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A Zoo of Banach Spaces for Fourier Analysis
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NEW Abstract (short version), Rostov-on-Don I

Psychological Viewpoint: We are coming close to 200 years of the
Fourier transform. It is an important and indispensable tool for
many areas of mathematica analysis, function spaces, PDE and
other areas. It has been crucial in the creation of new tools, such
as Lebesgue integration, Functional Analysis, Hilbert spaces, and
more recently frames (for Gabor expansions).

Analogies: The DFT (realized as FFT) is a simple orthogonal
(better unitary) change of bases, linear mappings on Cn are just
matrices, but when it comes to continuous variables (FT over Rd)
only physicists call (δx)x∈R a “continuous basis” for (generalized)
functions on Rd .
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NEW Abstract (short version), Rostov-on-Don II

Technically Speaking: Engineers work with Dirac impulses, Dirac
combs, and more recently to some extent the theory of tempered
distributions (S ′(Rd)) by Laurent Schwartz is taken into account.
“Non-existent” integrals and identities such as∫ ∞

−∞
e2πitsds = δ0(t)

are used to “derive” the Fourier Inversion Theorem and other
mysterious manipulation give engineering students the impression
that Fourier Analysis is a mystic game with fancy symbols which is
only understood correctly by mathematicians. On the other hand
they only care about applications, and mathematicians are often
not helpful (e.g. because they are viewed as too pedantic).
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NEW Abstract (short version), Rostov-on-Don III

THESIS of my TALK

The Banach Gelfand Triple (S0,L
2,S ′0)(Rd) (which arose in the

context of Time-Frequency Analysis) is a simple and useful tool,
both for the derivation of mathematically valid theorems AND for
teaching relevant concepts to engineers and physicists (and of
course mathematicians, interested in applications!).
In this context the basic terms of an introductory course on Linear
System’s Theory can be explained properly: Translation invariant
systems viewed as linear operators, which can be described as
convolution operator by some impulse response, whose Fourier
transform is well defined (and is called transfer function), and
there is a kernel theorem: Operators T : S0(Rd)→ S

′
0(Rd)

have a “matrix representation” using some σ ∈ S ′0(R2d).
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Earlier Abstract (for later reading), IWOTA19 talk

It is the purpose of this presentation to explain certain aspects of
Classical Fourier Analysis from the point of view of distribution
theory. The setting of the so-called Banach Gelfand Triple
(S0,L

2,S ′0)(Rd) starts from a particular Segal algebra(
S0(Rd), ‖ · ‖S0

)
of continuous and Riemann integrable functions.

It is Fourier invariant and thus an extended Fourier transform can
be defined for (S ′0(Rd), ‖ · ‖S ′

0
) the space of so-called mild

distributions. Any of the Lp-spaces contains S0(Rd) and is
embedded into S ′0(Rd), for p ∈ [1,∞].
We will show how this setting of Banach Gelfand triples resp.
rigged Hilbert spaces allows to provide a conceptual appealing
approach to most classical parts of Fourier analysis. In contrast
to the Schwartz theory of tempered distributions it is expected
that the mathematical tools can be also explained in more
detail to engineers and physicists.
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Our Aim: Popularizing Banach Gelfand Triples

According to the title I have to first explain the term
Banach Gelfand Triples, with the specific emphasis on the BGTr
(S0,L

2,S ′0)(Rd), arising from the Segal algebra
(
S0(Rd), ‖ · ‖S0

)
(as a space of test-functions), alias the modulation spaces
(M1(Rd), ‖ · ‖

M
1),
(
L

2(Rd), ‖ · ‖2

)
and (M∞(Rd), ‖ · ‖M∞).

Hence I will describe them, provide a selection of different
characterizations (there are many of them!) and properties.

Finally I will come to the main part, namely applications or use of
this (!natural) concept in the framework of classical analysis.

Hans G. Feichtinger
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The structure of the talk II

Compared to other talks I leave out the main application area of
this BGTr, namely so-called Gabor Analysis or Time-Frequency
Analysis (TFA). Specific aspects of this have been described in my
talks in the Gabor Analysis section of this conference.

In fact, the Segal algebra
(
S0(G ), ‖ · ‖S0

)
, which is well defined on

LCA (locally compact groups) has been introduced already 1979,
at a winter-school in Vienna, organized by H. Reiter (my advisor).
This makes the BGTr (S0,L

2,S ′0)(G ) useful for applications in
Abstract Harmonic Analysis.
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The Life-Cycle of Tools

New tools often go through the following development steps:

1 A new tool is developed in order to solve a concrete problem;

2 Once it is observed that the new tool can be applied in other
contexts the “trick” becomes a method, and receives a name;

3 Subsequent analysis of the methods specifies the ingredients
and conditions of applications; optimization;

4 Exploration of the maximal range of applications;

5 The limitations of the tool are discovered, and so on...

6 Change of view/problems creates the need for new tools!

7 One may find that for various applications a
simplified version suffices.

Hans G. Feichtinger
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The Standard spaces L1, L2, L∞ and FL1

Abbildung: The diagrams showing L1,L2,C0,FL1 etc.
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The Universe of Banach Spaces of Tempered Distributions
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The Essence: Reducing to the Banach Gelfand Triple

Abbildung: Our GOAL: Simplification: COMPARISON with Q ⊂ R ⊂ CHans G. Feichtinger
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frametitle: Bibliography for Banach Gelfand Triples I

E. Cordero, H. G. Feichtinger, and F. Luef.
Banach Gelfand triples for Gabor analysis.
In Pseudo-differential Operators, volume 1949 of Lecture Notes in Mathematics,
pages 1–33. Springer, Berlin, 2008.

H. G. Feichtinger and M. S. Jakobsen.
Distribution theory by Riemann integrals.
Mathematical Modelling, Optimization, Analytic and Numerical Solutions, pages
33–76, 2020.

H. G. Feichtinger.
A sequential approach to mild distributions.
Axioms, 9(1):1–25, 2020.

H. G. Feichtinger.
Classical Fourier Analysis via mild distributions.
MESA, Non-linear Studies, 26(4):783–804, 2019.

H. G. Feichtinger.
Banach Gelfand Triples and some Applications in Harmonic Analysis.
In J. Feuto and M. Essoh, editors, Proc. Conf. Harmonic Analysis
(Abidjan, May 2018), pages 1–21, 2018.
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The Minimal Segal Algebra
(
S0(Rd), ‖ · ‖S0

)
There are many Segal algebras in the sense of H. Reiter.
By definition they are dense Banach spaces within

(
L

1(G ), ‖ · ‖1

)
with isometric and strongly continuous translation, hence (Banach)
ideal within

(
L

1(G ), ‖ · ‖1

)
, for any LC group (here G = Rd).

The intersection of all those Segal algebras is NOT a Segal algebra
itself, but if one adds additional pointwise multiplication properties
one can find a smallest element in such a family.

For the simple choice A =
(
C0(Rd), ‖ · ‖∞

)
the Wiener algebra

(which I use to denote by)
(
W (C0, `

1)(Rd), ‖ · ‖W
)

is the
corresponding Segal algebra, while for

(
FL1(Rd), ‖ · ‖FL1

)
it is the

mentioned Segal algebra
(
S0(G ), ‖ · ‖S0

)
.

So let us consider a FEW out of the MANY different
characterizations of this Banach spaces (of continuous and
integrable) functions on G = Rd .
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Short Bibliography of related to Segal Algebras

H. Reiter.
Classical Harmonic Analysis and Locally Compact Groups.
Clarendon Press, Oxford, 1968.

H. J. Reiter.

L1-algebras and Segal Algebras.
Springer, Berlin, Heidelberg, New York, 1971.

H. G. Feichtinger.
A characterization of Wiener’s algebra on locally compact groups.
Archiv d. Math., 29:136–140, 1977.

H. G. Feichtinger.
On a new Segal algebra.
Monatsh. Math., 92:269–289, 1981.

H. Reiter and J. D. Stegeman.
Classical Harmonic Analysis and Locally Compact Groups. 2nd ed.
Clarendon Press, Oxford, 2000.

M. S. Jakobsen.
On a (no longer) New Segal Algebra: A Review of the Feichtinger Algebra.
J. Fourier Anal. Appl., 24(6):1579–1660, 2018.
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The key-players for time-frequency analysis

What we need in order to give the first, simple definitions (for the
case of G = Rd) are the following ingredients:

Time-shifts and Frequency shifts (II)(modulations)

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform (modulation goes to translation)

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);

Hans G. Feichtinger
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Abbildung: GauRotMod1.jpg

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

Alternative Function Spaces

There are many situations where the Segal algebra S0(Rd) is the
most appropriate function spaces in the context of Gabor Analysis.
We will first describe the space shortly (using a few of its
characterizations) and then list a few examples where and why it is
a convenient and frequently used tool in the context of Gabor
Analysis.
The (meanwhile) classical way to introduce S0(Rd)1 is making use
of the Short-Time Fourier transform of a signal f ∈ L2(Rd) with
respect to a window g ∈ L2(Rd) is defined by

Vg (f )(t, ω) = 〈f ,MωTtg〉, t, ω ∈ Rd . (1)

Fixing any non-zero Schwartz function, typically g = g0, with
g0(t) = e−πt

2
, one sets:

S0(Rd) := {f ∈ L2(R) |Vg (f ) ∈ L1(R2d)}. (2)

1This so-called Segal algebra can be defined over general LCA groups.
Hans G. Feichtinger
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Basic properties of M1 = S0(Rd)

Lemma

Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d , and
‖π(u, η)f ‖S0 = ‖f ‖S0 .

(2) f̂ ∈ S0(Rd), and ‖f̂ ‖S0 = ‖f ‖S0 .

In fact,
(
S0(Rd), ‖ · ‖S0

)
is the smallest non-trivial Banach space

with this property, and therefore contained in any of the Lp-spaces
(and their Fourier images).

Hans G. Feichtinger
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Reconstruction Formula

The Moyal formula implies immediately the following inversion
formula “in the weak sense”

f =

∫
Rd×R̂d

Vg (f )(λ)π(λ)gdλ, f ∈ L2(R). (3)

It follows from Moyal’s formula (energy preservation):

‖Vg (f )‖
L

2(Rd×R̂d )
= ‖g‖2‖f ‖2, f , g ∈ L2. (4)

This setting is well known under the name of coherent frames
when g = g0, the Gauss function. Its range is the Fock space.
But for g ∈ S0(Rd) one has (according F. Weiss) even norm
convergence of Riemannian sums, for any f ∈ L2(Rd).

Hans G. Feichtinger
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Short Bibliography of Wiener Amalgams

H. G. Feichtinger.
A characterization of Wiener’s algebra on locally compact groups.
Archiv d. Math., 29:136–140, 1977.

F. Holland.
Harmonic analysis on amalgams of Lp and `q .
J. Lond. Math. Soc., 10:295–305, 1975.

R. C. Busby and H. A. Smith.
Product-convolution operators and mixed-norm spaces.
Trans. Amer. Math. Soc., 263:309–341, 1981.

H. G. Feichtinger.
Banach convolution algebras of Wiener type.
In Proc. Conf. on Functions, Series, Operators, Budapest 1980, volume 35 of
Colloq. Math. Soc. Janos Bolyai, pages 509–524. North-Holland, Amsterdam,
Eds. B. Sz.-Nagy and J. Szabados. edition, 1983.

J. J. F. Fournier and J. Stewart.
Amalgams of Lp and `q .
Bull. Amer. Math. Soc., New Ser., 13:1–21, 1985.
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OUTLINE and GOALS

It is the purpose of this talk to highlight a few topics arising from
Gabor Analysis, which are also of great use also for other branches
of functional analysis and application areas such as communication
theory or (quantum) physics.

1 Quick overview over the Banach Gelfand Triple
(S0,L

2,S ′0)(Rd); including w∗-convergence;

2 Convolution and pointwise multiplication;

3 System Theory: impulse response and transfer function;

4 Shannon’s Sampling Theory (>> CD player);

5 Fourier transform defined on Lp(Rd);

6 Spectrum and Spectral Analysis Problem;

7 Kernel Theorems; L(S0,S
′
0) ≡ S ′0(R2d);

8 Soft transitions and w∗-convergence.

Hans G. Feichtinger
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Usual Approach to Fourier Analysis

Obviously Fourier Analysis is a very classical field, about 200 years
old (J.B.Fourier published his seminal paper in 1822).
Since the arrival of Lebesgue integration in the early 20th
century the setting appears to be quite well understood:
Most books in the field follow a very similar pattern:

Fourier series >> Fourier transforms >> FFT

Sometimes it is argued, that the FT can be even extended to
generalized functions, so-called distributions, e.g. using the
Schwartz theory of tempered distributions.

Abstract Harmonic Analysis emphasizes the fact that one can
do Fourier Analysis over any LCA (locally compact Abelian)
group G . which always carries a (unique) Haar measure,

and has a dual group Ĝ . According to Pontryagin
̂̂
G ≡ G .

Hans G. Feichtinger
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The role of
(
L

1(Rd), ‖ · ‖1

)
Common to most presentations of the Fourier transform (now we
restrict our attention to the Euclidean setting) is the (somehow)
natural view-point that the FOURIER TRANSFORM is an
INTEGRAL transform, given by the following pair of (mutually
inverse) formulas:

f̂ (s) =

∫
Rd

f (t) · e−2πis·t dt, t, s ∈ Rd (5)

Here s · t denotes the Euclidean scalar product of the two vectors
s, t ∈ Rd . The inverse Fourier transform then takes the form:

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (6)

Hans G. Feichtinger
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Technical Issues

Strictly speaking this inversion formula only makes sense under the
additional hypothesis that f̂ ∈ L1(Rd), which is not satifsied for
arbitrary functions f ∈ L1(Rd). In the general case (f ∈ L1(Rd))
one can obtain f from f̂ using classical summability methods,
convergent in the L1-norm. (cf. for example Chap. 1 of [5]).
One often speaks of Fourier analysis being the first step, telling us
how much energy of f is concentrated at a given frequency ω
(namely |f̂ (ω)|2, and the Fourier inversion as a method to build f
from the pure frequencies (we talk of Fourier synthesis).
Unfortunately (unlike the case of Fourier series and periodic
functions) the individual terms, namely the pure frequencies, do
not to the spaces where f lives (L1(Rd) or L2(Rd)).

Hans G. Feichtinger
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Convolution Theorem

One of the (proclaimed) important properties of the Fourier
transform is the so-called convolution theorem, i.e. the fact that it
turns the somewhat mysterious operation called CONVOLUTION
into ordinary pointwise multiplication, i.e. we have

f̂ ∗ g = f̂ · ĝ , f , g ∈ L1(Rd). (7)

Again it appears most natural to require that two functions to be
convolved should both belong to L1(Rd), because this ensures that
convolution products can be defined pointwise almost everywhere:

f ∗ g(x) :=

∫
Rd

g(x − y)f (y)dy =

∫
Rd

g(u)f (x − u)du. (8)

Hans G. Feichtinger
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Convolution and time-invariant linear systems

Aside from probability (cf. above) convolution has its role in Linear
Systems Theory, for the description of time-invariant linear
systems, meaning linear operators T , g = T (f ), with
time-invariance: T ◦ Tx = Tx ◦ T , ∀x ∈ G .

Theorem (hgfei)

Any bounded and translation invariant operator on(
C0(Rd), ‖ · ‖∞

)
(so-called BIBOS system) which commutes with

translation is a moving average by some bounded measure, i.e. by
some element in the dual space of

(
C0(Rd), ‖ · ‖∞

)
. In fact,

µ(f ) = Tf (0) describes the system, given by

Tf (x) = [T−xTf ](0) = T (T−x f )(0) = µ(T−x f = Txµ(f ).

This pairing establishes an isometric bijection between the dual
space of C0(Rd) and the TILS, which is isometric, i.e. with
‖µ‖Mb

= |‖T |‖C0 .

Since δz(f ) = f (z) corresponds to the operator Tf = T−z f the
usual definition of such a pairing involves in addition the so-called
flip operator f X(x) = f (−x), extended to bounded measures, in
order to be compatible with the usual conventions for convolutions

Hans G. Feichtinger
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Convolution and Fourier Stieltjes transforms

The fact, that the collection of all TILS is not only a Banach
space, but also a Banach algebra under composition of operators
(with the operator norm) allows to transfer this composition rule
to the generating measures.
One can shown, that (Mb(Rd), ‖ · ‖Mb

) is then a Banach algebra
with respect to convolution imposed in this way, containing(
L

1(Rd), ‖ · ‖1

)
as a closed, translation-invariant ideal.

The collection of characters, i.e. the functions χs are the joint
eigenvectors to all these operators, among them the translation
operators. The Fourier transform extends to all of these characters,
and is then often called Fourier Stieltjes transform, again with

µ̂1 ∗ µ2 = µ̂1 · µ̂2,

for µ1, µ2 ∈Mb(Rd) (Convolution Theorem for measures).

Hans G. Feichtinger
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Consequences an the Transfer Function

This approach to convolution can be carried out without the use of
measures theory (!), details can be found in my course notes.

In an engineering terminology the measure µ describing the linear
system T via T (f ) = µ ∗ f is the impulse response of the system.
It can be obtained (!proof) as a w∗-limit of input functions tending
to the Dirac measure, e.g. compressed, normalized (in the
L

1-sense)rectangular pulses.

The Fourier (Stieltjes) transform of the system T is know as the
transfer function of the system T , and it is characterized by the
eigen-vector property:

µ(χs) = µ̂(s)χs , s ∈ R.

Hans G. Feichtinger
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Plancherel’s Theorem

Admittedly the Hilbert space
(
L

2(Rd), ‖ · ‖2

)
also plays a very

important role for Fourier analysis, thanks to the Plancherel
Theorem, telling us (in a sloppy way), that the Fourier transform
can be viewed as a unitary automorphism of

(
L

2(Rd), ‖ · ‖2

)
, i.e.

a mapping which preserves the L2-norm (and hence scalar products
between elements L2(Rd)).

‖f̂ ‖2 = ‖f ‖2, f ∈ L2(Rd). (9)

According to engineering terminology the Fourier transform is an
energy preserving linear transformation.

When we have to prove this theorem on resorts to a verification of
(9) for f ∈ L1 ∩ L2(Rd) and then extends the integral
transform in an abstract way to all of

(
L

2(Rd), ‖ · ‖2

)
,

which is then shown to be a unitary automorphism.

Hans G. Feichtinger
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BANACH GELFAND TRIPLES: a new category

Definition

A triple, consisting of a Banach space B, which is dense in some
Hilbert space H, which in turn is contained in B ′ (hence w∗-dense
there) is called a Banach Gelfand triple.

Definition

If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then a linear

operator T is called a [unitary] Gelfand triple isomorphism if

1 A is an isomorphism between B1 and B2.

2 A is a unitary isomorphism between H1 and H2.

3 A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B ′1 and B ′2.
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Banach Gelfand Triples

In principle every CONB (= complete orthonormal basis)
Ψ = (ψi )i∈I for a given Hilbert space H can be used to establish
such a unitary isomorphism, by choosing as B the space of
elements within H which have an absolutely convergent expansion,
i.e. satisfy

∑
i∈I |〈x , ψi 〉| <∞.

For the case of the Fourier system as CONB for H = L
2([0, 1]), i.e.

the corresponding definition is already around since the times of
N. Wiener: A(T), the space of absolutely continuous Fourier series.
It is also not surprising in retrospect to see that the dual space
PM(T) = A(T)′ is space of pseudo-measures. One can extend the
classical Fourier transform to this space, and in fact interpret this
extended mapping, in conjunction with the classical Plancherel
theorem as the first unitary Banach Gelfand triple isomorphism,
between (A,L2,PM)(T) and (`1, `2, `∞)(Z).

Hans G. Feichtinger
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Sufficient conditions for BGT-automorphisms

A couple of basic facts resulting direct from the definition,
combined with the general fact that the space of w∗-continuous
linear functionals on a dual space B ′ coincides naturally with the
original Banach space, gives the following facts.
We apply them to the concrete Banach Gelfand Triple (S0,L

2,S ′0).

For every BGTr-mapping there is an adjoint BGTr-mapping
T ∗, and T ∗∗ = T for each of them;

If a bounded linear mapping on
(
L

2(Rd), ‖ · ‖2

)
leaves S0(Rd)

invariant and so does T ∗ (the Hilbert adjoint), then T (and
also T ∗) define BGTr-homomorphism.

Among others this principle can be used to show that the even
fractional Fourier transforms define (unitary) BGTr-
automorphisms on (S0,L

2,S ′0)(Rd).
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Some general scenarios arising in Gabor Analysis

There are situations, where one is forced to view even more general
situations than BGTr-operators (BGOs), even if one is a priori
interested only in the Hilbert space behaviour:
Here are some examples:

1 Let g ∈ L2(Rd) be given, and any lattice Λ C Rd × R̂d . Then
the coefficient operator

C : f 7→ (Vg f (λ))λ∈Λ

only maps L2(Rd) into cosp(Λ), but S0(Rd) into `2(Λ).

2 similar situation for the synthesis operator, which is its adjoint.

3 Finally the frame-operator is a priori an operator which maps(
S0(Rd), ‖ · ‖S0

)
into (S ′0(Rd), ‖ · ‖S ′

0
).

But this is good enough to show that it has a Janssen
representation.
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Regularizing Operators

Abbildung: BGTREG1.jpgHans G. Feichtinger
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Regularizers help to approximate distributions

An important family of regularizing operators are those bounded
families of BGOs, where each of them maps (S ′0(Rd), ‖ · ‖S ′

0
) into(

S0(Rd), ‖ · ‖S0

)
, and which form an approximating the identity.

Abstractly speaking they form bounded nets of BGOs which
converge strongly (e.g. in their action on

(
S0(Rd), ‖ · ‖S0

)
) to the

identity. Since we have

(S ′0 ∗ S0) · S0 ⊂ S0 and (S ′0 · S0) ∗ S0 ⊂ S0

this can be product-convolution (or convolution-product)
operators.
A similar property is shared by Gabor multipliers with finitely
many symbols (using lattice points in a bounded domain).

Hans G. Feichtinger
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The Fourier transform as BGT automorphism

The Fourier transform F on Rd has the following properties:

1 F is an isomorphism from S0(Rd) to S0(R̂d),

2 F is a unitary map between L2(Rd) and L2(R̂d),

3 F is a weak* (and norm-to-norm) continuous bijection from
S
′
0(Rd) onto S ′0(R̂d).

Furthermore, we have that Parseval’s formula

〈f , g〉 = 〈f̂ , ĝ〉 (10)

is valid for (f , g) ∈ S0(Rd)× S ′0(Rd), and therefore on each level
of the Gelfand triple (S0,L

2,S ′0)(Rd).
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The w ∗− topology: a natural alternative

It is not difficult to show, that the norms of (S0,L
2,S ′0)(Rd)

correspond to norm convergence in (L1,L2,L∞)(R2d).
The FOURIER transform, viewed as a BGT-automorphism is
uniquely determined by the fact that it maps pure frequencies
χω(t) = exp(2πiωt) onto the corresponding point measures δω.
Vice versa, (even non-harmonic) trigonometric polynomials are
those elements of S ′0(Rd) which have finite support on the Fourier
transform side.
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The Problem of Fourier Inversion I

To know that an f ∈ L1(Rd) has a continuous Fourier transform
f̂ ∈ C0(Rd) is nice, and also to know that the Fourier transform is
linear and injective, with a dense, but proper range named(
FL1(Rd), ‖ · ‖FL1

)
↪→
(
C0(Rd), ‖ · ‖∞

)
(Lemma of

Riemann-Lebesgue), but how can one recover the function from its
Fourier transform for general f ∈ L1(Rd) (knowing that it may
happen that f̂ /∈ L1(Rd)!!)
In this situation a simple abstract result helps:

Lemma

Given h ∈ S0(Rd) with h(0) = 1, then one has:
fρ : s 7→ h(ρs) · f̂ (s) is in S0(Rd) for any ρ > 0, and therefore the
inverse Fourier transform is well defined in the pointwise sense
(even using Riemann integration).
Furthermore F−1fρ → f in

(
L

1(Rd), ‖ · ‖1

)
, for ρ→ 0.
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The Problem of Fourier Inversion II

Arguments supporting the above lemma:

First of all we find that the dilation invariance of S0(Rd)
implies that s 7→ h(ρs) belongs to S0(Rd) as well;

Since L1(Rd) ∗ S0(Rd) ⊆ S0(Rd) (with corresponding norm
estimates), one has on the Fourier transform side

FL1(Rd) · S0(Rd) ⊂ S0(Rd).

Finally g = F−1(h) satisfies
∫
Rd g(t)dt = 1, and hence one

has a bounded approximate unit (within S0(Rd)) convolved
with f (on the time-side), hence norm convergence in(
L

1(Rd), ‖ · ‖1

)
.

The same reasoning even implies that one has convergence in(
L
p(Rd), ‖ · ‖p

)
for 1 ≤ p ≤ 2, because one finds that even

FLp(Rd) · S0(Rd) ⊂ Lq(Rd) · S0(Rd) ⊂ L1(Rd).
Hans G. Feichtinger
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Classical Summability Kernels ARE in S0(Rd)

The above lemma is of course only useful if one can check that
concrete kernels belong to

(
S0(Rd), ‖ · ‖S0

)
. For the

one-dimensional case this has been investigated by F. Weisz.
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Why should we care about convolutions?

In engineering, especially in communication theory, the theory of
time-invariant channels, i.e. operators which are linear and
commute with translations (motivated by the time-invariance of
physical laws!), also called TILS (time-invariant linear systems) is
one of the cornerstones. The collection of all these operators form
a commutative algebra, with the pure frequencies as common
eigenvalues.
Still in an engineering terminology: Every such system T is a
moving average or (equivalently) a convolution operator, described
by the impulse response of the system, or alternatively, it can be
described as a Fourier multiplier, being understood as a pointwise
multiplier on the Fourier transform side, by the so-called
transfer function.
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The concrete case of BIBOs systems

From my point of view the most natural setting is that of so-called
BIBOS, bounded-input-bounded-output systems, or more precisely
the bounded linear operators on

(
C0(Rd), ‖ · ‖∞

)
which commute

with translations.
It is not hard to show that they are exactly the convolution
operators which are arising from a given linear functional
µ ∈Mb(Rd) :=

(
C
′
0(Rd), ‖ · ‖C ′

0

)
.

Given µ ∈Mb(Rd) we can define a convolution operator via

µ ∗ f (x) = µ(Tx f
X), x ∈ Rd , (11)

where f X(x) = f (−x), x ∈ Rd .
Any TILS on C0(Rd) is if this form: Given T one finds µ
by the rule µ(f ) := [T (f X)](0), f ∈ C0(Rd).

Hans G. Feichtinger
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More general “multipliers”

According to R. Larsen (his book on the multiplier problem
appeared in 1972) it is meaningful to ask for a characterization of
the space of “multipliers”, i.e. all linear, bounded operators from
one translation invariant Banach space into another one, which
commute with translations. You may think of such operators from(
L
p(Rd), ‖ · ‖p

)
to
(
L
q(Rd), ‖ · ‖q

)
, for two values p, q ∈ [1,∞].

Using the concept of quasi-measures introduced by G. Gaudry he
demonstrates that each such operator is a convolution operator by
some quasi-measure, which also has an alternative description as a
Fourier multiplier. The drawback of the concept of quasi-measures
is the fact, that they do not involve any global condition and thus
a general quasi-measure does NOT have a well defined Fourier
transform. So the expected claim that the transfer function is
the FT of the impulse response (and vice versa) cannot
be formulated in that context.
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Multipliers between Lp-spaces

The key result for multipliers in the context of S0(Rd) can be
summarized as follows:

Theorem

Any bounded linear operator from
(
S0(Rd), ‖ · ‖S0

)
into

(S ′0(Rd), ‖ · ‖S ′
0
) which commutes with translations can be

described by the convolution with a uniquely σ ∈ S ′0(Rd), i.e. via

Tf (x) = σ(Tx [f X]), f ∈ S0(Rd), x ∈ Rd .

Thus in fact, T maps S0(Rd) even into
(
Cb(Rd), ‖ · ‖∞

)
, with

norm equivalence between the operator norm of the operator T
and the functional norm (in (S ′0(Rd), ‖ · ‖S ′

0
)) of σ.

If σ is a regular distribution, induced by some test function
h ∈ S0(Rd), then we even have that f 7→ h ∗ f (equivalently given
in a pointwise sense) maps (S ′0(Rd), ‖ · ‖S ′

0
) into

(
Cb(Rd), ‖ · ‖∞

)
.

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

Why Linear Functional Analysis

1 When dealing with continuous variables most of the function
spaces V that we can think of (even the vector space of all
polynomials over R!) are NOT FINITE dimensional;

2 Hence we have to talk about limits of finite linear
combinations, i.e. convergence in some norm or at least
topology, i.e. we need (w.l.g.) Banach spaces and topological
vector spaces;

3 Since we cannot describe everything with any fixed basis we
have to work with the family of all possible coordinate
systems for all possible finite-dimensional subspaces, so in fact
with the dual space (constituted by all bounded linear
functionals on the given space.
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Principles of Functional Analysis

1 Theory of Hilbert spaces, orthonormal bases;

2 The Hahn-Banach Theorem, reflexivity,

3 w∗-convergence; the Banach-Alaoglou Principles

4 The Closed-Graph Theorem, Open Mapping Theorem;

5 Banach Steinhaus Theorem

Hans G. Feichtinger
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Relation to Fourier Analysis

1 The Hilbert space
(
L

2(T), ‖ · ‖2

)
, with Fourier series;

2 The spaces
(
L
p(Rd), ‖ · ‖p

)
, wich are reflexive for 1 < p <∞;

3 Existence of solutions in the weak sense (PDE);

4 Automatic continuous embeddings, uniqueness of norms;

5 Convergence of sequences of functionals;

6 Boundedness of maximal operator and pointwise a.e.
convergence;

Hans G. Feichtinger
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Tools arising from Fourier Analysis

1 Lebesgue’s theory of the integral is still at the basis of
Fourier analysis when viewed as an integral transform, with
e.g. questions about pointwise convergence and Lp-spaces;

2 Calderon-Zygmund theory of singular integrals brought up the
importance of BMO and the real Hardy spaces, with their
atomic characterization and maximal functions;

3 interpolation theory, e.g. for Hausdorff-Young;

4 Study of differentiability, singular integrals etc. let to the
theory of function spaces (E. Stein, J. Peetre, H. Triebel).
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Distribution Theory

One of the big new tools in the second half of the 20th century
was certainly the theory of tempered distributions introduced by
Laurent Schwartz in the 50th.

1 It gives a (generalized) Fourier transform to many objects
which did not “have a FT” so far;

2 It provides a basis for the solution of PDEs (Hörmander);

3 It makes use of nuclear Frechet spaces, e.g. in order to
prove the kernel theorem;

It thus also had a strong influence of the systematic development
of the theory of topological vector spaces spaces (J. Horvath
(1966), F. Treves (1967), H. Schaefer (1971)).
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Distribution Theory and Fourier Analysis

In the context of tempered distributions many things became “kind
of simple”. Instead of pointwise convergence on can talk about
distributional convergence, most operations (including the Fourier
transform) are indeed continuous, and since the convergence is
relatively weak the space S(Rd) of test functions is dense in
S ′(Rd), hence all the operations can be viewed as the natural
extension of the classical concepts.
More pratically speaking, using duality theory one can define

σ̂(f ) = σ(f̂ ), f ∈ S(Rd),

but alternatively one could take any sequence hn in S(Rd)
convergent (distributionally) to σ and define

σ̂ = lim
n→∞

ĥn.
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Another Analogy to Schwartz Gelfand Triple

One can regularize distributions from S
′
0(Rd) using Wiener

amalgam convolution and pointwise multiplier results:

S0 · (S ′0 ∗ S0) ⊆ S0, S0 ∗ (S ′0 · S0) ⊆ S0 (12)

This means, convolution of a mild distribution σ ∈ S ′0 with some
test function gives a function which is locally in the Fourier algebra
and has enough “smoothness” so that it becomes a pointwise
multiplier of

(
S0(Rd), ‖ · ‖S0

)
.

On the other hand, multiplying σ ∈ S ′0 by some h ∈ S0(Rd)
provides enough decay (in the sense of global summability in an
`1-sense) so that subsequent convolution by f ∈ S0(Rd)
produces again test functions.

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

Absolutely Convergent Fourier Series

In his studies Norbert Wiener considered the Banach algebra(
A(T), ‖ · ‖A

)
of absolutely convergent Fourier series. It was one

of the early Banach algebras, with Wiener’s inversion Theorem
being an important first example.
Later on it was natural to study the dual space, which of course
contains the dual space of

(
C (T), ‖ · ‖∞

)
, which by the Riesz

representation theorem can be identified with the bounded (regular
Borel) measures on the torus it was natural to call these functions
pseudo-measures.
Since A(T) can be identified with L1(T) (viewed as subspaces of
L

2(T) and `2(Z) respectively), it is natural to expect (and prove
distributionally) that PM(T) is isomorphic to `∞(Z) via the
(extended) Fourier transform.
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Further good properties

The case a · b < 1 has further good properties:

1 The minimal norm solution in `2(Z2) depends linearly and
continuously on f in

(
L

2(R), ‖ · ‖2

)
.

2 For f ∈ S(R) the Gabor series is even convergent in the
topology of the Schwartz space (with rapidely decreasing
coefficients);

3 It is also possible to replace the Gauss function by another
Gauss-like function h (for each fixed a, b with ab < 1) such
that one has the following2 quasi-orthogonal expansion:

f =
∑
k,n

〈f , hk,n〉hk,n, ∈ L2(R) (13)

with unconditional convergence in
(
L

2(R), ‖ · ‖2

)
.

2!ad hoc terminology!
Hans G. Feichtinger
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Natural properties

This observation also implies that(
S0(Rd), ‖ · ‖S0

)
↪→
(
L
p(Rd), ‖ · ‖p

)
for any p ≥ 1, or any other

function/distribution space on Rd with isometric TF-shifts.
The minimality of

(
S0(Rd), ‖ · ‖S0

)
gives, on the other hand, the

continuous embedding of any
(
L
q(Rd), ‖ · ‖q

)
into S ′0(Rd).

An emerging theory of Fourier standard spaces is on the way. They
satisfy

S0(Rd) ↪→ B ↪→ S
′
0(Rd),

and some further conditions, such as

L
1(Rd) ∗ B ⊂ B and FL1(Rd) · B ⊂ B.
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Atomic Decompositions

The minimality implies (inspired by the atomic characterization of
real Hardy spaces the following result:

Theorem

Given any non-zero g ∈ S0(Rd) one has

S0(Rd) =
{∑

k≥1

ckπ(λk)g , with
∑
k≥1

|ck | <∞
}
.

This results also implies that the space is invariant under dilation,
rotation and even fractional Fourier transforms.
A long list of sufficient conditions ensures that among others all
classical summability kernels belong to S0(Rd).
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The Banach Gelfand Triple

Combined with the Hilbert space
(
L

2(Rd), ‖ · ‖2

)
(in the middle)

the three spaces S0(Rd),L2(Rd) and S ′0(Rd) form a so-called
Banach Gelfand Triple or rigged Hilbert space.
Such a BGTr is constituted by a Banach space (

(
S0(Rd), ‖ · ‖S0

)
in

our case) which is continuously and densely embedded into a
Hilbert spaces H = L

2(Rd) in our case) and such that this itself is
embedded continuously into the dual Banach space (norm
continuous, but only w∗-dense).
A morphism of Banach Gelfand triples respects each of the three
layers, but is also w∗-w∗--continous at the outer level.
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Fourier transform

The Fourier transform is a prototype of a unitary
BGTr-automorphism for the Banach Gelfand Triple
(S0,L

2,S ′0)(Rd).
It can be formulated for any LCA group, and reduces in the
classical case of G = T to a well known result, making use of(
A(T), ‖ · ‖A

)
, the algebra of absolutely convergent Fourier series

and its dual, the space PM of pseudo-measures.
The classical Fourier transform, establishing a unitary isomorphism
(Parseval’s identity) from

(
L

2(T), ‖ · ‖2

)
to `2(Z) extends to a

BGTr isomorphism between (A(T),L2(T),PM(T)) and
(`1, `2, `∞)(Z).
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Spectrum of a Bounded Function

The fact that
(
L
p(Rd), ‖ · ‖p

)
↪→ (S ′0(Rd), ‖ · ‖S ′

0
) for any

1 ≤ p ≤ ∞ implies that one go beyond Hausdorff-Young, which
shows that for 1 ≤ p ≤ 2 on has FLp(Rd) ⊂ Lq(Rd) (with
1/p + 1/q = 1). Even for p > 2 there is a Fourier transform
(locally in PM = FL∞).
The (known) statement that FLp(Rd) ⊂ S ′(Rd) is of course much
weaker than the claim FLp(Rd) ⊂ S ′0(Rd).
This fact allows to directly define the spectrum of h ∈ L∞(Rd)
using the general definiton:

spec(σ) := supp(σ̂), σ ∈ S ′0.

If supp(σ) is a finite set it can be shown to be just a finite sum
of Dirac measures, i.e. σ =

∑K
k=1 ckδxk .
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Fourier Analysis and Synthesis

Putting ourselves in the setting of S ′0(Rd) (which contains all of
L∞(Rd), hence Cb(Rd) and even more special the pure
frequencies, i.e. the exponential functions χs(t) = exp(2πis · t), for
t, s ∈ Rd), we may ask ourselves the following two questions:

1 What are the pure frequencies which can be “filtered out of
the signal” (h ∈ Cb(Rd) or σ ∈ S ′0(Rd));

2 Can one resynthesize the signal from those pure frequencies
(as it is obvious of the case of classical Fourier series
expansions of periodic functions);

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

Distributional convergence

It is clear from the prototypical BGTr (`1, `2, `∞) that the Hilbert
space (here `2) is not always dense in the dual of the Banach
space, here `∞. However, every element in `∞ can be
approximated in the coordinate-wise sense by a bounded sequency
in the closed subspace cosp, which is the closure of `2 within(
`∞, ‖ · ‖∞

)
.

Note that the situation is different e.g. in the context of Sobolev
space, where for s > 0 one has

Hs(Rd) ↪→ L
2(Rd) ↪→ H−s(Rd)

with dense embeddings.
We will be mostly concerned with sequences which are
w∗-convergent. Over Rd this simplification is fully justified,
because

(
S0(Rd), ‖ · ‖S0

)
is a separable Banach space.

Hans G. Feichtinger
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Distributional, i.e. w ∗-convergence in S ′0(Rd)

So let us first recall what on the one hand norm-convergence and
w∗-convergence within S ′0(Rd) in concrete terms, thanks to to the
atomic characterization of

(
S0(Rd), ‖ · ‖S0

)
:

Lemma

Let 0 6= g ∈ S0(Rd) be given. Then one has:
Given σ ∈ S ′(Rd), then belongs to S ′0(Rd) ↪→ S ′(Rd) if and only
if the (continuous) function Vg (σ) = σ(gλ) is bounded, and:

sup
λ∈Rd×R̂d |Vg (σ)(λ)| defines an equivalent norm on S ′0(Rd).

σ0 ∈ S ′0(Rd) is the w∗-limit of a sequence (σn)n≥1 if and only
if one has (uniformly over compacts):

lim
n→∞

Vg (σn)(λ) = Vg (σ0)(λ).

Hans G. Feichtinger
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w ∗-density of discrete measures I

In order to demonstrate the possibility of approximating a given
distribution σ ∈ S ′0 in the w∗-sense by discrete measures we have
to look at (quasi)-interpolation operators acting on(
S0(Rd), ‖ · ‖S0

)
.

It is clear that by compressing the sampling grid one has uniform
convergence for f ∈ C0(R), but in fact on can show the non-trivial
fact that one has convergence in

(
S0(R), ‖ · ‖S0

)
for f ∈ S0(R)

(note that ∆ ∈ S0(R) and the sampling sequence (f (αn))n∈Z is in
`1(Z). Hence the PLI, which is an absolutely sum of the form
h =

∑
n∈Z f (αn)Tαn∆α belongs to

(
S0(R), ‖ · ‖S0

)
and the

question of convergence is at least meaningful. Similar arguments
hold for e.g. cubic B-splines (which also are in S0(R) and form a
BUPU Ψ = (ψn)n∈Z.
By taking tensor products one can of course find multi-variate
BUPUs, with small support and

∑
n∈Zd ψn(x) ≡ 1.

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

w ∗-density of discrete measures II

Consequently, given σ ∈ S ′0, the action of the adjoint operators
converge in the w∗-sense to σ. We just have to verify that the
adjoint action can be desribed by the operator

Dα
Ψ(σ) =

∑
n∈Zd

σ(ψαn )δαn.

This family is also uniformly bounded in (S ′0(Rd), ‖ · ‖S ′
0
) (for

α→ 0).
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w ∗-density of discrete measures III
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w ∗-density of discrete measures IV
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Abbildung: Piecewise linear interpolation using triangular BUPU

For bounded measures this operator (with the simple partition
using box-car functions) can be interpreted as the approximation of
a probability measure through the corresponding histograms.
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A Cauchy approach to distributions

The simple setting of Banach spaces (resp. dual spaces) allows also
to work with a very simple, alternative way to introduce the dual
space, namely to define

1 weak Cauchy-sequences (hn)n≥1 of test functions from
S0(Rd), in the sense that
(〈h, fn〉)n≥1 is a Cauchy sequence in C for any h ∈ S0(Rd);

2 then define equivalence classes of such sequences;

3 then define the norm of such a class (it is finite by
Banach-Steinhaus).

It is then not difficult to show that this is just another way (maybe
more intuitive to engineers) to describe (S ′0(Rd), ‖ · ‖S ′

0
)!
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Spectral Analysis

So in the terminology of “mild distributions” one can prove and
has the follwing statement:

Lemma

An element s ∈ R̂d in the frequency domain belongs to the
spectrum of h ∈ L∞(Rd) resp. to supp(ĥ) if and only if the
corresponding pure frequency χs can be obtained as the w∗-limit
of a sequence of convolution products hn := h ∗ fn, for fn being
chosen suitably in S0(Rd).

Whenever h ∈ L1 ∩ L∞(Rd) we know that ĥ is a continuous
function. Then it is easy to filter χs out of h if ĥ(s) 6= 0 (just
take modulated Fejer kernels). When s belongs to the
closure of this set one has to be a bit more careful!
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Spectral Synthesis

Now of course the question of spectral synthesis, i.e. the
reconstruction of σ (or even h ∈ L∞(Rd)) from the pure
frequencies which have been “found within” h appears to be like a
natural task.
If we ask the question for the space of bounded measures
(Mb(Rd), ‖ · ‖Mb

) which we define as
(
C
′
0(Rd), ‖ · ‖C ′

0

)
then there

is also a well-defined support, and one can show (using properties
of
(
C0(Rd), ‖ · ‖∞

)
!) that any bounded measure can be described

as the w∗-limit of a sequence of finite (discrete) measures of the
form µn =

∑K
k=1 c

n
k δxnk , with xnk ∈ supp(µ).

That a similar property is NOT valid for general σ ∈ S ′0(Rd), and
in fact not even for h ∈ L∞(Rd), for d ≥ 3, is one of the
remarkable facts of Fourier Analysis.
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The Classical Description

I cannot go into the details of the description of the spectrum of
h ∈ L∞(Rd) as given in the book of Reiter, but just want to recall
some building blocks there.
First, h ∈ L∞(Rd) is considered as a convolution operator from
L

1(Rd) into L∞(Rd) (in fact Cb(Rd)). This convolution operator
has a well defined kernel (null-space), which in fact is a
(translation-invariant) and closed ideal I = I (h) in

(
L

1(Rd), ‖ · ‖1

)
.

The set of all points in the Fourier domain where some f ∈ I has
non-vanishing FT is called the cospectrum of I . The complement
of this (open) set is then defined as the spectrum of h.
It is one of the interesting
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The Euclidean Situation

In the Euclidean Situation interesting objects are for example the
Dirac trains supported by lattices Λ C Rd :

tt :=
∑
λ∈Λ

δλ.

These (unbounded, discrete) measures belong to S ′0(Rd) and thus
have a distributional Fourier transform. In fact, the usual argument
in distribution theory making use of Poisson’s formula (now not
only for f ∈ S(Rd) but for any f ∈ S0(Rd)!) gives (Λ = Zd):

t̂t = tt. (14)

This fact allows to prove Shannon’s sampling Theorem
(based on intuitive arguments).
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Sampling and Periodization on the FT side

This result is the key to prove Shannon’s Sampling Theorem
which is usually considered as the fundamental fact of digital
signal processing (Claude Shannon: 1916 - 2001).
Shannon’s Theorem says that one can have perfect
reconstruction for band-limited functions.
If the so-called Nyquist criterion is satisfied (sampling distance
small enough), i.e. supp(f̂ ) ⊂ [−1/α, 1/α], then

f (t) =
∑
k∈Zd

f (αk)g(x − αk), x ∈ Rd . (15)

For more general sampling lattices the support size conditions have
to avoid overlapping of the periodization of the spectrum with
respect to the orthogonal lattice Λ⊥.
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A Visual Proof of Shannon’s Theorem
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The KERNEL THEOREM for S(Rd)

The kernel theorem for the Schwartz space can be read as follows:

Theorem

For every continuous linear mapping T from S(Rd) into S ′(Rd)
there exists a unique tempered distribution σ ∈ S ′(R2d) such that

T (f )(g) = σ(f ⊗ g), f , g ∈ S(Rd). (16)

Conversely, any such σ ∈ S ′(R2d) induces a (unique) operator T
such that (16) holds.

The proof of this theorem is based on the fact that S(Rd) is a
nuclear Frechet space, i.e. has the topology generated by a
sequence of semi-norms, can be described by a metric which
turns S(Rd) into a complete metric space.
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The KERNEL THEOREM: Hilbert Schmidt Operators

The Schwartz Kernel Theorem extends a characterization of
L

2-kernel-operators of the form to the most general level. It shows
that for any “integral kernel” K (x , y) ∈ L2(R2d) the following
integral operator (continuous analogue of matrix multiplication)

TK f (x) =

∫
Rd

K (x , y)f (y)dy , x ∈ Rd . (17)

defines a bounded, in fact compact operator on L2(Rd), with
singular values in `2, i.e. a Hilbert-Schmidt operators. Altogehter
they form a Hilbert space with respect to the scalar product

〈T , S〉HS := trace(TS∗), (18)

and corresponding norm ‖T‖HS :=
√

trace(TT ∗).
With this scalar product we have a unitary isomorphism
between (HS , ‖ · ‖HS) and

(
L

2(R2d), ‖ · ‖2

)
.
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Extending this situation to (S0,L
2,S ′0)(R2d)

If this unitary isomorphism can be extended to a Banach Gelfand
Triple isomorphism we have to look what on can say about kernels
in (S0,L

2,S ′0)(R2d).
Of course we look first what one can say for good kernels
K (x , y) ∈ S0(R2d), which (hopefully, and in fact) behave like
“continuous matrices”. Given such a kernel it is w∗-to-norm
continuous from S

′
0(Rd) to

(
S0(Rd), ‖ · ‖S0

)
and it is possible to

define T (δy ) ∈ S0(Rd). In fact, this one gets (as expected from
matrix multiplication)

T (δy )(x) = K (x , y)

in analogy to the case TA(x) = A ∗ x, with

aj ,k = 〈TA(ek), ej〉.

Hans G. Feichtinger
THE Banach Gelfand Triple and its rolein Classical Fourier Analysis and Operator Theory



INTRO The Segal Algebra Key-Players for TF GOALS! Summability Kernels Multipliers Regularization Banach Gelfand Spectral Analysis Shannon Sampling Banach Gelfand Triples Kernel Thm.

The KERNEL THEOREM for S0 I

Tensor products are also most suitable in order to describe the set
of all operators with certain mapping properties. The backbone of
the corresponding theorems are the kernel-theorem which reads as
follows (!! although

(
S0(Rd), ‖ · ‖S0

)
is NOT a nuclear space) One

of the corner stones for the kernel theorem is: the tensor-product
factorization:

Lemma

S0(Rk)⊗̂S0(Rn) ∼= S0(Rk+n), (19)

with equivalence of the corresponding norms.

For G = Rd it follows readily from the characterization using the
atomic decomposition using Gaussians.
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The KERNEL THEOREM for S0 II

The Kernel Theorem for general operators in L(S0,S
′
0):

Theorem

If K is a bounded operator from S0(Rd) to S ′0(Rd), then there
exists a unique kernel k ∈ S ′0(R2d) such that 〈Kf , g〉 = 〈k , g ⊗ f 〉
for f , g ∈ S0(Rd), where g ⊗ f (x , y) = g(x)f (y).

Formally sometimes one writes by “abuse of language”

Kf (x) =

∫
Rd

k(x , y)f (y)dy

with the understanding that one can define the action of the
functional Kf ∈ S ′0(Rd) as

Kf (g) =

∫
Rd

∫
Rd

k(x , y)f (y)dy g(x)dx =

∫
Rd

∫
Rd

k(x , y)g(x)f (y)dxdy .
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The KERNEL THEOREM for S0 III

This result is the “outer shell” of the Gelfand triple isomorphism.
The “middle = Hilbert” shell which corresponds to the well-known
result that Hilbert Schmidt operators on L2(Rd) are just those
compact operators which arise as integral operators with
L

2(R2d)-kernels.
This description can be also extended to the Kohn-Nirenberg
symbol of an operator (no functions or distributions over
Rd × R̂d), or alternatively the Weyl-symbol (in the sense of
pseudo-differential operators), and finally the spreading
representation.
The symplectic Fourier transform (a further unitary BGTr
isomorphism) the transfers the information between the spreading
function η(T ) and the Kohn-Nirenberg symbol σ(T ).
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The KERNEL THEOREM for S0 IV

Theorem

The classical kernel theorem for Hilbert Schmidt operators is
unitary at the Hilbert spaces level, with 〈T , S〉HS = trace(T ∗ S ′)
as scalar product on HS and the usual Hilbert space structure on
L

2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if
the corresponding operator K maps S ′0(Rd) into S0(Rd), but not
only in a bounded way, but also continuously from w∗−topology
into the norm topology of S0(Rd).

In analogy to the matrix case, where the entries of the matrix

ak,,j = T (ej)k = 〈T (ej), ek〉

we have for K ∈ S0 the continuous version of this principle:

K (x , y) = δx(T (δy ), x , y ∈ Rd .
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The Kernel Theorem as a BGT isomorphism

The different version of the kernel theorem for operators between
S0 and S ′0 can be summarized using the terminology of Banach
Gelfand Triples (BGTR) as follows.

Theorem

There is a unique Banach Gelfand Triple isomorphism between the
Banach Gelfand triple of kernels (S0,L

2,S ′0)(R2d) and the operator
Gelfand triple around the Hilbert space HS of Hilbert Schmidt
operators, namely (L(S ′0,S0),HS ,L(S0,S

′
0)), where the first set is

understood as the w∗ to norm continuous operators from S
′
0(Rd)

to S0(Rd), the so-called regularizing operators.
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Motivation for Spreading Representation

Let us know motivate how the BGTr setting can be used to provide
a good intutive understanding of the spreading representation of
general operators.
As we will see the spreading representation gives us a complete
characterization of operators with kernels
K (x , y) ∈ (S0,L

2,S ′0)(R2d) with the corresponding spreading
symbols in η ∈ (S0,L

2,S ′0)(Rd × R̂d).
What are the most simple (non-compact, not HS) operators: the
pure TF-shift operators π(λ) = MsTt should correspond to a Dirac
at λ = (t, s) ∈ Rd × R̂d .
On the other hand one can imagine (and verify) that an operator
which can be written as∫

Rd×R̂d

H(λ)π(λ)dλ,

with H ∈ S0(Rd × R̂d) is a operator with kernel in S0(R2d).
Hans G. Feichtinger
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Spreading function and Kohn-Nirenberg symbol

The following summary has been provided by Götz Pfander (now
Univ. Eichstätt):

1 For σ ∈ S ′0(Rd) the pseudodifferential operator with
Kohn-Nirenberg symbol σ is given by:

Tσf (x) =

∫
Rd

σ(x , ω)f̂ (ω)e2πix ·ωdω

The formula for the integral kernel K (x , y) is obtained

Tσf (x) =

∫
Rd

(∫
Rd

σ(x , ω)e−2πi(y−x)·ωdω
)
f (y)dy

=

∫
Rd

k(x , y)f (y)dy .

2 The spreading representation of Tσ arises from

Tσf (x) =

∫∫
R2d

σ̂(η, u)MηT−uf (x)dudη.

σ̂ is called the spreading function of Tσ.Hans G. Feichtinger
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Further details concerning Kohn-Nirenberg symbol

(courtesy of Goetz Pfander (Eichstätt):)

· Symmetric coordinate transform: TsF (x , y) = F (x + y
2 , x −

y
2 )

· Anti-symmetric coordinate transform: TaF (x , y) = F (x , y − x)

· Reflection: I2F (x , y) = F (x ,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

The kernel K (x , y) can be described as follows:

K (x , y) = F2σ(η, y − x) = F−1
1 σ̂(x , y − x)

=

∫
Rd

σ̂(η, y − x) · e2πiη·xdη.
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Kohn-Nirenberg symbol and spreading function II

operator H Hf (x)
l =

kernel κH
∫
κH(x , s)f (s) ds

l =

Kohn–Nirenberg symbol σH
∫
σH(x , ω)f̂ (ω)e2πix ·ω dω

l =
time–varying impulse response hH

∫
hH(t, x)f (x − t) dt

l =
spreading function ηH

∫ ∫
ηH(t, ν)f (x − t)e2πix ·ν dt dν

=∫ ∫
ηH(t, ν)MνTt f (x), dt dν ,
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Thanks for your attention

maybe you visit www.nuhag.eu

and checkout other talks at

www.nuhag.eu/talks (!password)

and related material. hgfei

hans.feichtinger@univie.ac.at
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