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Features of Wiener Amalgams

We treat 1 ≤ p, q ≤ ∞, the Banach space case.
The guiding principles for the use of Wiener amalgams is the fact
that they allow to control in some sense local and global properties
of a function (? separately).
For step functions or smooth functions membership of
f ∈W (Lp, `q) is the same as membership in Lq(Rd).
For compactly supported functions f ∈W (Lp, `q) one has just
another norm, equivalent to the (local) Lp-norm.
A BETTER description is: The norm of a function in a Wiener
amalgam space describes the global behaviour (described by the
sequence space `q) of a local quantity, or norm, or quality,
expressed by the local Lp-norm.
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Obvious generalization

Instead of using local Lp-norm, one may take local Lorentz or
Orlicz space norms, and instead of global `q-norms one may take
weighted sequence space norms, this is quite easy to do.
For such simple spaces it is easy to establish the expected duality
or (complex) interpolation results!
It is also true what W (Lp, `p) = L

p(Rd) with equivalence of
norms, for 1 ≤ p ≤ ∞, and there is a Hausdorff-Young Theorem

Lemma

For 1 ≤ p, q ≤ 2 one has

F(W (Lp, `q)) ⊂W (Lq
′
, `p

′
).

This is consistent with the general fact that local properties
of f correspond to global properties of f̂ .
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Nice inclusion results

The classical norms for Wiener amalgams decompose Rd into
cubes, obtained by shifting the fundamental domain of Rd with
respect to the standard lattice Zd , and thus takes the Lp-norm
over all these cubes and then takes a global `q-sum.
The extreme cases are to take a local sup-norm and a global
`1-norm. The space (of continuous functions inside of)
W (L∞, `1)(R) consists of all continuous functions with finite
upper Riemannian sum (we write W (C0, `

1)(R)).
Correspondingly the largest of these classical spaces is
W (L1, `∞)(R) which consists of all locally integrable functions of
“uniform density” in the sense of boundedness of the local
integrals.
This space is a closed subspace of the dual of W (C0, `

1)(Rd),
which is the space of translation bounded Radon measures, we
write W (M , `∞)(R).
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The relevance of Wiener Amalgam norms for Sampling

The Wiener amalgam spaces, especially those of the form
W (C0, `

p)(Rd), are of particular importance for the theory of
irregular sampling and for the derivation of convergence results for
iterative methods which allow to recover band-limited functions
from their irregular samples (as long as the sampling density is
high enough, compared to the size of the spectrum of the sampled
function).
The other ingredient is of course that a smooth function will not
deviate too much from e.g. a piecewise interpolation obtained from
the given irregular samples.
One of the key steps in the proof of such theorems (you can
download various talks on this subject at www.nuhag.eu)
is the norm equivalence between the usual Lp-norm and the
W (C0, `

p)-norm, for a given spectrum Ω.
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Discrete versus continuous norm

On the positive side, all the spaces W (Lp, `q)(Rd) are translation
invariant, with a uniform bound (depending mostly on d) on the
norm of translation operators.
However, especially the norm in W (C0, `

1)(Rd) (now for d ≥ 1)
shows a slightly annoying behaviour. Given a bump function
supported by say (we look at d = 2) one fundamental domain may
be split into 4 different pieces, so that the norm is multiplied by
4 = 2d in such a case. One can thus define a new norm, by taking

‖f ‖new := sup
x∈Rd

‖Tx f ‖old

which is not really computable and more of theoretical interest.
For example, with such a norm W (C0, `

1)(Rd) is a so-called
Segal algebra (see H. Reiter’s book of 1968).
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Discrete versus continuous norms

One of the early ideas introduced into the area was based on a
simple consideration: Why not “measures” a function in a
continuous way, and describe the continuous behaviour of the local
property. Then, instead of the indicator function 1Q , for the cubic
domain Q = [0, 1)d , one can take any bump function.
This we look (for q <∞) at the continuous norm

‖f ‖cont :=

(∫
Rd

‖Txϕ · f ‖q
L
p(Rd )

)1/q

.

IT IS an EASY EXERCISE to verify that this norm is equivalent to
the discrete norm, and strictly translation invariant:

‖Tx f ‖cont = ‖f ‖cont , ∀x ∈ Rd .
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More general Local Components

The idea behind the spaces now called Wiener amalgam spaces
with more general local components (like Lipschitz or Besov
norms) can be easier expressed by the continuous norm: We just
replace the local Lp-norm by such a more general norm.
However, then the question of the independence of the norm (up
to equivalence) on the bump-function arises. It turns out that there
is a rather simple condition for a local component (B, ‖ · ‖B):

‖Txϕ · f ‖B ≤ C‖f ‖B , ∀f ∈ B. (1)

If the norm on (B, ‖ · ‖B) is translation invariant this simply means
that ϕ is a pointwise multiplier for B, or that ϕ is sufficiently
smooth (and compactly supported).
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Basic Facts concerning Wiener Amalgams

Can one replace the continuous norm by a discrete one?

Are there natural duality results? interpolation?

What about pointwise multiplication operators?

What about convolution operators?

More or less all these questions have been answered in the early
papers on the subject, between 1980 (time of writing) and 1985
(publication). At the same time the theory of modulation spaces
M

s
p,q(Rd) was developed, with the idea that they should be viewed

as F−1(W (FLp, `qvs )).
Nowadays the more elegant approach using the STFT is
prevalent in the literature and often the only known variant.
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Which symbols to use?

First of all let us recall that there is a continuous and a discrete
description of the classical Wiener amalgams. This suggest to use
the symbols W (Lp, `q)(Rd) (thinking of the discrete norm) and
W (Lp,Lq)(Rd), if one has the continuous norm in mind.
We prefer to use the discrete version of the norm most of the
time, because then it is clear that W (Lp1 , `q1) ⊂W (Lp2 , `q2) if
and only if Lp1(Q) ⊂ Lp2(Q) for compact sets, i.e. p2 ≤ p1, and
`q1 ⊂ `q2 , or q1 ≤ q2.
As a consequence spaces are equal if and only if their parameters
are equal, i.e. p1 = p2 and q1 = q2.
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The Magic Square for Wiener Amalgams

Abbildung: The inclusion relations: magic square

BUT overall classical Wiener Amalgams do not behave
well under the Fourier transform!

Hans G. Feichtinger Wiener amalgams andproduct-convolution operators



The Hausdorff-Young Result for Amalgams

Abbildung: Hausdorff-Young theorem for Wiener amalgams
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The Wiener algebra W (C0, `
1)(Rd) and S0(Rd)

One of the early observations has been that the so-called Wiener
algebra, the closure of S(Rd) or Cc(Rd) in W (L∞, `1)(Rd), or
just W (C0, `

1)(Rd) (having in mind that C0(Rd) is the closure of
S(Rd) resp. Cc(Rd) in

(
L
∞(Rd), ‖ · ‖∞

)
!), is the smallest among

all translation invariant spaces which allow pointwise multiplication
with C0(Rd).
In a similar way the Segal algebra S0(Rd) := W (FL1, `1)(Rd) has
been introduced (in 1979) as the smallest translation invariant
Banach space of functions which allows pointwise multiplication
with the Fourier algebra FL1(Rd).
By duality the dual space of S0(Rd) is just W (FL∞, `∞)(Rd),
the space of tempered distributions which are locally
pseudomeasures, uniformly bounded over Rd .
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Pointwise multiplication and convolution

We do not formally describe the abstract relations, which hold in
the most general form, but instead illustrate them by examples.

Lemma

The spaces
(
M

p(Rd), ‖ · ‖Mp

)
:= (W (FLp, `p), ‖ · ‖W (FLp ,`p)) are

Banach spaces of distributions which are invariant under the
Fourier transform, with

S0(Rd) ↪→M
p1(Rd) ↪→M

p2(Rd) ↪→ S
′
0(Rd)

if and only if 1 ≤ p1 ≤ p2 ≤ ∞.

Proof: p = 1 direct, p =∞ by duality, then interpolation.

Hans G. Feichtinger Wiener amalgams andproduct-convolution operators



Hausdorff-Young Theorem and Sobolev algebras

The proof of Sobolev embedding’s theorem can be realized as
follows using the Cauchy inequality, whenever s > d/2:

Hs(Rd) = F−1(L2
vs (R

d)) = F−1(W (L2, `2
vs )) ↪→ F−1(W (FL2, `1))

But since obviously 1 ≤ 2 we can apply the Hausdorff- Young
theorem and obtain

Hs(Rd) ↪→W (FL1, `2) ↪→W (C0, `
2) ↪→ L

2 ∩ C0.

In a similar way one find Hs(Rd) = W (Hs , `
2)
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Pointwise multipliers of Sobolev spaces

In order to verify that not only
(Hs(Rd), ‖ · ‖Hs

)
↪→
(
C0(Rd), ‖ · ‖∞

)
for s > d/2, but that it is

in fact closed under pointwise multiplication we just have to find
out that L2 ∗ L2 ⊂ C0 and that `2

vs = `1 ∩ `2
vs is closed under

convolution, which can be easily derived using the WSA (weakly
sub-additive) property of vs(x) = (1 + |x |)s :

vs(x + y) ≤ Cs(vs(x) + vs(y)), x , y ∈ Rd .

Since FHs(Rd) = W (FL2, `2
vs ) we also see that

Hs(Rd) = W (FL2
vs , `

2) = W (H , `2). As a consequence it is not
surprising that one has

M(Hs(Rd)) =M(W (Hs , `
2)) = W (Hs , `

∞).
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Product-Convolution Operators

Next we discuss the role of Wiener amalgam for the study of
product-convolution and convolution-product operators, i.e.
operators of the form

f 7→ g ∗ (h · f ) or f 7→ h · (g ∗ f ).

Such operators are often as regularization operators, because
convolution produces smoothness and pointwise multiplication
produces decay.
It is well known that

S(Rd) ∗ (S(Rd) · S ′(Rd)) ⊂ S(Rd)

S(Rd) · (S(Rd) ∗ S ′(Rd)) ⊂ S(Rd).
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Regularization of Mild Distributions

We have similar results for the pair S0(Rd) and S ′0(Rd)

S0(Rd) · (S0(Rd) ∗ S ′0(Rd)) ⊂ S0(Rd),

S0(Rd) ∗ (S0(Rd) · S ′0(Rd)) ⊂ S0(Rd).

Derivation (of the first inclusion) via:

S0(Rd) ∗ S ′0(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊂W (FL1, `∞).

using the fact that FL1 ∗ FL∞ ⊂ FL1 and `1 ∗ `∞ ⊂ `∞, and

W (FL1, `1) ·W (FL1, `∞) ⊂W (FL1, `1)(Rd) = S0(Rd),

using the fact that
(
FL1(Rd), ‖ · ‖FL1

)
is a pointwise algebra.
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Recent regularization results

Let us recall that

M
1
vs (R

d) = {f ∈ S ′(Rd) | 〈z〉s · Vg0f ∈ L1(R2d)}

with 〈z〉s = (1 + x2 + y2)1/2 and natural norm

‖f ‖
M

1
vs

:= ‖〈z〉s · Vg0f ‖L1 .

Theorem

For any s ≥ 0 we have:

M
1
v3s
· (M1

v3s
∗M∞v−s

) ⊂M1
vs . (2)

M
1
v3s
∗ (M1

v3s
·M∞v−s

) ⊂M1
vs . (3)
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Using inclusion results

Based on the comparison between tensor product weights and
radial symmetric weights one obtains the following inclusions:

Lemma

For any s ≥ 0 one has the continuous (proper) embeddings:

M
1
v2s
⊂W (FL1

vs , `
1
vs ) ⊂M

1
vs (4)

M
1
v3s
⊂W (FL1

v2s
, `1

vs )∩W (FL1
vs , `

1
v2s

) ⊂W (FL1
vs , `

1
vs ) ⊂M

1
vs (5)

W (FL1
v2s
, `1

vs ) +W (FL1
vs , `

1
v2s

) ⊂W (FL1
vs , `

1
vs ) ⊂M

1
vs (6)
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Proof.

(I) Let us start with the proof of (2). It can be proved using first
the convolution relation (cf. fe83 : [1])

M
1
v3s
∗W (FL∞v−s

, `∞v−s
) ⊂W (FL1

vs , `
∞
v−s

) (7)

and then the pointwise multiplication result

M
1
v3s
·W (FL1

vs , `
∞
v−s

) ⊂M1
vs . (8)

Recalling that we have M1
v3s
⊂W (FL1

v2s
, `1

vs ) we observe that (7)
can be obtained from the standard convolution relations for Wiener
amalgams via

W (FL1
v2s
, `1

vs ) ∗W (FL∞v−s
, `∞v−s

) ⊂W (FL1
vs , `

∞
v−s

). (9)
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Proof.

(II) We also need a pointwise multiplier result for Wiener
amalgams, using the fact that the Fourier Beurling algebra FL1

vs is
closed under pointwise multiplication:

M
1
v3s
·W (FL1

vs , `
∞
v−s

) ⊂W (FL1
vs , `

1
v2s

) ·W (FL1
vs , `

∞
v−s

) ⊂ (10)

⊂W (FL1
vs , `

1
vs ) ⊂M

1
vs . (11)

OBSERVE that (similar claims are valid for Mp
vs(R

d), 1 ≤ p ≤ ∞):⋂
s>0

M
1
vs (R

d) = S(Rd) and
⋃
s>0

M
∞
v−s

(Rd) = S ′(Rd).
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TMIBs and DTMIBs

Definition

A Banach space (B, ‖ · ‖B) is called a minimal tempered standard
space (or a TMIB) if

1 One has the following sandwiching property:

S(Rd) ↪→ (B, ‖ · ‖B) ↪→ S ′(Rd); (12)

2 S(Rd) is dense in (B, ‖ · ‖B) (minimality);

3 (B, ‖ · ‖B) is translation invariant, and for n1 ∈ N and C1 > 0:

‖Tx f ‖B ≤ C1〈x〉s1‖f ‖B ∀x ∈ Rd ; (13)

4 (B, ‖ · ‖B) is modulation invariant, and for n2 ∈ N and C2 > 0

‖My f ‖B ≤ C2〈y〉s2‖f ‖B ∀y ∈ Rd . (14)
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Double modules

Any such TMIB (or its dual) is a double modules (!not a
bimodule) in the following sense:

1 a Banach module over some Beurling algebra with convolution

2 a pointwise Banach module over some Fourier-Beurling
algebra

Among others one can show that (for example) the projective
tensor product of two such spaces (over Rd) is another TMIB
(over R2d). Typical examples are the space Lp(Rd)⊗̂Lq(Rd),
which can be built as absolute convergent series of elementary
tensors (product functions)

f ⊗ g(x , y) = f (x)g(y), x , y ∈ Rd .
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Generalized modulation spaces

It was a surprise to me that the construction of modulation spaces,
i.e. of spaces which are described via the behaviour of the STFT of
a tempered distribution in some Banach space (Y , ‖ · ‖Y ) of
functions over R2d STILL MAKES SENSE (as pointed out in the
recent paper by Stevan Pilipovic, Bojan Prangovski, Pavel
Dimovski, and Jason Vindas) for such tensor product spaces.
In contrast to the very general abstract approach leaving to coorbit
spaces (Fei/Groch, 1989) there is no solidity for such spaces, i.e.
one does NOT have:

|F (x)| ≤ |G (x)| ⇒ ‖F‖Y ≤ ‖G‖Y .
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Generalized modulation spaces II

They define, via the STFT with respect to a Gaussian window:

MY = {f ∈ S ′(Rd),Vg (f ) ∈ Y }.

The crucial identity for an identification of some of these space is
relying on the adjoint mapping V ∗g , which has the property

V ∗g (φ⊗ ψ) = F(ψ) · (φ ∗ g).

Since g ∈ S(Rd) ⊂W (FL1
w , `

1
w )(Rd) for many (polynomial)

weight functions one has to make use of PC-CP mapping
properties of amalgam spaces in order to come up with an
identification of these new generalized modulation space.
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Generalized modulation spaces III

Lemma

For p ∈ [1, 2], MLp⊗̂πL
p

= W (FLp, L1), with equivalent norms.

The most important special cases are the well-known fact

ML1⊗̂πL
1

=ML1(R2d ) = S0(Rd) = W (FL1, `1)(Rd)

and the case p = 2, which among many others will be part of an
upcoming joint paper with Stevan:

Lemma

ML2⊗̂πL
2

= W (L2, L1) with equivalent norms.
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Thanks!

THANKS you for your attention
All the best to Stevan, you go ahead!

To the audience: maybe you visit www.nuhag.eu
and checkout other talks and related material. hgfei

www.nuhag.eu/talks, PWD required!
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