x , ω).

3 The Fourier algebra A defines pointwise multipliers on B:

‖h · f ‖B ≤ ‖h‖A‖f ‖B , h ∈ A := FL1(Rd), f ∈ B.

4 B is a Banach convolution module over L1(Rd), with

‖g ∗ f ‖B ≤ ‖g‖1‖f ‖B , g ∈ L1(Rd), f ∈ B.
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Some Remarks

Remark

Assuming (3) and (4) one can start equivalently from the situation

S0(Rd) ↪→ (B, ‖ · ‖B) ↪→ S
′
0(Rd).

Remark

If S(Rd) (hence S0(Rd) ⊃ S(Rd)) is dense in (B, ‖ · ‖B) then (2)
implies automatically (3). In fact, from the continuity of
translation (and modulation) one could obtain the “integrated
group action” by standard vector-valued integration methods.

Remark

Combining the two actions into the group action of the reduced
Heisenberg group (via the so-called Schrödinger representation)
one has in fact Heisenberg modules.
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Operations within the family I

The setting of Fourier standard spaces allows to treat a large
number of “derived spaces” in a unified viewpoint. In fact, most of
the operations which play a role in Fourier Analysis, but also in
Gabor or Time-Frequency Analysis can be applied to Fourier
Standard Spaces.
Hence one can treat those questions in a more systematic way,
avoiding the purely technical questions of integrability and
concentrate on various interesting, and sometimes completely
overlooked questions.
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Constructions within the FSS Family

1 Taking Fourier transforms;

2 Conditional dual spaces, i.e. the dual space of the closure of
S0(G ) within (B, ‖ · ‖B);

3 With two spaces B1,B2: take intersection or sum

4 forming amalgam spaces W (B, `q); e.g. W (FL1, `1);

5 defining pointwise or convolution multipliers;

6 projective tensor (and convolution) products, like Ap(G );

7 using complex (or real) interpolation methods, so that we
get the spaces Mp,p = W (FLp, `p) (all Fourier invariant);

8 any metaplectic image of such a space, e.g. the
fractional Fourier transform.
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Fourier Multipliers I

Let (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) be two Fourier standard spaces
(think of B1 = Lp and B2 = Lq). Then we can define the space of
multipliers from B1 to B2.

Definition

M
B

1,B2 := {T : B1 → B2, T ◦ Tx = Tx ◦ T for all x ∈ Rd}.

Given the properties of S0(Rd) and its dual S ′0(Rd) one can verify
that this is another Fourier standard space. The generalized
Fourier transform in the sense of S ′0(Rd) maps M

B
1,B2 onto the

space of pointwise multipliers between the Fourier images FB1

and FB2, mapping “convolution kernels” into “transfer functions”
(engineering terminology).
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Fourier Multipliers II

Since S0(Rd) is a subspace of the so-called quasi-measures
(according to M. Cowling they can be identified with the dual
space for the space of test functions from the Fourier algebra with
compact support) this last result implies that the action of a
multipliers (at least on test functions) can be described as the
convolution with some element from S ′0(Rd).
The reader can find a lot of other examples about multiplier spaces
between Lp-spaces in the book of R. Larsen (1972)
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But why should we be interested in these operators

The answer to this question is given by engineers. In their
introductory course on “linear system theory” electrical engineering
students are introduced to the concept of TILS (translation
invariant linear systems), and how they can be treated, using
essentially Fourier transforms.
The “physical justification” for the importance of these systems
comes from the time-invariance of physical laws. Repeating an
experiment ten minutes later a mechanical or electrical system will
show the “same reaction”, just ten minutes delayed. And smooth
systems are well approximated by linear ones...
Starting from the setting of discrete signals they a learn what the
impulse response is, and that one can describe such a system by its
impulse response or by the transfer function, i.e. the eigenvalues
with respect to the system of eigenvectors, namely the pure
frequencies (cf. DFT,FFT, FFT2).
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The most natural setting over LCA groups I

In order to settle the problem of “representing a TILS” as a
convolution operator we consider the most simple norm, namely
the sup-norm, and start from

(
C0(Rd), ‖ · ‖∞

)
(or(

C0(G ), ‖ · ‖∞
)
), the closure of Cc(Rd) with respect to the

sup-norm. It is a nice Banach algebra (even commutative
C ∗-algebra) with respect to pointwise multiplication, with bounded
approximate units (but without! unit element).
In the terminology of engineers a bounded linear operator can be
described as a BIBOS (bounded input - bounded output system),
which in fact can be justified using the Closed Graph Theorem
under mild conditions.
For the characterization of (HRd (C0(Rd)), |‖ · |‖ ) we will need also
the dual space of

(
C0(Rd), ‖ · ‖∞

)
, i.e. (Mb(Rd), ‖ · ‖Mb

), the
space of bounded, regular Borel measures. For us this is just a
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The most natural setting over LCA groups II

terminology, we will NOT MAKE USE of any measure theoretic
argument in what follows (also not in my courses on the subject).

Theorem (hgfei)

Any TILS on
(
C0(Rd), ‖ · ‖∞

)
is a moving average by some

bounded measure µ ∈Mb(Rd): In fact, ν(f ) = Tf (0) describes
the system, given by

Tf (x) = [T−xTf ](0) = T (T−x f )(0) = ν(T−x f = Txµ(f ).

This pairing establishes an isometric bijection between(
C ′0(Rd), ‖ · ‖C ′

0

)
(the space of bounded measures

(Mb(Rd), ‖ · ‖Mb
)) and the TILS:

‖ν‖Mb
= |‖T |‖C0 .

Hans G. Feichtinger Fourier Standard Spaces and the Multiplier Problem



Guide The Multiplier Problem Relevance of Lp-spaces Rieffel’s approach FourSS Multipliers Convolution Herz Algebras ApG lower/upper index DoublModulDiagr Intersections References LINKS Wiener Amalgams

The most natural setting over LCA groups III

Unfortunately this pairing associates with the Dirac measure

δx0 : f 7→ f (x0), f ∈ C0(Rd),

the wrong shift operator (in the opposite direction):

T−x0f (z) = f (z + x0), with supp(T−x0f ) = supp(f )− x0.

This is way instead of the “moving average description” one flips
to the concept of convolution, introducing an extra flip, i.e.
h 7→ hX, with hX(z) = h(−z).
Then for µ := νX, given by µ(f ) = ν(f X) we have

Tf (z) = µ(Tz(f X)), z ∈ Rd , f ∈ C0(Rd),

‖µ‖Mb
= |‖T |‖C0 , µ ∈Mb(Rd).
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The most natural setting over LCA groups IV

This is the key argument for the proof. Another non-trivial
question is the proof that µ ∗ f ∈ C0(Rd) for f ∈ C0(Rd) and
µ ∈Mb(Rd).
The estimate

‖µ ∗ f ‖∞ ≤ ‖µ‖Mb
‖f ‖∞

is almost obvious, and also the claim that µ ∗ f ∈ Cub(Rd), i.e.
(uniform) continuity of the convolution product is easy.
What is left is the decay at infinity, which requires an argument
that every µ ∈ C ′0(Rd) can be approximated in norm by compactly
supported measures µn. This can in fact done without measure
theory (see my course notes for details).
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Convolution of Bounded Measures

Once we have an isometric identification of an ALGEBRA of
operators (!exercise) and a Banach space (of bounded measures) it
is plausible to transfer the composition structure to
(Mb(Rd), ‖ · ‖Mb

). The basis formula, resulting from the
identification of Dirac measures with the corresponding translation
operators, is the formula (that we expect anyway)

δx ∗ δy = δx+y , x , y ∈ Rd .

The point is to approximate (constructively) a bounded measure
µ ∈Mb(Rd) by a sequence (better net) of uniformly bounded and
uniformly tight (concentrated in the same way as µ) DΨµ, in the
w∗-sense. Subsequently one can show that convolution of general
bounded measures can be identified with the (w∗-) limit of the
corresponding discrete measure DΨµ1 ∗ DΨµ2.
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Integrated Group Action

Having established the internal convolution within
(Mb(Rd), ‖ · ‖Mb

) by transfer of structure one can now look at the
external action, often called the integrated group represenation:
It start from a general uniformly bounded and strongly continuous
representation ρ of a LCA group G on a Banach space (B, ‖ · ‖B).
That means, that for some C > 0 one has

‖ρ(x)f ‖B ≤ C‖f ‖B , ∀f ∈ B,

and
lim
x→0
‖ρ(x)f − f ‖B = 0 ∀f ∈ B,

As a consequence any such representation allows to extend the
action to an integrated group action, called ρ again, with

‖µ ∗ρ f ‖B = ‖ρ(µ)(f )‖B ≤ ‖µ‖Mb
‖f ‖B .
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Homogeneous Banach Spaces

Any homogeneous Banach space (of locally integrable functions on
Rd) is by consequence a Banach convolution module over
(Mb(Rd), ‖ · ‖Mb

), because by assumption the translation (often
called the regular representation, with ρ(x) = Tx) is strongly
continuous and uniformly bounded on a homogeneous Banach
space (B, ‖ · ‖B), and in particular on any Segal algebra.
In particular, any Banach space of tempered distributions
(B, ‖ · ‖B) ↪→ S ′(Rd), containing S(Rd) as a dense subspace and
with isometric time-frequency shifts

π(λ)f := MsTt f = χs · Tx f , t, s ∈ Rd

will be a (minimal) Fourier Standard Space.
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Convolution operators and (S0,L
2,S ′0) I

Theorem

There is a natural isomorphism between HG(S0,S
′
0)(G) and S ′0(G ),

given by the following linear mappings which are both isometric
and inverse to each other:

σ 7→ Cσ : Cσ(f )(x) = σ(Tx f
X)a, x ∈ G, (2)

T 7→ σT : σT (f ) = T (f X)(0), f ∈ S0(G ). (3)

Moreover, the ultra-weak convergence of a (bounded) net of
operators Cσα corresponds in a one-to-one way to the
w∗-convergence of the corresponding distributional kernels (σα) in
S ′0(G ) which generate these convolution operators.

aTo make sure: the symbol Tx f
X stands for Tx(f

X), here and for the rest.
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Convolution operators and (S0,L
2,S ′0) II

A part of the proof actually consists in verifying what could be seen
as a corollary to the statement, since obviously S0 ∗ S ′0 ⊂ Cub(Rd).

Corollary

Any operator from
(
S0(G ), ‖ · ‖S0

)
to
(
S ′0(G ), ‖ · ‖S ′

0

)
which

commutes with translations maps in fact S0(G ) into(
Cb(G ), ‖ · ‖∞

)
.

It also follows that for any FouSS (B1, ‖ · ‖(1)) which contains S0

as a dense subspace, the space of multipliers from (B1, ‖ · ‖(1)) to
any other FouSS (B2, ‖ · ‖(2)) can be represented as convolution
operator with SOME element from S ′0.
Hence let us turn to a discussion of some concrete cases, with
first the case (B, ‖ · ‖B) =

(
Lp(Rd), ‖ · ‖p

)
.
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The Figa-Talamanca-Herz spaces I

Definition

Given 1 < p <∞, the Herz/Figa-Talamca algebra(
Ap(G ), ‖ · ‖Ap(G)

)
is defined as follows:

Ap(G ) = {f ∈ C0(G ) | f =
∑
n≥1

fn∗gn, with
∑
n

‖fn‖p‖gn‖q <∞}.

Any such representation, with (fn)n≥1 in
(
Lp(G ), ‖ · ‖p

)
and

(gn)n≥1 in
(
Lq(G ), ‖ · ‖q

)
is called an admissible. The natural

norm for
(
Ap(G ), ‖ · ‖Ap(G)

)
is

‖f ‖Ap(G) = inf{
∑
n

‖fn‖p‖gn‖q}, (4)

where the infimum is taken over all admissible representations.
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Facts about ApG I

It is not difficult to verify the following facts (for simplicity under
the assumption 1 < p <∞):

Lemma

1 (Ap(G ), ‖ · ‖Ap(G)) is continuously embedded into(
C0(G ), ‖ · ‖∞

)
;

2 (Ap(G ), ‖ · ‖Ap(G)) is a Banach space;

3 the compactly supported elements form a dense subspace of
(Ap(G ), ‖ · ‖Ap(G));

4 translation and modulation act isometrically on
(Ap(G ), ‖ · ‖Ap(G));

5 limx→0‖Tx f − f ‖Ap(G) = 0 for every f ∈ Ap(G );

6 (Ap(G ), ‖ · ‖Ap(G)) is a Fourier Standard spaces.

Hans G. Feichtinger Fourier Standard Spaces and the Multiplier Problem



Guide The Multiplier Problem Relevance of Lp-spaces Rieffel’s approach FourSS Multipliers Convolution Herz Algebras ApG lower/upper index DoublModulDiagr Intersections References LINKS Wiener Amalgams

Facts about ApG II

Remark

It is much less obvious and a deep fact that (Ap(G ), ‖ · ‖Ap(G)) is
in fact a Banach algebra with respect to pointwise multiplication,
the so-called Herz algebra. But we will not need this fact here. In
addition, it is not clear to which extent this property extends to
similar constructions, e.g. with

(
Lp(G ), ‖ · ‖p

)
replaced by

corresponding Lorentz spaces L(p, q)(G ).

Remark

Note that it one may assume that the convolution factors fn and
gn are taken from a dense subspace, e.g. from FL1 ∩ Cc(G ), with
corresponding modification of the description of the norm on
Ap(G ).
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Facts about ApG III

Towards Herz algebras Ap(Rd)

Lemma

Assume that (B, ‖ · ‖B) is a FouSS, and α is an automorphism of
Rd , i.e. α(x) = A ∗ x for some non-singular n × n-matrix A. Then
Bα := α∗(B) is a a FouSS as well (with the natural norm
‖α∗(f )‖Bα := ‖f ‖B , f ∈ B.

This lemma helps us to simplify the general situation to the
following one: Given n = d + m, n,m ∈ N we want to split Rn as a
direct sum:

Rn = Rd ⊕ Rm.

We consider the subgroups H = H1 = Rd × {0} and
H2 = H⊥ = {0} ×Rm. We write dHk for the Haar measure on Hk ,
k = 1, 2, viewed as element of S ′0(Rn).
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Facts about ApG IV

Lemma

Given a FouSS (B, ‖ · ‖B) the periodized space B2 = dH2 ∗ B is
well defined if and only if dH1 · F(B) is well defined
(both via regularization). In the positive case B2 can be identified
naturally with a FouSS on Rd , and

Fd B2 = RestrH1(FB).

This is more or less the SLICE THEOREM used heavily in the
standard discussion of the Radon Transform.
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The Figa-Talamance-Herz algebras Ap(G ) I

A meanwhile classical too for the study of multipliers of Lp-spaces
is the so-called Figa-Talamanca-Herz algebra, which arose in the
1960th. Although not cited by M. Rieffel in his famous 1967 paper
appears nowadays as a concrete version of the module-tensor
product described by Rieffel.
We can take the definition of Ap(G ) or Ap(Rd) as usual (a
so-called convolution tensor product, and obtain immediately that
this is a Banach space with the usual quotient norm (infimum over
all possible representations). In fact, one could use her any
homogeneous Banach space in the sense of Y. Katznelson.
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The Figa-Talamance-Herz algebras Ap(G ) II

Lemma

For 1 < p <∞ (Ap(G ), ‖ · ‖Ap(G)) is a Banach space with the
natural quotient norm, continuously and densely embedded into(
C0(G ), ‖ · ‖∞

)
. It is also a homogeneous Banach space,

containing S0(G ) as a dense subspace.

Due to the density of S0(G ) in (Ap(G ), ‖ · ‖Ap(G)) the dual space
is again a FouSS, thus continuously embedded into S ′0. We will
denote it by PMp (note that we get PMp = PM for p = 2, the
space PM = FL∞ of pseudo-measures).
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Multipliers of Ap(G ) and Lp(G ) I

In the sequel we will make use of a few properties shared by the
spaces

(
Lp(G ), ‖ · ‖p

)
, for 1 < p <∞ (but not more):

A1
(
Lp(G ), ‖ · ‖p

)
is a homogeneous Banach space;

A2
(
Lp(G ), ‖ · ‖p

)
is a solid BF-space;

A3
(
Lp(G ), ‖ · ‖p

)
is a reflexive BF-space1

Lemma

For 1 < p <∞ and 1/p + 1/q = 1 one has

HG(Lp(G ),C0(G )) ≡ Lq(G), (5)

but also

HG(Ap(G ),C0(G )) ≡ Ap(G )′ =: PMp(G ). (6)
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Multipliers of Ap(G ) and Lp(G ) II

Theorem

For any LCA group and 1 ≤ p ≤ ∞ one has equality of spaces with
a natural isometry of the corresponding (operator) norms:

HG(Lp(G )) = HG(Ap(G )) = HG(Ap(G ),C0(G )) (7)

Corollary

HG(Ap(G )) = HG(Ap(G ),Cb(G )) ≡ PMp(G ). (8)
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Multipliers of Ap(G ) and Lp(G ) III

Corollary

There is an isometric isomorphism between the space CVp(G ) of
convolutors of

(
Lp(G ), ‖ · ‖p

)
and PMp(G ), the dual space of

(Ap(G ), ‖ · ‖Ap(G)). Under the (extended) Fourier transform this
space can be identified with the space of p-Fourier multipliers, i.e.
the pointwise multipliers on

(
FLp(G), ‖ · ‖p

)
. Consequently both

of these space (for each such p) are again Fourier Standard Spaces.

1With dual space
(
L
q(G), ‖ · ‖q

)
, with 1/p + 1/q = 1.
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The Schwartz Setting

FL1

L1

L2 WR
S

0

Figure: The classical setting
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Lower and Upper Index of a Function Space

We define a lower resp. upper index for a Fourier Standard space:

Definition

low(B) := sup{r |B ⊆W (B, `r )}.

Definition

The upper index of B is defined as follows:

upp(B) := inf{s |W (B, `s) ⊆ B}.

For B = FLp(Rd) or B = FLq(Rd) (1/p + 1/q = 1), with
1 ≤ p ≤ 2 one has low(B) = p and upp(B) = q.
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Hörmander’s argument

If we analyze the argument, why there is no non-trivial convolutor
from Lp(Rd) to Lr (Rd), if r < p, one finds that it is mostly a
global argument (See Hörmander, 1960).
We all know that a convolution operator can provide increased
smoothness, but not better decay (think of a convolution of a
positive function by some Gauss function!).
It can be easily adapted to the following claim:

Lemma

Given two FouSS (B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)). Assume that

low(B1) > upp(B2).

Then there is no non-trivial convolution operator from B1 to B2.
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The Double Module Diagram

Figure: Arrangement of up to 10 different spaces
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Intersections, tempered Lp-spaces

Clearly the intersection (but also the sum, related by duality) of
two FouSS is again FouSS, with the norm for B1 ∩ B2:

‖f ‖
B

1∩B2 := ‖f ‖
B

1 + ‖f ‖
B

2 .

Since it still has to contain S0(Rd) it cannot be trivial. A classical,
non-trivial example is found in the work of K. McKennon in the
early 70th, who - from the point of view of FouSS - was studying
the Banach algebra Ltp := Lp ∩ Convp of all elements of
(B, ‖ · ‖B) =

(
Lp(G ), ‖ · ‖p

)
which at the same time define

bounded “multipliers” on
(
Lp(G ), ‖ · ‖p

)
.

The interesting finding of his work was (valid at least for
Abelian groups): The space of multipliers of this new space
can be identified with the Lp-multipliers.
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BUPUs: Bounded Uniform Partitions of Unity

Definition

A bounded family Ψ = (ψi )i∈I in a Banach algebra (A, ‖‖A) is
called a Bounded Uniform Partition of Unity in (A, ‖‖A) (a
BUPU in A, for short), if there are a relatively separated
family X = (xi )i∈I and some R > 0 such that

1 supp(ψi ) ⊆ BR(xi ) for each i ∈ I , and

2
∑

i∈I ψi (x) = 1 for all x ∈ Rd

The most useful variant are the so-called regular BUPU with
I = Λ C Rd , a lattice, with ψi = Tλ(ϕ), for some ϕ = ϕ0,
such as a cubic B-spline.

Hans G. Feichtinger Fourier Standard Spaces and the Multiplier Problem



Guide The Multiplier Problem Relevance of Lp-spaces Rieffel’s approach FourSS Multipliers Convolution Herz Algebras ApG lower/upper index DoublModulDiagr Intersections References LINKS Wiener Amalgams

50 100 150 200 250 300 350 400 450
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
a typical BUPU, like cubic splines
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BUPUs: Bounded Uniform Partitions of Unity
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Wiener Amalgam Norms Vizualized
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Recalling the Wiener Amalgam Concept

We recall the concept of BUPUs ideally as translates along a
lattice (Tλϕ), with compact support and a certain amount of
smoothness, perhaps cubic B-splines.
The Wiener amalgam space W (B, `q) is defined as the setf ∈ B loc | ‖f |W (B, `q)‖ :=

(∑
λ∈Λ

‖f · Tλϕ‖qB

)1/q
 .

There are many “natural results” concerning Wiener amalgam
spaces, namely coordinatewise action, e.g.

duality (if test functions are dense and q <∞);

convolution and pointwise multiplication;

interpolation (real or complex).
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(S0,L
2,S ′0) as Wiener amalgams

Theorem

1 S0(Rd) = W (FL1, `1)(Rd)

2 S ′0(Rd) = W (FL∞, `∞)

with equivalence of the corresponding norms.

In analogy with W (M , `∞)(Rd), the dual of the Wiener algebra
W (C0, `

1)(Rd), known as the space of translation bounded
measures, the systematic name for S ′0(Rd) would be space of
translation bounded quasi-measures.

PM(Rd) ⊂ S ′0(Rd) = W (FL∞, `∞)(Rd) ⊂ Q(Rd)

in analogy to the inclusion

Mb(Rd) ⊂W (M , `∞)(Rd) ⊂ R(Rd),

the space of Radon measure = locally bounded measures.
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