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official abstract I

It is well known, that the effect of the Fourier transform on a
spectrogram (the absolute value squared of a STFT) is just
rotation by 90 degrees. Hence one may ask whether there are
operators which correspond to a rotation by an arbitrary angle.
This is in fact possible and well known for decades, in many
different appearances, under the name of a Fractional Fourier
transform. There are many different approaches, starting in
different communities, which have lead to studies in the last 50
years (engineers, physicists, mathematicians). The most powerful
(to our mind) is the view-point of Andre Weil, who introduced the
metaplectic group (containing the group of Fractional FTs) in
his famous paper in Acta Mathematica ([7]).
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Fractional Fourier Transforms

There are different ways to describe the fractional Fourier
transform, corresponding to rotations in the time-frequency plane.
The ordinary Fourier transform corresponds to a rotation by 90
degrees, which is reflected by the well known formula in [4], (3.10):

|Vĝ f̂ (s,−t)| = |Vg f (t, s)|, t, s ∈ Rd .

This makes plausible that F(Ff )(x) = f (−x) and F4(f ) = f .
The best way to understand the basic properties of the group of
fractional Fourier transform Fα, α ∈ R, with Fπ/2 = F, is to view
it as an operator which has a diagonal matrix representation with
respect to the Hermite ONB (hn)n≥0 in

(
L

2(R), ‖ · ‖2

)
.
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Basic properties of the Hermite ONB

The family (hn)n≥0 forms an orthonormal basis for
(
L

2(R), ‖ · ‖2

)
,

with the property that

F(hn) = (−i)n hn, n ≥ 0, (1)

i.e. consisting of eigenvectors of F.
Taking diagonal matrices of the form (e iαn)n≥0 produces a group
of unitary operators Fα, which for obvious reasons is isomorphic to
the torus group, and with

F= Fπ/2,

named the fractional Fourier transform.
This group is a commutative subgroup of the larger group of
metaplectic transformations (see [7], [6], or the work of
Maurice de Gosson).
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Figure: spectroFTeff1.jpg
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MATLAB Code

function [HERM,hermeig,GMW,W] = hermf(n);

RW = radwgh(n); MRW = max(RW(:)); W = 1 + MRW - RW;

[HH, hermeig] = eigsort(gabmulhf(W,g,1,1));

HERM = twtoreal(HH.’).’;

if norm(imag(HH(:))) < 1000*eps;

HERM = real(HH); end;

for jj=1:n; if sum(HERM(jj,1:round(n/2))) < 100*eps;

HERM(jj,:)=-HERM(jj,:); end; end;

function radM = radwgh(m,n); dm=min(0:m-1,m:-1:1);

dn=min(0:n-1,n:-1:1);

radM= 1+sqrt((ones(m,1)*dn).2+((dm(:)*ones(1,n)).2));
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Radial weight function on phase space

Figure: radwg480.jpg
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The localized Fourier transform (spectrogram)
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Discrete Hermite Functions
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Discrete Hermite Functions
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Spectrograms of Hermite Functions

Figure: hermit24show.jpg
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The localized Fourier transform (spectrogram)
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Figure: hermf480a.jpg
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Fractional FT applied to linear chirps

Figure: fracFTpurfr50.jpg
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Fractional FT applied to linear chirps

Figure: FracFTchirp01b.jpg
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Fractional FT applied to chirp signals

Figure: chirpLTFAT200B.jpg
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Difference between two types of discrete Hermite Fcts.
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An example of a Riesz basic sequence

Figure: RieszSQ115A.jpg
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Sampling, Approximation by finite sequences

A number of papers covers the problem of connecting the discrete
theory with the continuous (via sampling and periodization).

N. Kaiblinger.
Approximation of the Fourier transform and the dual Gabor window.
J. Fourier Anal. Appl., 11(1):25–42, 2005.

H. G. Feichtinger.
Gabor expansions of signals: computational aspects and open questions.
In Landscapes of Time-Frequency Analysis, volume ATFA17, pages 173–206.
Birkhäuser/Springer, 2019.

J. Fischer.
Four particular cases of the Fourier transform.
Mathematics, 12(6):335, 2018.
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How can one compare vectors of different length

When we work with finite sequences which are meant to represent
a continuous functions, so typically with equidistant samplings of a
smooth functions k , taken from a relatively dense arithmetic
progression (over a region containing the support of k ∈ Cc(R))
we expect to represent k (or its periodized continuation) well,
resp. recover it with small error from the samples (e.g. by piecewise
linear interpolation or quasi-interpolation using cubic splines, or
other BUPUs!).
This can be compared to the approximation of irrational numbers
by rational numbers. But it is hard to check that 53/17 is in fact a
better approximation to π than 41/13, while it is clear that
3.1415926535897 is a much better approximation than 3.1415.
In fact, by adding one decimal term after the other one gets
better and better approximations.
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In this sense we will look closer at sequences of finite length, by
checking the relation between a sequence of length n and a
sequence of length 4n, e.g. n = 1024 and 4n = 4096.
This corresponds to a replacement of the period by a factor of two
and the sampling rate is also doubled, resp. the sampling distance
h is replaced h/2.
In our example we have n = 210 = (25)2, hence it is natural to
think of a period of 32 and a sampling rate of 1/32, which is then
doubled to 64 and 1/64. Obviously a quarter of the samples of the
new sampling sequence corresponds to positions used in the coarse
scheme. But it is not obvious, what this means in terms of
MATLAB indices!
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Good behaviour of Discrete Hermite Functions

When we study the behaviour of our discrete Hermite functions
they do not only show the proper behaviour of discrete analogues
of the fractional Fourier transform (transforming linear chirps into
linear chirps), but also very good behaviour with respect to
this transition between n to 4n.
Following the use of

(
S0(Rd), ‖ · ‖S0

)
for the computation of the

Fourier transforms (in the sense of the integral transform) via using
the discrete version (FFT) as worked out with N. Kaiblinger on can
expect that the application of the DISCRETE FRACTIONAL FT
to a sequence of properly sampled functions in

(
S0(R), ‖ · ‖S0

)
,

followed by piecewise linear interpolation, should give a good
approximation of Fα(f ), as n→∞.
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The S0-Banach Gelfand Triple

 The S
0
 Gelfand triple

S0

S0’

L2
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Invariance properties of
(
S0(R), ‖ · ‖S0

)

When it comes to the description of the fractional Fourier
transform via “kernels” it is often stated, that the inversion formula
holds true if Fα(f ) ∈ L1(R), but when can one be sure that this is
the case (except under the very strong assumption that f ∈ S(R)!?
Here the long established fact (often used in the work of Maurice
de Gosson and others) that

(
S0(Rd), ‖ · ‖S0

)
is invariant under the

full metaplectic group, is quite remarkable. In fact, this property
results from the minimality property of

(
S0(G ), ‖ · ‖S0

)
(among all

isometrically translation and modulation invariant spaces on G ).
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Some comment on Tauberian Theorems

I would like to mention some work on Tauberian Theorem which is
very little known, the so-called Third Tauberian Theorem of
Norbert Wiener.

N. Wiener. The Fourier Integral and certain of its Applications.
Cambridge University Press, Cambridge, 1933.

H. G. Feichtinger.
An elementary approach to Wiener’s third Tauberian theorem for
the Euclidean n-space.
In Symposia Math., volume XXIX of Analisa Armonica, pages
267–301, Cortona, 1988.
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