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Different Levels
.

Different Levels of Gabor Analysis

The best way to explain the essential feature of Gabor Analysis
(GA) is to split the insight essentially into four aspects:
@ The linear algebra view on Gabor Analysis;
MNLSQ approximation, generating systems;
@ The group theoretical background of GA;
Invariance properties of families and operators;
© The functional analytic tools relevant for GA. Dirac measures,
Banach Gelfand Triples
@ The practical side leading to methods in digital signal
processing and mobile communication, in particular to the
MP3 compression scheme.
Also relevant operators: Time-variant filters.
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Spectrograms
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Spectrograms seen in two different ways

The main topic of this talk will be - if one takes an applied
view-point - time-variant filters realized via pointwise
multiplication of spectrograms.

In their discretized version they will be called Gabor multipliers,
because the are realized as pointwise multipliers of Gabor
coefficients.

In order to understand this from a functional analytic point of view
one will need more than just the Hilbert space (L*(R9), || -|]2). In
fact, the so-called Banach Gelfand Triple will provide an
appropriate tool.

As we shall see the mathematical situation can be (also) well
described using group representations, via the so-called
Schrodinger representation of the reduced Heisenberg group.
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Spectrograms
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Orientation, what will be the players

Although the starting point for Gabor Analysis (e.g. perfect
reconstruction from the STFT) is essentially Hilbert space theory
(just like Fourier Analysis), dealing with functions f € L?>(RY), one
realized very quickly that for the discretization (sampling the
STFT over a lattice A << RY x R9 (typically aZ? x bZ9) additional
assumptions are required.

This is how the Segal algebra (So(RY), || - ||s,) comes into play. It
will be discussed in detail. Together with (So(R9), || -||s,) also the
dual space, i.e. (S§(R9), |- |s;) comes along. It is called the space
of “mild distributions”. Together with the Hilbert space

(L3(R9), || - ||2) they constitute the Banach Gelfand Triple

(So, L2, S5)(BY).
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Spectrograms
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Starting from Linear Algebra

The good thing is that TF-analysis (Time-Frequency Analysis)
can done over any LCA (locally compact Abelian) group, such as
R,T=U=R mod (Z) =: Zy,Z or products of such groups,
called elementary groups such as RY, or RY x Z™ x Tk.

Engineers talk of continuous or discete, of periodic or non-periodic
signals, which may have “finite energy” ((LZ(G), [ 1l2)) or
bounded, or integrable (see Gianfranco Cariolaro).

For the case of finite groups one just has a finite product of powers
of cyclic groups Zﬁ,. Functions on such groups are of course
identified with CM, where M = #(G). But we will write also
£2(G) or £}(G) etc., depending on which norm we use

(p = 2 corresponds to the Euclidean norm on CM).
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Spectrograms
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TF-shifted Gaussians: Gabor families

the Gabor atom
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Finite Gabor
€000

Finite Gabor Analysis

For the case of finite groups it is thus enough to generate a
collection of vectors, obtained from some bump-function (e.g. a
discrete version of a Gauss functions, let us call it a Gauss vector g
(of length N, we often take N = 480) and generate a Gabor
family, where each point in the (now discrete) TF-plane
corresponds to a unitary TF-shift operator (horizontal: cyclic
time-shift; vertical: cyclic frequency shift). g is then called the
Gabor atom generating the Gabor family (g, ).

In the sense of a spectrogram such a TF-shifted g version, we
often write

g =7m(N)g = M,Te(g),

is at time t and frequency w (comparable to a musical score!).
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Finite Gabor
ceee

Simple (numerical) linear algebra |

We can ask, under which conditions we can represent any signal in
CN as a superposition of finitely many TF-shifts. Clearly any
collection of m such Gabor atoms which spans CN has to satisfy
m > N. So we are looking for a Gabor expansion of f € CV, i.e. a
representation in the form

f=Y e (1)

AEA

For any unit vector one can ask, what is the “cost” of the
representation in terms the £2-norm of the coefficients in the
MNLSQ solution, i.e. the minimal norm least square solution
(which is the only set of coefficients providing (1) from the row
space of the Gabor matrix (if the Gabor atoms are stored as
columns in some matrix G).
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Finite Gabor
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Simple (numerical) linear algebra Il

Now what is a good generating system and how can we obtain
these minimal norm coefficients (without setting up a variational
optimization routine)?

| will show (with my bare hands) good and bad situations!

A good way to describe the quality of a generating system is to
look at the minimal cost for the representation of unit vectors (or
alternatively: the relative cost in terms of expanding a vector,
compared to it's length). Note that all our vectors gy have the
same length in CV.

There are “easy” vectors with a cheap representation (e.g. if
almost four copies of a vector arise in the family), or the “difficult”
(or expensive) vectors, which are almost perpendicular to that
“bad” vector.
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Finite Gabor
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Simple (numerical) linear algebra Il

In MATLAB we would solve A x x = b for x, obtaining the
MNLSQ solution by the simple code

x= A== pinv(A)*D,
but instead of calling the pseudo-inverse of A = G we can solve via
the normal equation A’ x A x = A" x b, which by the invertibility
(1) of frame operator of the given frame S := (A’ x A) implies

x=S1%xA xb.

It is trivial that
SxSt=lden=5"1%S

and we have recovery from STFT samples and atomic
representation:

F=(f05 (&) = >_(F, S gl

AEN AEA
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frame bounds

For the case of an irregular family the elements S~%(gy) have to
be computed individually, or via the command pinv(G’) resp.
(equal) pinv(G) ’, where the comma means transpose conjugate,

or equivalently as
inv(Ax A) x A.

The quotient between the best and worst vectors can then be
equivalently expressed by a (classical) pair of inequalities!

AllFIP < I(F. e < B|fI?, Vf e, (2)
AEN

for suitable positive constants 0 < A < B < oo, so-called
frame bounds. For A = B we speak of tight frames: S = Ald.

Using the fact the norm of A equals the norm of A%
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Regular Gabor Families

For the case of a regular Gabor family (g1)ycp, Where A<1Zpy X Z,\V
is a subgroup, i.e. a set which forms a lattice (additive subgroup)
we have a much better situation. We have the important fact:

Som(\)=n(\)oS, VAEA,
implying (for the case that S™1 exists)
Slor(\) =m(\) oSt VAeA.
Consequently for g = S™1g
S &) = SHw(M\g) = T(NSHg) = (Vg

Equivalently: g is the solution of the linear, positive definite
equation (to be solved by the conjugate gradients algorithm):

S(g) =&

Hans G. Feichtinger Banach Gelfand Triples and Gabor Multipliers



Tight Gabor frames |

We have seen two asymmetric variants of the representation
formula. If the original Gabor family is used in order to take scalar
products (samples of STFT of f with window g at lattice A is
given) then the reconstruction requires the use of g.

On the other hand, if we as for an atomic representation in the
spirit of (1) then we can obtain (the minimal norm) coefficients by
sampling the STFT of f with respect to the dual window g
(depending on the lattice).

For a Gaussian window any lattice with strictly more than N lattice
points will do (Balian-Low, N will NOT suffice!), but if the
redundancy is high (small lattice constants, even oblique ones are
OK) then a (normalized) version of g will do an good approximate
job (because S is very close to a multiple of the |d-operator).

Hans G. Feichtinger Banach Gelfand Triples and Gabor Multipliers



reglRREG
®e0

Tight Gabor frames Il

But this asymmetry can be overcome by tight Gabor frames. Due
to the positive definiteness of S we can think of $71/2 as a

compromise:
h=5§"12g, (3)

Since S~Y/2 commutes again with the TF-shifts w(\), \éA we get

f=" (f h\)hy. (4)

AEA

This particular choice can be motivated by the optimal closeness
of h to g (in the Euclidean norm), given (4).
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signals spectra
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The different Ages of Fourier Analysis

Fourier Analysis is soon (first paper of J. Fourier published in
1822) reach its 200 anniversary. We have the following big steps:

@ Fourier series, what are functions/integrals (19th century);
@ Fourier transforms, Lebesgue spaces (LP(R?), |- ||,)

@ Functional analytic methods (Hilbert/Banach spaces)

© Abstract Harmonic Analysis (LCA groups)

@ Theory of distributions (L. Schwartz)
with important applications to PDE (L. Hormander)

O Gelfand transforms and Gelfand triples
@ Fast Fourier Transform (1965, Cooley/Tukey)
© Time frequency analysis and Gabor analysis

© also wavelet theory (ca. 35 years now).
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Daily Life
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Fourier Analysis in our Daily Life

Although Fourier Analysis appears to be a well established subject
(at least within mathematics), where it seems clear how one should
present the subject to students?, this mathematical approach
appears to be almost disconnected to the actual use of Fourier
analysis in our daily life (a subject that is open for outreach
activities of mathematics):

@ Mobile phones

o MP3, WAV-files

o JPG images

@ noise cancelling headphones ...

This has partially to do with the fact that real world signals are
not periodic, nor well decaying, nor even pointwise well defined.

2Starting with Lebesgue integration, maybe reaching the FFT or
distribution theory and Sobolev spaces
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Daily Life
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A Demo of a Spectrogram

Let us first take a look on a few spectrograms, as one can produce
them using the STX program (from the ARI web-page, the
Acoustic Research Institute of the Austrian Academy of Sciences,
under Peter Balazs).

We take some piece of audio (the signal to be analyzed) and look
at the spectrogram, or the STFT (Short time or Sliding Window

Fourier transform).
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Daily Life
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Beethoven Spectrogram (Piano Sonata)

Beethoven Sonata
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Daily Life
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A Maroccanian Sound Example

NOT USED HERE!

The spectrogram displayed is realized with the help of the STX
program, which is downloadable from ARI homepage (Acoustic
Research Institute, Austrian Academy of Sciences, head: Peter
Balazs).

See also www.gaborator. com
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Gabor Multipliers, Time-Variant
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Why are Gabor Multipliers useful?

Why are spectrograms so useful?

One of the important features of the STFT (or the Gabor
expansion, which is just a sufficiently dense regular sampling
analogue of the STFT) is the fact that the coefficients have a
natural interpretation as the level of energy in the given “signal”.
It is quite comparable to a (blurred, graphical) score obtained from
the given piece of music or audio-signal.

Hence it is natural to interpret certain disturbances as “noise”
which one would like to remove. Here comes in the question how
one could restore the signal from the spectrogram (other the
original one, or the sampled one, or the modified one), i.e. the
invertibility of the STFT (or Gabor coefficient) mapping.
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Gabor Multipliers, Time-Variant
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The audio-engineer’'s work: Gabor multipliers
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Gabor Multipliers, Time-Variant
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Gabor Multipliers: Motivation

Let us again look at this scenario in a mathematical way:
@ Each slider represents a particular frequency range;
@ The position of each slider then represents the amplification
or damping of that frequency range;
© A given (fixed) profile of the sliders describes roughly the
transfer function of a time-invariant filter;

@ The positions of the sliders, labeled by the points of a uniform
time-grid and their frequency bins, represent the coefficients
describing a Gabor multiplier.

Thus a Gabor multiplier contains the description, in which way the
audio-engineer is influencing the high, or low or medium range
frequencies, at different times. So he may perform time-variant
filtering. For 2D we talk about space-variant blurring.
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Gabor Multipliers, Time-Variant
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Gabor Multipliers: Natural Questions

There are a few natural questions arising in this context:

@ What is the structure of the linear space of all Gabor
multipliers?

@ When is a Gabor multiplier invertible, or a Hilbert-Schmidt
operator?

© Can one determine the best approximation of a HS-operator
by a HS-Gabor-Multiplier?

@ Which operators can be well approximated or even represented
as Gabor multipliers?

© How can one invert a Gabor multiplier?

@ How do Gabor multipliers (or STFT multipliers, so-called
Anti-Wick operators depend on the choice of parameters,
the window used or the lattice in phase space R x R)?
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Gabor Multipliers, Time-Variant
0000e

The Heuristic Approach

If we want to analyse “general signals”, including any pure
frequency, Dirac measures, but of course also any of the functions
in any of the spaces LP(RY) we should ensure that the short-time
Fourier transform is a bounded function.

In fact, for any tempered distribution o € 8’'(R?) one can define
the STFT via

Ve (0)(A) = o(7(M\)go), A eRY x RY.

We will be interested in the subspace of all mild distributions
arising as the subspace of tempered distributions® which have
bounded spectrogram (STFT).

As we will point out this space can be introduced directly as th
dual space of a relatively simple case, called the Segal algebra

(So(RY), || -Ils)-

3

we will finally do it without the theory of Schwartz!
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Foundations of Time-Frequency Analysis

In WORDS (and for those who have already a vague idea what it
could be) time-frequency analysis is the part of harmonic analysis
resp. mathematical analysis at large, which makes use of both time
and frequency variables, and thus makes use of the family of
TF-shifts (first we apply a time-shift T; and then a frequency shift
or modulation operator Ms (a shift-operator on the frequency side.
Naturally the Fourier transform plays an important role, since we
have the crucial connection

M; = F1T.F, secR.
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

T f(t) =1f(t —x)

and x,w,t € RY _
M, f(t) = ™ tf(t).

Behavior under Fourier transform

(Tuf) = M_f (M) = T,f

The Short-Time Fourier Transform

ng()‘) = <f7 M., Ttg> = <f7ﬂ—(/\)g> = <f7g)\>7 A= (taw)’
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Inversion Theorem

The following inversion formula is known for the STFT. If
g,v € L2(RY) and (v, g) # 0 then for all f € L?(RY)

1
f:/ Vo f(x,w)M, Ty dw dx, 5
(o) Jeas 5T ®)

where the equality is understood in a vector-valued weak sense (see
Grochenig [17, p.44]). Moreover, if K, C R?9 (n > 1) is a nested
exhausting sequence of compact sets and

1

f,,:/ Vo f(x,w)M, Txy dw dx
<77g> Kn g( )

then f, — f in L>(R?) norm.
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Coherent Expansions

We have not time to go into the specifics of the coherent states
representation which arises when one takes the Gauss function

2 . .
go(t) = e~ ™ as the moving window.

This choice can be motivated by the optimal concentration of this
function in the TF-plane resp. phase space resp. the complex
plane.

The range of (L*(R), |- ||2) under the (unitary) mapping

f — Vg (f) is known as the Fock space, a reproducing Hilbert
space of analytic functions over the complex plane.

It is plausible that this has a lot of redundancy and since 1992 it is
known that it is enough to know Vg (f) over any lattice of the
form aZ x bZ, with ab < 1.
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A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) depicted
using the spectrogram, displaying the energy distribution in the TF
= time-frequency plan:

Beethoven Sonata
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The effect of the Fourier Transform

the signal
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Various Function Spaces

Figure: The usual Lebesgues space, the Fourier algebra, and
the Segal algebra So(RY) inside all these spaces
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BANACH GELFAND TRIPLES: a new category

Definition
A triple, consisting of a Banach space (B, || - ||g), which is densely

embedded into some Hilbert space H, which in turn is contained in
B’ is called a Banach Gelfand triple.

Definition
If (B1,H1,B}) and (B2, H2, BY) are Gelfand triples then a linear
operator T is called a [unitary] Gelfand triple isomorphism if

© A is an isomorphism between B; and B;.

@ A is [unitary] isomorphism between H; and Ho>.

© A extends to a weak™ isomorphism as well as a norm-to-norm
continuous isomorphism between B and B5.
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Space of (Fei 1979)

A function in f € L?(R9) is in the subspace Sp(RY) if for some
non-zero g (called the “window") in the Schwartz space S(R?)

1flls, := [I Vg f”,_l// \fow)|dxdw<oo

The space (So(R?), | -||s,) is a Banach space, for any fixed,
non-zero g € So(R9)), and different windows g define the same
space and equivalent norms. Since So(RY) contains the Schwartz
space S(}Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Basic properties of M' = Sy(RY)

Lemma

Let f € So(R?), then the following holds:

(1) w(u,n)f € So(RY) for (u,n) € RY x R?, and
[ (u,m)flls = [If]ls,-

(2) 7 € So(R?), and ||f|s, = I|flls-

In fact, (So(Rd), | ||s,) is the smallest non-trivial Banach space
with this property, and therefore contained in any of the LP-spaces
(and their Fourier images).
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A schematic description: the simplified setting

In our picture this simply means that the inner “kernel” is mapped
into the "kernel”, the Hilbert space to the Hilbert space, and at
the outer level two types of continuity are valid (norm and w*)!

the RIGGED Hilbert Space situation

L2 = Hilbert

S0=
test space
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The Fourier transform as BGT automorphism

The Fourier transform F on RY has the following properties:
@ F is an isomorphism from Sy(RY) to So(ﬂ/éd),
@ F is a unitary map between L?(R9) and Lz(@d),
© F is a weak* (and norm-to-norm) continuous bijection from
S{(R9) onto S5(RY).

Furthermore, we have that Parseval’'s formula

(f.g) = (f.8) (6)

is valid for (f,g) € So(RY) x S5(RY), and therefore on each level
of the Gelfand triple (Sp, L2, S§)(RY).
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Atomic decompositions

One can characterize (So(RY), | - ||s,) as the smallest Banach
space containing at least one non-zero Schwartz function

g € S(RY), which is isometrically invariant under TF-shifts (e.g.
like (LP(RY), || [|,5)), in fact for any such g # 0 one has

SO(Rd) ={f= Z cnm(An)g | Z |cn| < oo}
n>1 n>1
The natural inf-norm is then an equivalent norm on
(So(R?), || ||s,) for any such g. Consequently the w*-convergence
in S{(R?) can be characterized via pointwise convergence
(uniformly over compact regions) over compact subsets.
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Different Perspectives

We can (and should) discuss Gabor Analysis from several different
perspectives, because at the beginning of the development it was
necessary to develop the necessary mathematical tools from
different perspectives.

First let us recall, that (following Andre Weil, who of course never
saw the problems of TF-analysis) Gabor analysis can be realized
over any LCA (locally compact Abelian) group. The pure
frequencies are a natural family of characters, i.e. functions of
absolute value one, which form the dual group under pointwise
multiplication.

So it can be carried out also over G = Zy, the multiplicative group
of unit roots of order N. Here the characters are simply the
columns (or rows) of the DFT matrix, mapping C" into CN

(up to scaling in a unitary way).

Hans G. Feichtinger Banach Gelfand Triples and Gabor Multipliers



Prehistory of TF-Analysis

Before time-frequency has been established as a recognized (and
meanwhile rather active field) within mathematical analysis
methods in this direction have been used by people in digital audio
or other applied scientists who wanted to analyze signals.

A significant contribution was D. Gabor’s important paper [16]
from 1946, where he suggested to use the normalized Gaussian as
the window because it has optimal joint concentration in the
TF-domain

He also suggested to use only TF-shifted such Gaussians along the
integer (also called von-Neumann) lattice Z2.
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Different Levels of Gabor Analysis

The best way to explain the essential feature of Gabor Analysis is
to split the insight essentially into three steps:

@ The linear algebra view on Gabor Analysis (GA);
@ The group theoretical background of GA;

© The numerical side of GA;

@ The functional analytic tools relevant for GA.
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Gabor Analysis and Linear Algebra |

At the linear algebra level we can view Gabor analysis over finite
Abelian groups (such as Zy, the cyclic group of order N) as
covering the following questions:

@ When is a Gabor family generating CNV = £2(Zy);
@ When is a Gabor family linear independent;
e Is it possible to have an orthonormal Gaborian basis for CNV?

Clearly a generating system has to have at least N elements, and a
linear independent set cannot have more than N elements.
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Gabor Analysis and Linear Algebra Il

The SVD (Singular Value Decomposition) allows to describe these
three situations in the following catalogue:

@ If a family of vectors forms a generating system for CN then
every vector y € CN has a minimal norm representation.
Putting such M > N vectors into a M x N-matrix A these
coefficients can be obtained by taking scalar products* of the
vector y against the M columns of the matrix
pinv(A’) = pinv(A)'.

@ If M < N vectors are linear independent one finds that the
columns of pinv(A’) constitute the biorthogonal family
to the given family of column vectors.

In a modern language we are speaking of the
dual frame resp. the biorthogonal Riesz basic sequence.

*Here the prime indicates transpose conjugate of the matrix.

Hans G. Feichtinger Banach Gelfand Triples and Gabor Multipliers



Gabor Analysis and Group Theory |

We will concentrate on regular Gabor families, i.e. Gabor families
which arise in the form (w(\)g)aen, where

w(n k) = McTp,0< k,n<N—1and A< ZyxZy (i.e. additive
subgroups of the finite phase space, which contains N? elements).
Typically A'is a subgroup of the form Zy,; X Zpp, where a, b are
both divisors of N, the so-called time-step a and the
frequency-step b, which has obviously N/a- N/b = N2/(ab)
elements, which is compared to the dimension N of the signal
space, the redundancy factor red = N/(ab).

Thus red > 1 represents the case of oversampling, where a (linear
dependent) family of Gabor atoms hopefully constitutes a Gabor
frame, while for red < 1 the expectation is to have a linear
independent family. The case red = 1 is also called the critical
case, despite the chance to have a basis (only) in that case.
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Gabor Analysis and Group Theory Il

Group theory comes enters the scene in several ways.

First of all one can ask, whether the (canonical) dual of a Gabor
frame is again a Gabor frame. The answer is a clear “YES" for the
regular case (A is a subgroup of phase space).

The same is true for the Riesz basic sequence case.

Moreover, there is a very interesting and unique (to time-frequency
analysis) duality principle, usually referred to A.Ron and Z.Shen
(going back to the observation of Wexler and Raz, two engineers):
The generator of a biorthogonal sequence of a (sparse) Gabor
family is up to scaling the same as the generator of the dual frame
of the corresponding (oversampled) adjoint lattice.
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Dual atoms for different Gabor lattices
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Gabor Analysis and Functional Analysis

Finally we can discuss Gabor Analysis in the realm of continuous
functions (say over RY, d > 1), for signals in the Hilbert space
(L2(R?), ||+ ||2), or more general in suitably chosen Banach spaces.
Here we have a number of different new effects:

O First of all, we deal with infinite dimensional signal spaces;
@ Consequently two norms typically are not equivalent;

© The natural objects, namely pure frequencies xs(t) :=
exp(27is - t) do not belong to L>(R?), nor do the Dirac
measures (unlike unit vectors in H = CN).
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Frames as stable sets of generators

Usually we think that the correct analogue of a set of generators in
an (infinite dimensional) Hilbert space # is the assumption that a
set (gi)ics is total, i.e. that the closed linear span of the set
coincides with the whole Hilbert space.

This means of course that, given a vector h € H for € > 0 there
exists some finite linear g such that ||h — g||x < e.

But of course it may be much harder to have a representation

h = Z Cigi
icl

with the additional condition

O lail)2 < Clihs.

icl
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Frames as stable sets of generators

The better approach to what is now called frame theory is via the
so-called frame operator

S(F) =) _(f.&)a,
il

which is supposed to be invertible (in the case of a frame) and
then entails the formulas

S(S7Uf) =f = ST(SF),

respectively

f = 2{:<f,gﬂéﬁ ::§£:<faéﬁ>gﬂ

i€l icl

with g&; = S71(g;).
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Sampling the Spectrogram, Gabor expansions

Translated back to the Gabor setting we have this:

a) reconstruction of a signal from a sampled spectrogram;

b) or care for the representation of a signal f as a superposition of
Gaborian building blocks (i.e. Gabor expansion);

c) as a compromise one can ask for a tight (Gabor) frame
representation, using hj = S~1/2g;, the canonical tight frame:

f=> (f h)hi, feH.
i€l
This is most useful for the discussion of frame multipliers
Tm(f) =D mi(f, h)hi, €M,
iel

which certainly defines a bounded operator for m € £°°(1/).
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Riesz Basic Sequences

A similar situation occurs with the concept of linear independence.
There is a natural, perhaps naive version, which restricts the
attention to arbitrary finite subsets of an infinite set.

However, we are convinced that the correct version if this concept
to Hilbert spaces is that of a Riesz basis for a closed subspace (in
the same spirit as B-splines are a Riesz basis for the cubic splines
n (L3(R), ||-|l2)), resp. a Riesz basic sequence.

The biorthogonal system can be used to describe the orthogonal
projection from the Hilbert space onto the closed span of this
family. It is obtained from the original system using as coefficients
the rows/columns of the Gramian matrix of the family.

Again, the square root of the inverse Gramian provides a
method that helps to do a symmetric orthogonalization (cf.
wavelet theory).
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Tight Gabor frames and Symmetric ONB

In the same way as the frame operator allows us to generate a
tight frame by applying S~1/2 to the given Gabor atom we can
obtain an orthonormal Gaborian basis for the Gabor family over
the adjoint lattice, and again these two natural objects coincide
(up to suitable normalization).

There is nothing like this in wavelet theory, this is a very specific
property of Gabor systems.

Moreover, based on deep results from harmonic analysis (and
operator theory) the assumption g € So(R9) implies that both the
dual atom and h = S~1/2g belong to So(R?) as well!

Thus for g € So(R?) the frame operator S = S, A, its

inverse and inverse square root are all BGT-isomorphism.
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A General Principle

When it comes to the discussion of BGT morphisms it is a good
idea to think of the following three steps:

© First establish the result at the level of test functions
((So(R9), |- ||s)); Here one can consider most statements
just as the continuous analogue of the corresponding
statements from linear algebra!

@ Then extend it to the Hilbert space (L*(R9), |- |2) by
continuity, ideally using an isometry (cf. proof of Plancherel's
Theorem).

© Then extend the mapping further either using
w*w*-continuity, or (equivalently and much better!) using
duality arguments!

In fact, the outer layer typically reveals the true value of facts
difficult to grasp at a technical level (™ = 1).

Hans G. Feichtinger

Banach Gelfand Triples and Gabor Multipliers



The Kernel Theorem |

Clearly a linear mapping T from C” to C™ have a matrix
representation: T(x) = A % x, where the entries are of the form

ajk=(T(ex),€),1<k<m1<j<n

Hence one can expect that the continuous version allows to write
at least (certain integral) operators as

T(f) = /Rd K(x,y)f(y)dy, f e L?(R).

It turns out, that for K € So(R??) these operators map Sj(R9)
into Sp(R?) in a w*-to-norm continuous fashion and vice versa.
Moreover in analogy to the discrete case one has

K(x,y) =0x(T(6,)), x,y€ RY.
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The Kernel Theorem |l

Extending to the Hilbert space setting one finds that kernels in
L?(R??) give rise to the well-known Hilbert Schmidt operators. In
fact this is a unitary mapping, using the fact

1Kz = || T|lus := trace(T o Tx).

The outer layer describes the most general operator. The
correspondence identifies S5(IR?¢) with the space of all bounded
linear operators from (So(RY), || - ||s,) to (Sp(R9), || - [s;)- In this
setting one can even describe multiplication or convolution
operators, in particular the identity operator, which corresponds to
the distribution F — [o F(x,x)dx, F € S(R?9), which is

well defined since the restriction of F € Sy(R??) to the

diagonal is in So(RY) and hence integrable.
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The Kernel Theorem Il

If one tries to rewrite the functional (representing the identity
operator) in the usual way (or observing that of course the identity
operator is an operator which commutes with translation, and thus
has to be a convolution operator, with the usual Dirac measure

do : f +— £(0)) we have

f0) = [, [ Ken)fdy, f e so(®)
R2d JRd
which is only possible if one has in each row
K(x,.) =0y, xcR9

(this is more or less the transition from the Kronecker delta
describing the unit-matrix to the Dirac delta, and is another
way of expressing the “sifting property” of do.)
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The Kernel Theorem |V

The composition law for matrices is the unique way of combining
information about two linear mappings which can be composed
(Domino rule) into a new matrix scheme, via standard matrix
multiplication rules: C = A x B. Thus one expects for the
composition of operators a similar composition law for their
kernels, something like

K(va) = /vad Kl(X’ Z)K2(Zv)/)dz’ X,y € Rd'

If one make use of the kernel for the Fourier transform, i.e.
Ka(z,y) = exp(—27i{y, z)) and Ki(x,z) = exp(27i(x, z)), then,
even if the integrals do not make sense anymore in the Lebesgug
sense, it still suggest to claim that the resulting product operatd
the identity operator, which gives a meaning to formulas
appearing in engineering books on the Fourier transform.
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Formulas as found in Engineering Books

The so-called sifting property of the Dirac delta, namely the
formula
o0 oo
/ F(5)3(s — t)ds = / F(s)0(t — s)ds = F(t)  (8)

—00 —0oQ
describes the Fmo “distributional kernel” of the identity mapping.
Applying the above composition rule to the Fourier and inverse
Fourier transform kernels given above the exponential law one
easily finds that one should have this (!!symbolically!!)

/ 27UE) gy = 5(r — 1), (9)

While mathematicians shake their heads this symbolic formula
makes a lot of sense, even if the integrals do not converge. Tak
them in a pointwise sense is of course also a very risky thing. B
it is also clear that (9) cannot be used to “prove” that the inve
Fourier kernel induces the inverse mapping.
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The Kernel Theorem V

Summarizing one can say that the correspondence between the
operator kernel and the corresponding operator extends from the
well-known characterization of Hilbert-Schmidt operators via
L?-kernels to a unitary Banach Gelfand Triple isomorphism_
between (L£(S§,S0), HS, L(So, S)) and (So, L2 S)(RY x RY).

Next we will show that there are various other representations of
such operators, e.g. in the spirit of pseudo-differential operators in
the frame-work of the Weyl calculus or for us more important the
Kohn-Nirenberg setting which is closely related to the spreading
representation of an operator.
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The Spreading Function |

Again we start from the case of G = Zy, with the representation of
linear operators from CN = £2(Zy) into itself via N x N-matrices.
In this setting we have N different cyclic shift operators, and also
the unitary Fourier transform, which produces another set of
frequency shift operators or modulation operators. Combining
them we obtain a collection of N? TF-shifts living in the
N2-dimensional linear space of all complex N x N-matrices.
Viewing CM as Euclidean space, resp. endowing these matrices
with the Hilbert-Schmidt (also called the Frobenius norm

A3 := \/W = traceA x A,
j7k

it is easy to see that up to the scaling factor v/N these
operators form indeed an ONB for this space.
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The Spreading Function |l

The coefficients in this representation form a function over the
finite phase space Zy X Zp, which is called the spreading function
of the given operator, denoted by n(T).

Since shift operators are sitting on (cyclic) side-diagonals, and
modulation operators are just pointwise multiplication operators
(by the rows of the DFT matrix, i.e. the pure frequencies) it is
clear that the spreading coefficients can be easily computed by first
viewing the matrix as a collection of N (cyclic) side-diagonals and
then taking a one-dimensional Fourier transform.

In the continuous domain the first step is some automorphism of
R29 followed then by a partial Fourier transform.

The spreading function of a rank-one operator f — (f, h)g with
g.h € So(R?) can be shown to be equal to the STFT V,(g),

and belongs to So(R??) (kernel is: K(x,y) = h(y)g(x)).
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The Spreading Function |ll

It is now easy to show that this transformation from kernels to
spreading functions not only preserves the Syp-property, but also
extends (in the expected way) to a BGTr between (So, L2 S{)(R?9)
and (S, L2 S))(RY x RY).

It can be characterized by the fact that the time-frequency shifts
m(A) = Ms Ty, for A = (t,s) is mapped into & € Sj(R? x R).

Looking at the Gabor multipliers we see that they constitute a
weighted (infinite) sum of projection operators on certain Gabor
atoms of the form w(\)h. Writing Py, for the orthogonal projection
of f onto h we have

Ph, = (m @ ) (A)Pp := w(X) o Ppom(A)*.
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The Spreading Function IV

Using the composition rules for TF-shifts (i.e. some algebra,
involving phase factors, because they form only a projective
representation) one finds for the spreading functions

n((r @ )A)T) = My - n(T)

i.e. multiplication by the pure frequency x depending on A.
This suggests to introduce the so-called KNS (Kohn-Nirenberg
symbol) of T by taking a symplectic Fourier transform of 7(T),
namely k(T) := Fs(n(T)). We then have the rule

K([r @ 7*](A\)T) = Tar(T).
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The Spreading Function V

Again, we have a natural unitary BGTr isomorphism between
(L(S5, 0), HS, L(So, Sp)) and the corresponding KNS in

(So, L% S)(RY x RY), now characterized by the fact that TF-shifts
m(\) correspond to certain pure frequencies.

The best approximation of a given HS-operator is then equivalent
to the approximation of x(T) by linear combinations of shifted
copies of k(Pp) = Fs(Vu(h)) € So(R? x RY).

For such approximations one has well-known and efficient formulas
for the case that (P, )xen forms a Riesz basic sequence in the
‘HS-operators.

One can also show that Gabor multipliers are “slowly varying
systems” or underspread operators, and that on the other hand
such operators are well approximated by Gabor multipliers.
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Anti-Wick Operators

There is also the continuous analogue of a Gabor multiplier, which
one might call an STFT-multiplier. In the literature such operators
are known as Anti-Wick operators.

For the case that the pointwise multiplier is a bounded function,
well concentrated around the origin in phase space, or the indicator
function of a some fixed bounded set one talks about a localization
operator.

Function in (LY, L2, L) or even in (Sp, L2 S)(RY x RY) give rise
to operators in (L£(Sg, So), HS, L(So, Sp)), thus establishing
another BGTr-homomorphism.

The most important consequence is the approximation of an
Anti-Wick operator by Gabor multipliers in the corresponding
operator norm (at all levels!).
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This talk will be mostly about motivations, connections and
background information, and a bit of history of modulation spaces,
from a rather personal view-point.

Given the fact that on the one hand Torino is one of the
international hot-spots of modulation space theory, and on the
other hand the fact that | realize occasionally that my original
motivations cannot be read from the published papers (sometimes
because the ideas have not been made explicit at that time, or
because the results are widely spread in the literature), this talk
appears as a good opportunity to me to explain such things.
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Generalities and View-points

The talk will also shed some light on the strategies behind the
various constructions (Wiener amalgams, modulation spaces,
coorbit spaces, double module spaces, Banach Gelfand triples). We
use the abbrevition BGTr further on.

Many results have not been published explicitly because they arise
as special cases of results of a more general nature.

But | admit that one needs a guidance and detailed explanations to
understand the situation. So, for example, duality and pointwise
multipier results on Wiener amalgam spaces (as introduced in [6])
have been only given in the framework of decomposition spaces

(19D
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The personal view on modulation spaces

The theory of modulation spaces has been developed in the early
1980, culminating in the well-known technical 1983 report on
Modulation spaces on locally compact Abelian groups, and
the first “public appearence” of modulation spaces at the
conference in Kiew: A new family of functional spaces on the
Euclidean n-space, in the same year.

They have been first designed as Wiener amalgam spaces on the
Fourier transform side, using BUPUs, but soon the connection to
the STFT and the Heisenberg group began to play a role.
Around 1986-1989 the appearance of wavelets suggested to look
for a unified theory of wavelet analysis and time-frequency analysis,
based on the common group-theoretical basis. The results

have been published under the name of coorbit theory with

K. Gréchenig in 1988/89.

Hans G. Feichtinger Banach Gelfand Triples and Gabor Multipliers



Basic Facts about Wiener Amalgams

Wiener amalgam spaces, as the name says, had their origin in the
work of Norbert Wiener, mostly in connection with his
investigations around the Tauberian theorem (see [24]).

The so-called Wiener algebra W (R?) , according to current
systematic conventions W (Co, £1)(R9), was given as an
interesting example of a so-called Segal algebra in Hans Reiter's
book [23], see [3].

At that time J. Fournier and J. Stewart (see [15]) gave a nice
survey on the role of the spaces they called £9(LP), while Busby
and Smith observed the convolution properties of the classical
amalgam space ([1]).
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Advantages of the family £9(LP)

One of the draw-backs of the classical Banach spaces

(LP(RY), ||+ ||p). with 1 < p < oo is the fact that there are no
inclusion relations between any two of these spaces. However, the
obstacles are if a different nature.

If p1 < p2 there are functions (locally like x~¢, for a suitable value
of a > 0) which are locally in LP* but not in LP2.

In constract, for p1 < p» there are (step) functions in LP' \ LP.
For Wiener amalgams the situation is quite easy:

W(Lpl’gql) C W(LP27€q2) &= P2 < p1 and a1 < qr.

Hence W(L>, £') is the smallest space in this family (with
W (RY) as the closure of the test functions), while W/(L!,£>)
the largest, closed in the dual of W(RY).
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The Magic Square for Wiener Amalgams

The wogic: squase fo
HAe wmogle Souaicriiow

aualaom spaces W(LT L7

Figure: The inclusion relations: magic square

BUT overall classical Wiener Amalgams do not behave
well under the Fourier transform!
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The Hausdorff-Young Result for Amalgams

Wie?' e | e 4
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Figure: Hausdorff-Young theorem for Wiener amalgams
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Besov space (J. Peetre, H. Triebel)

Working with function space over LCA groups | was looking for a
construction of smoothness spaces and thought that one possibility
is to use (replacing dyadic intervals by uniform ones) spaces such
as W(FLP,£7) “on the Fourier transform side”, and then by
“pulling them back to the time-side. THIS was the original idea for
modulation spaces. This was the original idea for the definition of
MP:9 (the unweighted modulation spaces).

Especially the space W/(FL!, 1) (introduced as Segal algebra
(So(G), || - lls) in 1979, see [4]) appears as an interesting special
case, among others because it is invariant under the Fourier
transform, i.e. the group FT maps So(G) onto S5(G).

Since | wanted to avoid the use of distribution theory (over

LCA groups one has to use the Schwartz-Bruhat theory,

which is quite involved), | choose a different way.
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BUPUs, discrete versus continuous norms

An important step taken during the study of Wiener amalgams
(see [6]) was the demonstration, that one obtains in full generality
(for arbitrary global components) two types of characterizations:
@ ‘“discrete” characterizations using BUPUs (bounded uniform
partitions, e.g. in (]—"Ll(]Rd)7 |1l £22)), or
@ continuous norms (using a continuous control function) using
a “moving window" function g.

Of course, one has to show that different BUPUs (or localization
functions) define the same spaces and equivalent norms.
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The name MODULATION spaces

Using the continuous version of the Wiener amalgam norm one
finds that over RY the modulation space

MP9(RY) = F-Y(W/(FLP,£%)) can be characterized as the
subspace of f € S'(RY) with the following finite norm:

. 1/q
(/Rd Mg + f|g> - . (10)

Here g is the window function (typically 0 # g € S(R9)) and
Ms is the modulation operator

[Msg](x) = e™*f(x), s,x € R,
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The name MODULATION spaces |l

Recalling that the Riemann-Lebesgue Lemma shows that the
Fourier transform of LY{R?) functions tends to zero at infinity it is
clear that one has essentially

Msg « f(x) = 0 for s — oc.

So in this sense modulation spaces capture the smoothness by
quantifying the decay of the expression Msg * f(x), resp. the
convolution of the signal f with the modulated window g (as a
function of x and s € R?) by certain integrability conditions.

Note that in communication theory amplitude modulation was
used to modulate a pure frequency e>™* by the amplitude of
the function g to be transmitted!
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Compactness in Modulation Spaces

A number of results have been immediately available at the time of
the introduction of modulation spaces, because they had been
proved already in “full generality” before.

For example, all the modulation spaces are carrying two module
structures: one with respect to LY{R9)-convolution, the other with
respect to pointwise multiplication of FL!(RY).

Hence, whenever p, g < co (resp. whenever So(R9) is dense in
MP9(R9)) one has the usual characterization of compact sets: A
bounded and closed set S ¢ MP9(R9) is compact if and only if it
is equicontinuous and tight.
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Double module structures

Of course modulation spaces are also special cases of Banach
spaces with a double module structures, as studied in [8]. In
particular, one can ask the question about the so-called main
diagram for these spaces.

One of the key points is the following one (even valid for general
modulation spaces): Any such space contains the smallest space
with this L'/ FL'-double module structure, namely

So(RY) = W(FLL, £)(RY) and is contained in its dual space.
The test functions are dense (i.e. the space is minimal) if and only
if translation and modulation are a strongly continuous (!) group
of isometries on these spaces. It is a dual space if and only if
w*-limits (in the sense of Sj) of bounded nets belong to the
Banach space itself. Finally, the space if reflexive if and only if
both the space and its dual are minimal and maximal.
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Inclusion relations

The family of modulation spaces MP9(R9) show a very similar
behaviour compared to ordinary Wiener amalgam spaces

W (LP,£9)(RY). Different parameters define different spaces, and
inclusion mappings are always automatically continuous.
Furthermore any automorphism (e.g. rotation or scaling operators)
leave these spaces invariant, not always isometrical, of course, as a
simple consequence of the fact that different windows define the
same space (up to equivalence of norms).

Some inclusions go in the opposite direction, because the Fourier
algebra FL'(RY) is contained in L?(R9) which in turn is contained
in LYRY) (locally!), hence within FL®(R9). Thus:

MPLTC MP2% < py < po,q1 < qo.
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An inclusion diagram

The fact that there are clear inclusions in both families (Wiener
amalgams resp. modulation spaces), but also a smallest and a
largest space in each of these two families, with the inclusions (we
have W(FL!, ') = MM = MY and W(FL>, 1) = M>™>):
W (FL, £') € W(GCy,£') C L? € W(LL,£®) ¢ W(FL™®, (™).
(11)

Hence for a typical space (B, |- ||g) one can ask what is set of all
parameters (p, q) such that

Mpvq g B or B g Mp7q
respectively

W(LP,£9) C B or B C W(LP,£9).
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Key aspects of my talk

© What is the setting of coorbit theory?

@ In which sense are modulation spaces coorbit
spaces?

@ Which results on coorbit theory had been
influenced by modulation space theory?

@ Which results about modulation spaces are
implicit consequences of coorbit theory?

N
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The setting of Coorbit Theory

Coorbit theory has been developed by myself together with
Karlheinz Grochenig as a reaction to the first publications on
wavelet theory (autumn 1986) by Yves Meyer, see[22, 21], and
earlier A. Grossmann and J. Morlet (see [18], [19]).

The summer school with E. Stein and R. Howe in Germany
organized by D. Poguntke clarified to us (we both took part) that
the STFT (the function that had been used to provide the
continuous description of modulation spaces) had a lot to do with
the Schrodinger representation of the reduced Heisenberg group,
while the CWT (continuous wavelet transform) was just a
representation coefficient of the affine group, the so-called

“ax 4+ b"-group.
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Modulation Spaces as Coorbit Spaces

As already indicated modulation spaces, e.g. the by now classical
modulation spaces M[f’q(]Rd) can be viewed as coorbit spaces, by
relating the usual definition of the short-time Fourier transform a
function on the reduced Heisenberg group (see [10] for details of
this transition).

There are two possible view-points: Group representation theory
suggest to talk about the so-called Schrodinger representation of
the reduced Heisenberg group, HY = RY x RY x T, OR

(taking a more practical approach): The collection of all unitary
operators which are scalar multiples (scalars from the torus) of
time-frequency shifts.
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Coorbit Results of Modulation Spaces

There is a number of results following from the generalities of
coorbit theory, which have not been formulated before only for the
time-frequency context. We give only a short summary:

Theorem

Irregular Sampling of the STFT: Given 0 # g € Sy(RY) there
exists & > 0 such that for any §-dense family (x;);c; there is a
stable linear reconstruction of any f € L>(R?) from the samples of
(Vgf(xi))ies in the form

f=Y Vef(x)8.
i€l

The convergence is unconditional in (L2(]Rd), |- [l2) for any
f € L>(R?), and absolute in (So(RY), || -||s,) for f € So(R9), and
at least w*-convergent for f € S{(RY).
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Modulation Spaces inspiring Coorbit Theory

In the development of coorbit theory essentially the unification
aspect for three situations had been dominant (with further
generalizations imminent):

© the wavelet case;
@ the Gabor (time-frequency) case;
© Mobius invariant function spaces on the disc

We will concentrate on the comparison of the first two cases.
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The Foundations of Coorbit Theory

Coorbit Theory is based on the following assumptions:

© There is an irreducible unitary representation w of some
locally compact group G on some Hilbert space H;

@ For so-called admissible elements ¢ (in the domain of a
densely defined possibly unbounded operator A) one can
define the continuous voice transform on H:

Vo(F)(x) = (F,m(x)g), £ .

© Given a solid, translation invariant Banach space of
(Y, |l-||y) on G one defines

Q Co(Y): {f|V,(f) € Y}, with[|[fllcory) := [V (f)llv-
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The Foundations of Coorbit Theory Il

An important asset for the derivation of the basic properties of
coorbit spaces are the following two consequences of the square
integrability of the representation.
e For suitably normalized (admissible) atoms/windows one has
an isometric embedding of H into (L%(G), || |2), i.e.

[Vo(O)ll2=flln, feH.
o The range of V, within L?(G) is characterized by:
Vo (f) * V() = Vi (f)
where " " denotes convolution of functions on G:

@ The inverse of V,, on the range of is just V], resp. one has
the reproducing formula

f:/GV@(f)(x)w(x)godx, fe,

which is understood (first!) in the weak sense.
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Modulation Spaces inspiring Coorbit Theory
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What are Modulation Spaces?

During the preparation of the article [7] the question arose: What
are modulation spaces?

The answer that came our finally: Modulation spaces are coorbit
spaces arising from the Schrodinger representation of the reduced
Heisenberg group, resp. these are Banach spaces of distributions
characterized by the behaviour of the STFT (cf. [11]).

Thus it is not so much the particular use of (weighted) mixed-norm
spaces, or the particular order in which these norms are taken.

In this sense the generalized Wiener amalgam spaces

W (FLP, £9)(RY) are just other (general) modulation spaces.

One can define modulation spaces also with other function spaces,
such as weighted Lorentz or Orlicz spaces, even the coordinate
system is choosen differently. Then we would describe images o
M;’q—spaces under the Fractional Fourier transform.
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Key aspects of my talk
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