200 Years of Fourier Analysis: Fourier Analysis in the Modern World of Digital Signal Processing

Hans G. Feichtinger, Univ. Vienna hans.feichtinger@univie.ac.at, www.nuhag.eu

Talk held at University of Novi Sad May 12th, 2022, Spring Festival

Various Aspects

Addressing various topics of a quite general nature:

- Fourier Analysis is a mature (200 year old) subject of mathematics which is still going strong > a suitable subject for a discussion of the development of mathematical ideas;
- Modern digital technologies depend heavily on the principles developed in connection with Fourier Analysis;
- Not always is the theory developed by mathematicians ready for applications, nor do applied scientists go deep enough in the mathematical analysis of their problems;
- Mathematics is not just the abstract and complicated subject as it is usually seen, and not just a collection of formulas.

Jean Baptiste Josef Fourier: 1768 - 1830

 $\verb|https://en.wikipedia.org/wiki/Joseph_Fourier| \\$

Dennis Gabor, born as Günszberg Denes, 1900-1979

https://en.wikipedia.org/wiki/Dennis_Gabor

The IKIGAI Diagram for Conceptual Harmonic Analysis

The IKIGAI Principle

According to WIKIPEDIA we have:

Ikigai can describe having a sense of purpose in life, as well as being motivated According to a study by Michiko Kumano, feeling ikigai as described in Japanese usually means the *feeling of accomplishment and fulfillment that follows when people pursue their passions*.

Activities that generate the feeling of ikigai are not forced on an individual; they are perceived as being spontaneous and undertaken willingly, and thus are personal and depend on a person's inner self. According to psychologist Katsuya Inoue, ikigai is a concept consisting of two aspects: "sources or objects that bring value or meaning to life" and "a feeling that one's life has value or meaning because of the existence of its source or object".

The Position of Conceptual Harmonic Analysis

From Classical Fourier Series to AHA

The classical approach (going back to 1822) to the theory of FOURIER SERIES appears in the following form: Looking at the partial sums of the (formally then infinite) Fourier series we expect them to approximate "any periodic function" in some sense:

$$s_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(2\pi n x) + b_n \sin(2\pi n x)]. \tag{1}$$

Assuming this is possible it is not so hard to find out, using the properties of the building blocks $(\cos(x), \sin(x), addition rules,$ derivatives, integration) that one can expect for any $z \in \mathbb{R}$:

$$a_n = \int_z^{z+1} f(x) \cos(2\pi nx) dx, \ b_n = \int_z^{z+1} f(x) \sin(2\pi nx) dx.$$
 (2)

Illustrating the Building Block: Pure Frequencies

Classical Fourier Series II

In my course on classical Fourier series I was taught that the representation

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(2\pi nx) + b_n \sin(2\pi nx)].$$
 (3)

should be taken only as a "formal expression", which has to be justified using complicated arguments and using a variety of strange tricks/methods!

But was does this mean?

What kind of concrete, mathematical questions should be asked? How are *summability methods* saving the situation?

Until now Fourier series are often seen as a mystery!

Ingredient 1: the Complex Numbers

First of all we have to note that by the time (1822!!, which was at the life-time of Carl Friedrich Gauss! [1777-1855]) the modern concept of a function was not available yet. Thanks to Leonhard Euler ([1707 - 1783]) the complex numbers and their connection to trigonometric functions had been known

$$e^{ix} = \cos(x) + i\sin(x), \quad i = \sqrt{-1}.$$
 (4)

It was known what *polynomials* are and how to compute with them, and even to take "polynomials of infinite degree" (power series, with well defined regions of uniform convergence), hence **Taylor expansions** were known (going back to the English mathematician Brook Taylor [1685-1731]). Both methods constitute important parts of approximation theory.

Exponential Functions

Complex numbers allow to use polynomials with complex coefficients $a_0, \dots a_n$ and complex argument $z \in \mathbb{C}$:

$$p_a(z) = a_0 + a_1 z + \dots + a_n z^n = \sum_{k=0}^n a_k z^k.$$
 (5)

A power series is an infinite sum $\sum_{k=0}^{\infty} a_k z^k$, such as the series defining the exponential function which is convergent for any $z \in \mathbb{C}$

$$e^z := 1 + z/1! + z^2/2! + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 (6)

and satisfies the exponential law

$$e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2} \quad z_1, z_2 \in \mathbb{C},$$

(7) NuHAG

one of the basic identities for (modern) Fourier Analysis.

Ingredient 2: Integrals

Of course the determination of the coefficients using **integrals** (over the period of the involved functions) is one of the cornerstones of the classical theory, raising some questions:

- What is the meaning of an integral in the most general case?
- What kind of functions can be integrated (over [a, b])?
- What can be said about the Fourier coefficients $(a_n)_{n\geq 0}$ or $(b_n)_{n\geq 1}$? (decay for $n\to\infty$, summability).

While the foundations of "calculus" had been laid down by Isaac Newton [1642 - 1726] and Gottfried Wilhelm Leibniz [1646 - 1716] long before Fourier it was **Bernhard Riemann** [1826 - 1866] who gave a clean definition and showed that e.g. every continuous function can be integrated over any interval [a,b]. He showed that the Fourier coefficients tend to zero $(n \to \infty)$.

A Timeline

Another non-trivial part of the reasoning is the justification for the formula ??. In fact, it is only a necessary condition on the coefficients which can be easily obtained, using integrals, telling us nothing about convergence.

AFTER FOURIER

Bernhard Riemann [1826 - 1866]
Henri Leon Lebesgue [1875 - 1941]
Norbert Wiener [1894 - 1964]
Andre Weil [1906 1998]: AHA: Abstract Harmonic Analysis
The natural setting for Fourier Analysis is to work with
functions over LCA (= locally compact Abelian groups).
Engineers talk about discrete and continuous, periodic and
non-periodic signals and use the DFT/FFT! NHA!

Fourier History of in a Nutshell

- 1822: J.B.Fourier proposes: Every periodic function can be expanded into a Fourier series using only pure frequencies;
- ② up to 1922: concept of functions developed, set theory, Lebesgue integration, $(L^2(\mathbb{R}), \|\cdot\|_2)$;
- **3** first half of 20th century: Fourier transform for \mathbb{R}^d ;
- A. Weil: Fourier Analysis on Locally Compact Abelian Groups;
- 5 L. Schwartz: Theory of Tempered Distributions
- Ocooley-Tukey (1965): FFT, the Fast Fourier Transform
- L. Hörmander: Fourier Analytic methods for PDE (Partial Differential Equations);

The Perfect Integral

By the beginning of the 20th century **Henri Leon Lebesgue** had developed his integral, and also given lectures on the application of this new techniques to trigonometric series. He published a number of important papers between 1904 and 1907.

From a modern (functional analytic) view-point his integral, which included the definition of the so-called *Lebesgue spaces* such as $(L^1(\mathbb{R}^d), \|\cdot\|_1)$ or $(L^2(\mathbb{R}^d), \|\cdot\|_2)$ (and of course later the L^p -theory, duality etc.) opened the way to the field of (linear) functional analysis, which developed rapidly, the foundations being lead by e.g. David Hilbert [1862 - 1943], Friedrich Riesz [1880 - 1956] and Stefan Banach [1892 - 1945].

Fourier Transform over the Real Line

The work of H.L. Lebesgue paved the way to a clean definition of the Fourier transform for "functions of a continuous variables" as an *integral transform* naturally defined on $(L^1(\mathbb{R}), \|\cdot\|_1)$

$$||f||_1 := \int_{\mathbb{R}} |f(x)| dx, \quad f \in \mathbf{L}^1(\mathbb{R}).$$
 (8)

The (continuous) Fourier transform for $f \in L^1(\mathbb{R})$ is given by:

$$\hat{f}(s) := \int_{\mathbb{R}} f(x)e^{-2\pi i s x} dx, \quad s \in \mathbb{R}.$$
 (9)

With this normalization the inverse Fourier transform looks similar, just with the conjugate exponent, and thus, under the assumption that f is continuous and $\hat{f} \in L^1(\mathbb{R})$ we have pointwise

$$f(t) = \int_{\mathbb{R}} \hat{f}(s)e^{2\pi ist} ds. \tag{10}$$

Plancherel's Theorem: Unitarity Property of FT

Using the density of $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ in $(L^2(\mathbb{R}), \|\cdot\|_2)$ it can be shown that the Fourier transform extends an a natural and unique way to $(L^2(\mathbb{R}), \|\cdot\|_2)$:

Theorem

The Fourier (-Plancherel) transform establishes a unitary automorphism of $(\mathbf{L}^2(\mathbb{R}), \|\cdot\|_2)$, i.e. one has

$$||f||_2 = ||\hat{f}||_2, \quad f \in L^2(\mathbb{R}),$$

 $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle, \quad f, g \in L^2(\mathbb{R}).$

In some sense *unitary* transformations of a Hilbert transform is like a change form one ONB to another ONB in \mathbb{R}^n .

The Continuous Superposition of Pure Frequencies

This impression is confirmed by the "continuous representation" formula, using $\chi_s(x)=e^{2\pi i s x},\ x,s\in\mathbb{R}.$ Since we have

$$\hat{f}(s) = \langle f, \chi_s \rangle, \quad s \in \mathbb{R},$$

we can rewrite (formally) the Fourier inversion formula as

$$f = \int_{\mathbb{R}} \langle f, \chi_s \rangle \chi_s, \quad f \in \mathbf{L}^2(\mathbb{R}).$$
 (11)

This looks like a perfect orthogonal expansion, but unfortunately the "building blocks" $\chi_s \notin \mathbf{L}^2(\mathbb{R})!!$ (this requires f to be in $\mathbf{L}^1(\mathbb{R})$).

Convolution and the Fourier Transform

Another important fact about the Fourier transform is the so-called **convolution theorem**, i.e. the Fourier transform converts convolution into pointwise multiplication.

Again it is natural to define convolution on $(L^1(\mathbb{R}), \|\cdot\|_1)$:

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy = \int_{\mathbb{R}} g(x - y)f(y)dy \quad \text{xa.e.}; (12)$$
$$\|f * g\|_{1} \le \|f\|_{1} \|g\|_{1}, \quad f, g \in \mathbf{L}^{1}(\mathbb{R}).$$

For positive functions f,g one even has equality. This is relevant for the determination of probability distributions of a sum of *independent* random variables. Assume X has density f and f has density f then the random variable f has probability density distribution f * g = g * f.

Banach Algebras

Theorem

Endowed with the bilinear mapping $(f,g) \to f * g$ the Banach space $(\mathbf{L}^1(\mathbb{R}), \|\cdot\|_1)$ becomes a commutative Banach algebra with respect to convolution.

The convolution theorem, usually formulated as the identity

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}, \quad f, g \in L^{1}(\mathbb{R}), \tag{13}$$

implies

Theorem

The Fourier algebra, defined as $\mathcal{F}L^1(\mathbb{R}):=\{\hat{f}\mid f\in L^1(\mathbb{R})\}$, with the norm $\|\widehat{f}\|_{\mathcal{H}^1}:=\|f\|_1$ is a Banach algebra, closed under conjugation, and dense in $(C_0(\mathbb{R}),\|\cdot\|_\infty)$ (continuous functions, vanishing at infinity).

Mathematics of 20th Century

Jumping into the 40th of the last century one can say that AHA Abstract Harmonic Analysis was created, with \mathbb{R} replaced by a general a general LCA (locally compact Abelian) group. In engineering terminology this allows to discuss *continuous and*

In engineering terminology this allows to discuss continuous and discrete variables, but also periodic or non-periodic functions as functions on different groups, such as $\mathcal{G} = \mathbb{R}^d, \mathbb{Z}^d, \mathbb{Z}_N, \mathbb{T}^k$ etc., their product being called *elementary groups*.

The fundamental fact in all these cases is the existence of an translation for functions, defined as

$$[T_z f](x) = f(x-z), x, z \in \mathcal{G},$$

and the existence of an invariant integral, the so-called *Haar measure* (Alfred Haar, [1885 - 1933]).

Laurent Schwartz Theory of Tempered Distributions

Laurent Schwartz [1915 - 2002] is mostly known for having introduced the space of tempered distributions, a vector space of **generalized functions** or **distributions**, invariant under the Fourier transform. defined by the simple relation

$$\hat{\sigma}(f) := \sigma(\widehat{f}), \quad f \in \mathcal{S}(\mathbb{R}^d).$$

Just in order not to leave out an important mathematical application area of tempered distributions (and their generalizations) let us mention the work of *Lars Hörmander* [1931-2012] exploring Fourier methods for PDEs (partial differential operators). He as well as *E. Stein* [1931-2019] have developed Fourier Methods for the multi-dimensional setting.

The Classical Setting of Test Functions & Distributions

Universe including SO and SOP

Fourier Transforms of Tempered Distributions

His construction vastly extends the domain of the Fourier transform and allows even polynomials to have a Fourier transform. Among the objects which can now be treated are also the Dirac measures δ_x , as well as **Dirac combs** $\sqcup \sqcup = \sum_{k \in \mathbb{Z}^d} \delta_k$. Poisson's formula, which expresses that one has for $f \in \mathcal{S}(\mathbb{R}^d)$

$$\sum_{k \in \mathbb{Z}^d} f(k) = \sum_{n \in \mathbb{Z}^d} \widehat{f}(n), \tag{14}$$

can now be recast in the form

$$\widehat{\square} = \square$$
.

The Position of Conceptual Harmonic Analysis

Sampling and Periodization on the FT side

This result is the key to prove **Shannon's Sampling Theorem** which is usually considered as the fundamental fact of digital signal processing (Claude Shannon: 1916 - 2001).

Shannon's Theorem implies **perfect reconstruction** for band-limited functions, thus providing the mathematical basis for the technology of CD-players.

If the so-called *Nyquist criterion* is satisfied (sampling distance small enough), i.e. $\mathrm{supp}(\hat{f}) \subset [-1/\alpha, 1/\alpha]$, then

$$f(t) = \sum_{k \in \mathbb{Z}^d} f(\alpha k) g(x - \alpha k), \quad x \in \mathbb{R}^d.$$
 (15)

A Visual Proof of Shannon's Theorem

FFT: Fast Fourier Transform

Originally introduced as a tool that should allow to approximately compute Fourier integrals based on suitable discretization of the continuous function $(f \in \mathbf{L}^1(\mathbb{R}))$ in 1965 (by Cooley and Tuckey at IMB), the FFT has become the backbone of *digital signal processing*.

Instead of providing a lot of formulas let us mention that one possible interpretation of the (linear) mapping $\mathbf{a} \mapsto \mathbf{b} := \mathsf{fft}(\mathbf{a})$, from \mathbb{C}^N to \mathbb{C}^N .

The most useful interpretation of the usual formula is: Convert the set of coefficients $\mathbf{a} = (a_k)_{k=0}^{N-1}$ to the sequence of values of the polynomial $p_{\mathbf{a}}(z)$ over the unit roots of order N.

Unit roots of order 24: A Finite Abelian Group!

Figure: Uroots2412a.eps

Basic DFT/FFT Properties

This interpretation explains various aspects of the DFT/FFT:

- The matrix representing the DFT/FFT is (up to scaling) just a *unitary Vandermonde matrix*; hence inversion is easy;
- The fast algorithm is based on group theoretical properties of the unit roots of order N if N is even, e.g. unit roots of order 24 are just two copies of unit roots of order 12;
- Clearly pointwise multiplication of the values of the polynomials corresponds to the Cauchy product of the coefficients ("multiplying out rule for polynomials");
- Sampling corresponds to periodization on the other side;
- The FFT allows to compute the FT of discrete and periodic signals exactly.

Where do we use Fourier Analysis in our Daily Life?

Perhaps you have to think a bit? But there are MANY opportunities, and few activities do not involve the use of FFT-based technology.

- You use your mobile phone to communicate?
- You listen to music? (MP3 or WAV-files);
- You download images? (JPEG format);
- Your computer communicates with your printer?
- You watch digital videos (streaming)?
- So how do the data reach your device?

The answer is: There is a lot if digital signal processing going on in the background, using the FFT (Fast Fourier Transform).

CD Players with 44100 Samples per Second

A direct consequence of Shannon's Sampling Theorem (combined with laser techniques) is the availability of CD players (and digital communication), using also *coding theory*:

Gabor Analysis in our kid's daily live (MP3)

The Windows Media Player allows to visualize music, e.g. like

Mobile Communication using Fourier Methods

We exchange WAV, MP3, JPG data and digital voice:

Medical Imaging using Tomographs

Medical Imaging using the Radon Transform

Tomography and the Radon Transform

Mathematical key idea behind tomography

- The tomographic device measures the attenuation of of X-rays through the tissue along many-many straight lines, between (rotating) X-ray source and sensor array;
- Different tissues have known absorption behaviour, thus attenuation indicates integrated density along lines;
- Mathematically speaking the task is the invert a sampled Radon transform which can be obtained from these data
- After regridding the data arising on a polar grid an IFFT2 provides one possible way to produce images (slices),
- Modern **Compressed Sensing** methods improve further

The Key-players for Time-Frequency Analysis (TFA)

Time-shifts and Frequency shifts (II)

$$T_x f(t) = f(t-x)$$

and $x, \omega, t \in \mathbb{R}^d$

$$M_{\omega}f(t)=e^{2\pi i\omega\cdot t}f(t)$$
.

Behavior under Fourier transform

$$(T_x f)^{\hat{}} = M_{-x} \hat{f} \qquad (M_\omega f)^{\hat{}} = T_\omega \hat{f}$$

The Short-Time Fourier Transform

$$V_g f(\lambda) = \langle f, M_{\omega} T_t g \rangle = \langle f, \pi(\lambda) g \rangle = \langle f, g_{\lambda} \rangle, \ \lambda = (t, \omega);$$

A Typical Musical STFT

A typical waterfall melody (Beethoven piano sonata) using the spectrogram: energy distribution in the $\mathsf{TF} = \mathsf{time}\text{-frequency plan}$:

Time-Frequency and Musical Score

Time-Frequency Analysis and Music

The Short-Time Fourier Transform of this Song

The computed spectrogram of this song.

The Gaborator at www.gaborator.com

This software is based on work of my former students (at ARI). An almost professional version allows to upload WAV files:

Motivated by Musical Score: Sliding FFT

... and cut the signal into pieces

... and do localized spectra

MP3 is using the masking effect on those spectra!

Dennis Gabor, 1900-1979, Physics Nobel Prize 1971

Dennis Gabor received the Nobel Prize for physics for his work on holography, which is somehow related to TF-analysis.

D.Gabor's Suggestion of 1946

Choose the Gauss-function, because it is the unique minimizer to the *Heisenberg Uncertainty Relation* and choose the critical, so-called von-Neumann lattice, which is simply \mathbb{Z}^2 .

D.Gabor's Suggestion of 1946, II

D.Gabor's Suggestion of 1946, III

Justification and Shortcoming

- D. Gabor proposed to use integer time and frequency shifts (which commute!) of the Gauss function and the TF-lattice $a\mathbb{Z} \times b\mathbb{Z}$, with a=1=b, based on the following arguments:
 - The Gauss function is optimally concentrated in the time-frequency sense;
 - ② If ab > 1 then the collection of (Gabor) atoms does not span $(L^2(\mathbb{R}), \|\cdot\|_2);$
 - If ab < 1 then there is a kind of redundancy and consequently linear dependency (hence non-uniqueness of the coefficients);

From a modern point of view the case ab < 1 is suitable, one has to use minimal norm coefficients for uniqueness. On the other hand the case ab > 1 provides Riesz basic sequences which are useful for *mobile communication*.

Mobile Communication: Slowly Varying Systems

Gabor Riesz Bases and Mobile Communication

Another usefulness of "sparsely distributed" Gabor systems comes from mobile communication:

- Mobile channels can be modelled as slowly varying, or underspread operators (small support in spreading domain);
- 2 TF-shifted Gaussians are joint approximate eigenvectors to such systems, i.e. pass through was some attenuation only;
- underspread operators can also be identified from transmitted pilot tones;
- Communication should allow large capacity at high reliability.

Operating on the Audio Signal: Filter Banks

2D-Gabor Analysis: Test Images

Image Compression: a Test Image

Showing the Elementary 2D-Building Blocks

Astronomial Insight

Time-Frequency Analysis and Black Holes

Breaking News of Oct. 2017

In Oct. 3rd, 2017, the **Nobel Prize in Physics** was awarded to three physicists who have been key figure for the **LIGO Experiment** which led in the year 2016 to the detection of **Gravitational Waves** as predicted 100 years ago by Albert Einstein!

The Prize-Winners are

Rainer Weiss, Barry Barish und Kip Thorne.

They have supplied the key ideas to the so-called LIGO experiment which has meanwhile 4-times verified the existence of Gravitational waves by means of a huge laser-inferometric setup. The first detection took place in September 2016.

https://en.wikipedia.org/wiki/Gravitational-wave_obs

The shape of gravitational waves

Einstein had predicted, that the shape of the gravitational wave of two collapsing black holes would be a chirp-like function, depending on the masses of the two objects.

Gravitational waves and Wilson bases

Aside from the experimental setup there is a huge signal processing task involved, comparable to the literal "needle in the haystack" problem.

There had been two strategies:

- Searching for 2500 explicitely determined wave-forms;
- Using a family of 14 orthonormal Wilson bases (a variant of Gabor Analysis);

The very **first** was detected by the second strategy, because the masses had been out of the expected range of the predetermined wave-forms.

NEW FINDINGS have been made in April of this year!

https://science.orf.at/stories/2979350/

A few Relevant References/BOOKS

- **K. Gröchenig**: Foundations of Time-Frequency Analysis, 2001.
- H.G. Feichtinger and T. Strohmer: Gabor Analysis, 1998.
- H.G. Feichtinger and T. Str.: Advances in Gabor Analysis, 2003.
- G. Folland: Harmonic Analysis in Phase Space, 1989.
- **A. Benyi and K. Okoudjou** Modulation Spaces. With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations, 2020.
- **E. Cordero and L. Rodino** Time-frequency Analysis of Operators and Applications. 2020.

See also www.nuhag.eu/talks or www.nuhag.eu/ETH20 (ETH course by HGFei).

Usefulness and Applications of Gabor Frames:

The question of Gabor frames is of interest, when a signal (say some audio signal, or some image, cf. introduction) is to be *decomposed* into meaningful elementary building blocks, somehow like *transcription*. Ideally the distribution of *energy* in the signal goes over into an equivalent energy distribution. AND WHAT can we do with this:

- a) contributions may be irrelevant (or disturbing) and can be eliminated (the bird contributing to the open air classical concert): denoising of signals
- b) signals can be separated in a TF-situation;
- c) unimportant, small contributions can be omitted (+ masking effect): allows for efficient lossy compression schemes >> MP3.

Further Topics and Outlook

Obviously there is a long list of topics which can be connected with the topic of Fourier and Gabor Analysis:

- Despite the fact that Fourier Analysis is well established mathematically we should change the perspective in teaching it, making it more application oriented, but still mathematically correct.
- Make use of modern tools (media, mathematical Software, like MATLAB or GEOGEBRA) and encourage mathematical experiments, already to high-school students.
- Mathematicians and applied scientists should talk more to each other and explain their work.
- **4** A new, simplified theory of distributions ("mild distributions", based on the Segal algebra $S_0(\mathbb{R}^d)$) is on the way.

The Simplified Situation

Feichtinger's algebra $(S_0(\mathbb{R}^d), \|\cdot\|_{S_0})$, the Hilbert space $(L^2(\mathbb{R}^d), \|\cdot\|_2)$ and the space $(S_0'(\mathbb{R}^d), \|\cdot\|_{S_0'})$ of *mild distributions*.

THANK YOU

Thank you for your attention!!

More at www.nuhag.eu

Access to the collection of all Talks by HGFei can be obtain by request at hans.feichtinger@univie.ac.at as well as to all of the NuHAG publications.

