Numerical Harmonic Analysis Group

200 Years of Fourier Analysis: Fourier Analysis in the Modern World of Digital Signal Processing

Hans G. Feichtinger, Univ. Vienna hans.feichtinger@univie.ac.at, www.nuhag.eu

#### Talk held at University of Novi Sad May 12th, 2022, Spring Festival

## Various Aspects

Addressing various topics of a quite general nature:

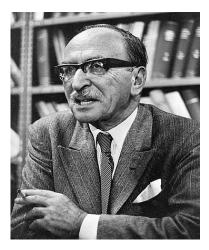
- Fourier Analysis is a mature (200 year old) subject of mathematics which is still going strong > a suitable subject for a discussion of the development of mathematical ideas;
- Modern digital technologies depend heavily on the principles developed in connection with Fourier Analysis;
- Not always is the theory developed by mathematicians ready for applications, nor do applied scientists go deep enough in the mathematical analysis of their problems;
- Mathematics is not just the abstract and complicated subject as it is usually seen, and not just a collection of formulas.



#### Jean Baptiste Josef Fourier: 1768 - 1830

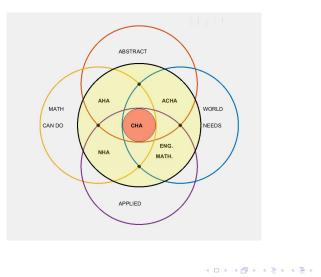
https://en.wikipedia.org/wiki/Joseph\_Fourier






< □ > < 🗗 >

Concl


### Dennis Gabor, born as Günszberg Denes, 1900-1979

https://en.wikipedia.org/wiki/Dennis\_Gabor



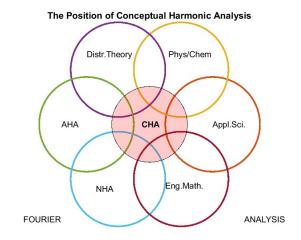


### The IKIGAI Diagram for Conceptual Harmonic Analysis





# The IKIGAI Principle


According to WIKIPEDIA we have:

**Ikigai** can describe having a sense of purpose in life, as well as being motivated According to a study by Michiko Kumano, feeling ikigai as described in Japanese usually means the *feeling of accomplishment and fulfillment that follows when people pursue their passions*.

Activities that generate the feeling of ikigai are not forced on an individual; they are perceived as being spontaneous and undertaken willingly, and thus are personal and depend on a person's inner self. According to psychologist Katsuya Inoue, ikigai is a concept consisting of two aspects: "sources or objects that bring value or meaning to life" and "a feeling that one's life has value or meaning because of the existence of its source or object".



| History                                 | Mathematical Results | Abstract Harmonic Analysis | FA in Real Life | Gabor Analysis | Concl |
|-----------------------------------------|----------------------|----------------------------|-----------------|----------------|-------|
| 000000000000000000000000000000000000000 |                      |                            |                 |                |       |



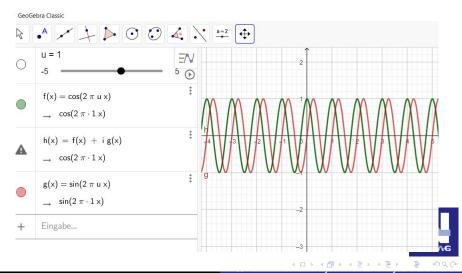
NullAG

æ

ヘロア 人間 アメヨアメヨア

#### From Classical Fourier Series to AHA

The classical approach (going back to 1822) to the theory of *FOURIER SERIES* appears in the following form: Looking at the partial sums of the (formally then infinite) Fourier series we expect them to approximate "any periodic function" in **some sense**:


$$s_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(2\pi nx) + b_n \sin(2\pi nx)].$$
(1)

Assuming this is possible it is not so hard to find out, using the properties of the building blocks  $(\cos(x), \sin(x), \operatorname{addition rules}, \operatorname{derivatives}, \operatorname{integration})$  that one can expect for any  $z \in \mathbb{R}$ :

$$a_n = \int_z^{z+1} f(x) \cos(2\pi nx) dx, \ b_n = \int_z^{z+1} f(x) \sin(2\pi nx) dx.$$



## Illustrating the Building Block: Pure Frequencies



# Classical Fourier Series II

In my course on classical Fourier series I was taught that the representation

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(2\pi nx) + b_n \sin(2\pi nx)].$$
 (3)

should be taken only as a "formal expression", which has to be justified using complicated arguments and using a variety of strange tricks/methods!

#### But was does this mean?

What kind of concrete, mathematical questions should be asked? How are *summability methods* saving the situation?

Until now Fourier series are often seen as a mystery!



### Ingredient 1: the Complex Numbers

First of all we have to note that by the time (1822!!, which was at the life-time of Carl Friedrich Gauss! [1777-1855]) the modern **concept of a function** was not available yet. Thanks to Leonhard Euler ([1707 - 1783]) the complex numbers and their connection to trigonometric functions had been known

$$e^{ix} = \cos(x) + i\sin(x), \quad i = \sqrt{-1}.$$
 (4)

It was known what *polynomials* are and how to compute with them, and even to take "polynomials of infinite degree" (power series, with well defined regions of uniform convergence), hence **Taylor expansions** were known (going back to the English mathematician Brook Taylor [1685-1731]). Both methods constitute important parts of approximation theory.

## **Exponential Functions**

Complex numbers allow to use polynomials with complex coefficients  $a_0, \dots, a_n$  and complex argument  $z \in \mathbb{C}$ :

$$p_a(z) = a_0 + a_1 z + \cdot + a_n z^n = \sum_{k=0}^n a_k z^k.$$
 (5)

A *power series* is an infinite sum  $\sum_{k=0}^{\infty} a_k z^k$ , such as the series defining the exponential function which is convergent for any  $z \in \mathbb{C}$ 

$$e^{z} := 1 + z/1! + z^{2}/2! + ... = \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$$
 (6)

and satisfies the exponential law

$$e^{z_1} \cdot e^{z_2} = e^{z_1+z_2} \quad z_1, z_2 \in \mathbb{C},$$

one of the basic identities for (modern) Fourier Analysis.



## Ingredient 2: Integrals

Of course the determination of the coefficients using **integrals** (over the period of the involved functions) is one of the cornerstones of the classical theory, raising some questions:

- What is the meaning of an integral in the most general case?
- What kind of functions can be integrated (over [a, b])?
- What can be said about the Fourier coefficients

 $(a_n)_{n\geq 0}$  or  $(b_n)_{n\geq 1}$ ? (decay for  $n \to \infty$ , summability).

While the foundations of "calculus" had been laid down by Isaac Newton [1642 - 1726] and Gottfried Wilhelm Leibniz [1646 - 1716] long before Fourier it was **Bernhard Riemann** [1826 - 1866] who gave a clean definition and showed that e.g. every *continuous function* can be integrated over any interval [a, b]. He showed that the Fourier coefficients tend to zero  $(n \rightarrow \infty)$ .



< D > < B > < E >

| History           | Mathematical Results | Abstract Harmonic Analysis | FA in Real Life | Gabor Analysis                          | Concl |
|-------------------|----------------------|----------------------------|-----------------|-----------------------------------------|-------|
| 00000000000000000 | 000000               | 000000000                  | 0000000         | 000000000000000000000000000000000000000 | 0000  |

# A Timeline

Another non-trivial part of the reasoning is the justification for the formula 2. In fact, it is only a necessary condition on the coefficients which can be easily obtained, using integrals, telling us nothing about convergence.

#### AFTER FOURIER

Bernhard Riemann [1826 - 1866] Henri Leon Lebesgue [1875 - 1941] Norbert Wiener [1894 - 1964] Andre Weil [1906 1998]: AHA: Abstract Harmonic Analysis The natural setting for Fourier Analysis is to work with functions over LCA (= locally compact Abelian groups). Engineers talk about discrete and continuous, periodic and non-periodic signals and use the DFT/FFT! NHA!



# Fourier History of in a Nutshell

- 1822: J.B.Fourier proposes: Every periodic function can be expanded into a Fourier series using only pure frequencies;
- ② up to 1922: concept of functions developed, set theory, Lebesgue integration,  $(L^2(\mathbb{R}), \|\cdot\|_2)$ ;
- **③** first half of 20th century: Fourier transform for  $\mathbb{R}^d$ ;
- A. Weil: Fourier Analysis on Locally Compact Abelian Groups;
- **5** L. Schwartz: Theory of Tempered Distributions
- **O** Cooley-Tukey (1965): FFT, the Fast Fourier Transform
- L. Hörmander: Fourier Analytic methods for PDE (Partial Differential Equations);



## The Perfect Integral

By the beginning of the 20th century **Henri Leon Lebesgue** had developed his integral, and also given lectures on the application of this new techniques to trigonometric series. He published a number of important papers between 1904 and 1907.

From a modern (functional analytic) view-point his integral, which included the definition of the so-called *Lebesgue spaces* such as  $(L^1(\mathbb{R}^d), \|\cdot\|_1)$  or  $(L^2(\mathbb{R}^d), \|\cdot\|_2)$  (and of course later the  $L^p$ -theory, duality etc.) opened the way to the field of (linear) functional analysis, which developed rapidly, the foundations being lead by e.g. David Hilbert [1862 - 1943], Friedrich Riesz [1880 - 1956] and Stefan Banach [1892 - 1945].



#### Fourier Transform over the Real Line

The work of H.L. Lebesgue paved the way to a clean definition of the Fourier transform for "functions of a continuous variables" as an *integral transform* naturally defined on  $(L^1(\mathbb{R}), \|\cdot\|_1)$ 

$$\|f\|_1 := \int_{\mathbb{R}} |f(x)| dx, \quad f \in \boldsymbol{L}^1(\mathbb{R}).$$
(8)

The (continuous) Fourier transform for  $f \in L^1(\mathbb{R})$  is given by:

$$\widehat{f}(s) := \int_{\mathbb{R}} f(x) e^{-2\pi i s x} dx, \quad s \in \mathbb{R}.$$
 (9)

With this normalization the inverse Fourier transform looks similar, just with the conjugate exponent, and thus, *under the assumption* that f is continuous and  $\hat{f} \in L^1(\mathbb{R})$  we have pointwise

$$f(t) = \int_{\mathbb{R}} \hat{f}(s) e^{2\pi i s t} ds.$$



Plancherel's Theorem: Unitarity Property of FT

Using the density of  $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$  in  $(L^2(\mathbb{R}), \|\cdot\|_2)$  it can be shown that the Fourier transform extends an a natural and unique way to  $(L^2(\mathbb{R}), \|\cdot\|_2)$ :

#### Theorem

The Fourier (-Plancherel) transform establishes a unitary automorphism of  $(L^2(\mathbb{R}), \|\cdot\|_2)$ , i.e. one has

$$\|f\|_2 = \|\hat{f}\|_2, \quad f \in L^2(\mathbb{R}),$$

$$\langle f,g
angle = \langle \hat{f},\hat{g}
angle, \quad f,g\in L^2(\mathbb{R}).$$

In some sense *unitary* transformations of a Hilbert transform is like a change form one ONB to another ONB in  $\mathbb{R}^n$ .



イロト イロト イヨト

### The Continuous Superposition of Pure Frequencies

This impression is confirmed by the "continuous representation" formula, using  $\chi_s(x) = e^{2\pi i s x}$ ,  $x, s \in \mathbb{R}$ . Since we have

$$\hat{f}(s) = \langle f, \chi_s \rangle, \quad s \in \mathbb{R},$$

we can rewrite (formally) the Fourier inversion formula as

$$f = \int_{\mathbb{R}} \langle f, \chi_s \rangle \chi_s, \quad f \in L^2(\mathbb{R}).$$
(11)

This looks like a perfect orthogonal expansion, but unfortunately the "building blocks"  $\chi_s \notin L^2(\mathbb{R})!!$  (this requires f to be in  $L^1(\mathbb{R})$ ).



#### Convolution and the Fourier Transform

Another important fact about the Fourier transform is the so-called **convolution theorem**, i.e. the Fourier transform converts convolution into pointwise multiplication. Again it is natural to define convolution on  $(L^1(\mathbb{R}), \|\cdot\|_1)$ :

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy = \int_{\mathbb{R}} g(x - y)f(y)dy \quad xa.e.; (12)$$
$$\|f * g\|_{1} \le \|f\|_{1}\|g\|_{1}, \quad f,g \in L^{1}(\mathbb{R}).$$

For positive functions f, g one even has equality. This is relevant for the determination of probability distributions of a sum of *independent* random variables. Assume X has density f and Y has density g then the random variable X + Y has probability density distribution f \* g = g \* f.



## Banach Algebras

#### Theorem

Endowed with the bilinear mapping  $(f,g) \rightarrow f * g$  the Banach space  $(\mathbf{L}^1(\mathbb{R}), \|\cdot\|_1)$  becomes a commutative Banach algebra with respect to convolution.

The convolution theorem, usually formulated as the identity

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}, \quad f, g \in \boldsymbol{L}^{1}(\mathbb{R}),$$
(13)

ΛG

implies

#### Theorem

The Fourier algebra, defined as  $\mathcal{FL}^1(\mathbb{R}) := \{\hat{f} \mid f \in L^1(\mathbb{R})\}$ , with the norm  $\|\hat{f}\|_{\mathcal{FL}^1} := \|f\|_1$  is a Banach algebra, closed under conjugation, and dense in  $(C_0(\mathbb{R}), \|\cdot\|_\infty)$  (continuous functions, vanishing at infinity).

# Mathematics of 20th Century

Jumping into the 40th of the last century one can say that **AHA Abstract Harmonic Analysis** was created, with  $\mathbb{R}$  replaced by a general a general LCA (locally compact Abelian) group. In engineering terminology this allows to discuss *continuous and discrete variables*, but also *periodic or non-periodic* functions as functions on different groups, such as  $\mathcal{G} = \mathbb{R}^d, \mathbb{Z}^d, \mathbb{Z}_N, \mathbb{T}^k$  etc., their product being called *elementary groups*. The fundamental fact in all these cases is the existence of an translation for functions, defined as

$$[T_z f](x) = f(x-z), x, z \in \mathcal{G},$$

and the existence of an invariant integral, the so-called *Haar measure* (Alfred Haar, [1885 - 1933]).

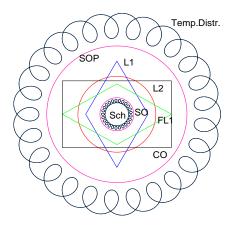


#### Laurent Schwartz Theory of Tempered Distributions

Laurent Schwartz [1915 - 2002] is mostly known for having introduced the space of tempered distributions, a vector space of **generalized functions** or **distributions**, invariant under the Fourier transform. defined by the simple relation

$$\hat{\sigma}(f) := \sigma(\hat{f}), \quad f \in \mathcal{S}(\mathbb{R}^d).$$

Just in order not to leave out an important mathematical application area of tempered distributions (and their generalizations) let us mention the work of *Lars Hörmander* [1931-2012] exploring Fourier methods for PDEs (partial differential operators). He as well as *E. Stein* [1931-2019] have developed Fourier Methods for the multi-dimensional setting.




History Mathematical Results Abstract Harmonic Analysis FA in Real Life Gabor Analysis 0000000000

Concl

# The Classical Setting of Test Functions & Distributions

#### Universe including SO and SOP



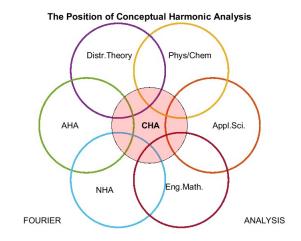


イロト イヨト イヨト イヨト

#### Fourier Transforms of Tempered Distributions

His construction vastly extends the domain of the Fourier transform and allows even polynomials to have a Fourier transform. Among the objects which can now be treated are also the Dirac measures  $\delta_x$ , as well as **Dirac combs**  $\sqcup \sqcup = \sum_{k \in \mathbb{Z}^d} \delta_k$ . Poisson's formula, which expresses that one has for  $f \in \mathcal{S}(\mathbb{R}^d)$ 

 $\widehat{(1)} = |1|$ 


$$\sum_{k\in\mathbb{Z}^d} f(k) = \sum_{n\in\mathbb{Z}^d} \widehat{f}(n),$$
(14)

can now be recast in the form





| History | Mathematical Results | Abstract Harmonic Analysis | FA in Real Life | Gabor Analysis | Concl |
|---------|----------------------|----------------------------|-----------------|----------------|-------|
|         |                      | 000000000                  |                 |                |       |



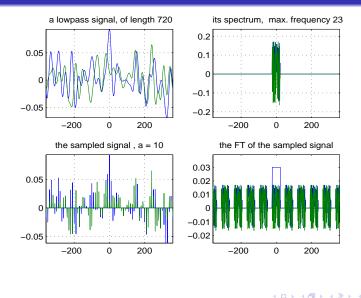
NullAG

æ

ヘロア 人間 アメヨアメヨア

Hans G. Feichtinger

## Sampling and Periodization on the FT side


This result is the key to prove **Shannon's Sampling Theorem** which is usually considered as the fundamental fact of digital signal processing (Claude Shannon: 1916 - 2001). Shannon's Theorem implies **perfect reconstruction** for band-limited functions, thus providing the mathematical basis for the technology of CD-players.

If the so-called Nyquist criterion is satisfied (sampling distance small enough), i.e.  $supp(\hat{f}) \subset [-1/\alpha, 1/\alpha]$ , then

$$f(t) = \sum_{k \in \mathbb{Z}^d} f(\alpha k) g(x - \alpha k), \quad x \in \mathbb{R}^d.$$
(15)



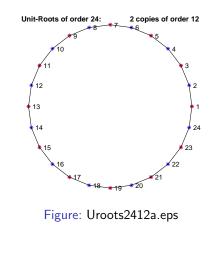
#### A Visual Proof of Shannon's Theorem





## FFT: Fast Fourier Transform

Originally introduced as a tool that should allow to approximately compute Fourier integrals based on suitable discretization of the continuous function ( $f \in L^1(\mathbb{R})$ ) in 1965 (by Cooley and Tuckey at IMB), the FFT has become the backbone of *digital signal processing*.


Instead of providing a lot of formulas let us mention that one possible interpretation of the (linear) mapping  $\mathbf{a} \mapsto \mathbf{b} := \text{fft}(\mathbf{a})$ , from  $\mathbb{C}^N$  to  $\mathbb{C}^N$ .

The most useful interpretation of the usual formula is:

Convert the set of coefficients  $\mathbf{a} = (a_k)_{k=0}^{N-1}$  to the sequence of values of the polynomial  $p_{\mathbf{a}}(z)$  over the unit roots of order N.



#### Unit roots of order 24: A Finite Abelian Group!





# Basic DFT/FFT Properties

This interpretation explains various aspects of the DFT/FFT:

- The matrix representing the DFT/FFT is (up to scaling) just a unitary Vandermonde matrix; hence inversion is easy;
- The fast algorithm is based on group theoretical properties of the unit roots of order N if N is even, e.g. unit roots of order 24 are just two copies of unit roots of order 12;
- Clearly pointwise multiplication of the values of the polynomials corresponds to the Cauchy product of the coefficients ("multiplying out rule for polynomials");
- Sampling corresponds to periodization on the other side;
- The FFT allows to compute the FT of discrete and periodic signals *exactly*.



#### Where do we use Fourier Analysis in our Daily Life?

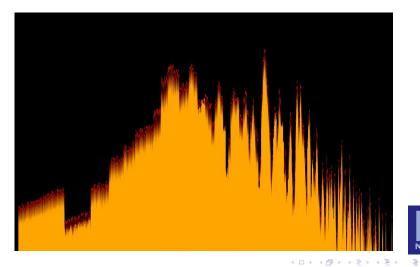
Perhaps you have to think a bit? But there are MANY opportunities, and few activities do not involve the use of FFT-based technology.

- You use your mobile phone to communicate?
- You listen to music? (MP3 or WAV-files);
- You download images? (JPEG format);
- Your computer communicates with your printer?
- You watch digital videos (streaming)?
- **o** So how do the data reach your device?

The answer is: There is a lot if digital signal processing going on in the background, using the FFT (Fast Fourier Transform).



## CD Players with 44100 Samples per Second


A direct consequence of Shannon's Sampling Theorem (combined with laser techniques) is the availability of CD players (and digital communication), using also *coding theory*:





## Gabor Analysis in our kid's daily live (MP3)

#### The Windows Media Player allows to visualize music, e.g. like





#### Mobile Communication using Fourier Methods

We exchange WAV, MP3, JPG data and digital voice:





## Medical Imaging using Tomographs





イロト イヨト イヨト イヨト

#### Medical Imaging using the Radon Transform





Concl

## Tomography and the Radon Transform

Mathematical key idea behind tomography

- The tomographic device measures the attenuation of of X-rays through the tissue along many-many straight lines, between (rotating) X-ray source and sensor array;
- Different tissues have known absorption behaviour, thus attenuation indicates integrated density along lines;
- Mathematically speaking the task is the invert a **sampled Radon transform** which can be obtained from these data
- After regridding the data arising on a polar grid an IFFT2 provides one possible way to produce images (slices),
- Modern Compressed Sensing methods improve further



Concl

## The Key-players for Time-Frequency Analysis (TFA)

Time-shifts and Frequency shifts (II)

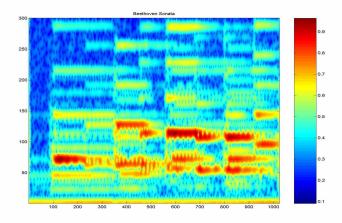
$$T_x f(t) = f(t-x)$$

and  $x, \omega, t \in \mathbb{R}^d$ 

$$M_{\omega}f(t)=e^{2\pi i\omega\cdot t}f(t)$$
.

Behavior under Fourier transform

$$(T_x f)^{=} M_{-x} \hat{f} \qquad (M_\omega f)^{=} T_\omega \hat{f}$$

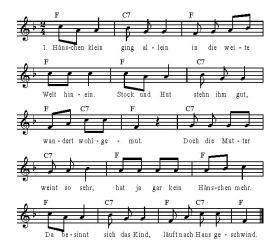

The Short-Time Fourier Transform

$$V_{g}f(\lambda) = \langle f, \underline{M}_{\omega} T_{t}g \rangle = \langle f, \pi(\lambda)g \rangle = \langle f, \underline{g}_{\lambda} \rangle, \ \lambda = (t, \omega);$$



## A Typical Musical STFT

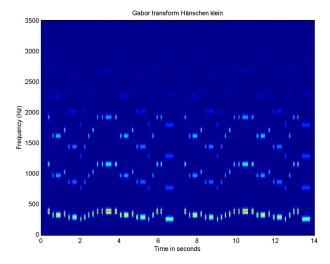
A typical waterfall melody (Beethoven piano sonata) using the spectrogram: energy distribution in the TF = time-frequency plan:






< <p>O > < <p>O >

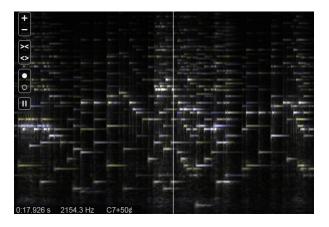
## Time-Frequency and Musical Score


#### **Time-Frequency Analysis and Music**



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

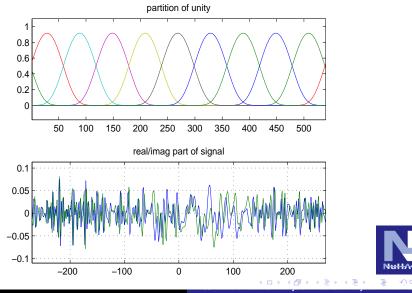
## The Short-Time Fourier Transform of this Song


#### The computed spectrogram of this song.



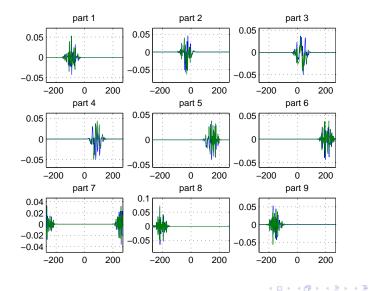
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくぐ

#### The Gaborator at www.gaborator.com


This software is based on work of my former students (at ARI). An almost professional version allows to upload WAV files:



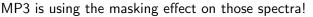


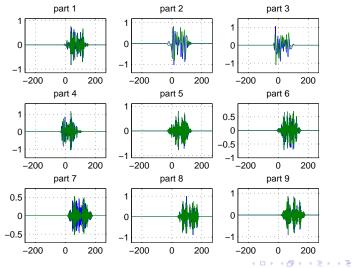



#### Motivated by Musical Score: Sliding FFT



Hans G. Feichtinger


#### ... and cut the signal into pieces







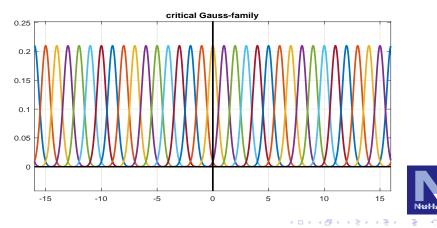

#### ... and do localized spectra





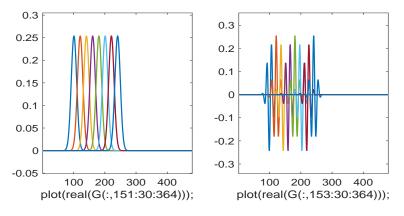


### Dennis Gabor, 1900-1979, Physics Nobel Prize 1971


Dennis Gabor received the Nobel Prize for physics for his work on holography, which is somehow related to TF-analysis.





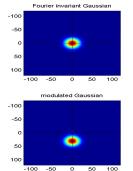

## D.Gabor's Suggestion of 1946

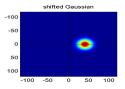
Choose the Gauss-function, because it is the unique minimizer to the *Heisenberg Uncertainty Relation* and choose the critical, so-called von-Neumann lattice, which is simply  $\mathbb{Z}^2$ .

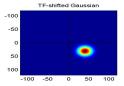


Hans G. Feichtinger

#### D.Gabor's Suggestion of 1946, II





イロト イヨト イヨト イヨト

History Mathematical Results Abstract Harmonic Analysis FA in Real Life Gabor Analysis 

#### D.Gabor's Suggestion of 1946, III







イロト イヨト イヨト イヨト



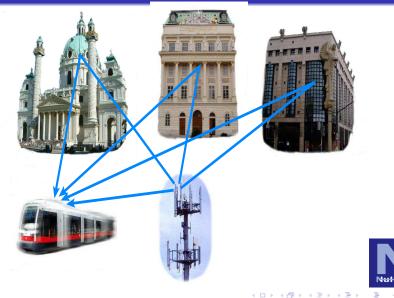
Concl

## Justification and Shortcoming

D. Gabor proposed to use integer time and frequency shifts (which commute!) of the Gauss function and the TF-lattice  $a\mathbb{Z} \times b\mathbb{Z}$ , with a = 1 = b, based on the following arguments:

- The Gauss function is optimally concentrated in the time-frequency sense;
- If ab > 1 then the collection of (Gabor) atoms does not span (L<sup>2</sup>(ℝ), || · ||<sub>2</sub>);
- If ab < 1 then there is a kind of redundancy and consequently linear dependency (hence non-uniqueness of the coefficients);

From a modern point of view the case ab < 1 is suitable, one has to use minimal norm coefficients for uniqueness. On the other hand the case ab > 1 provides Riesz basic sequences which are useful for *mobile communication*.




History

Mathematical Results Abstract Harmonic Analysis FA in Real Life Gabor Analysis

Concl 

## Mobile Communication: Slowly Varying Systems



## Gabor Riesz Bases and Mobile Communication

Another usefulness of "sparsely distributed" Gabor systems comes from mobile communication:

- Mobile channels can be modelled as slowly varying, or underspread operators (small support in spreading domain);
- TF-shifted Gaussians are joint approximate eigenvectors to such systems, i.e. pass through was some attenuation only;
- underspread operators can also be identified from transmitted pilot tones;
- Ommunication should allow large capacity at high reliability.



Concl 

## Operating on the Audio Signal: Filter Banks

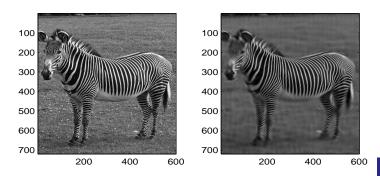




イロト イヨト イヨト イヨト

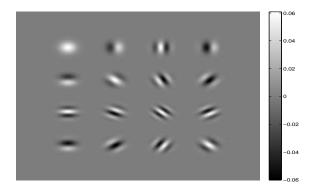
### 2D-Gabor Analysis: Test Images






History

Mathematical Results Abstract Harmonic Analysis FA in Real Life Gabor Analysis


Concl 

#### Image Compression: a Test Image





#### Showing the Elementary 2D-Building Blocks





A D > A B >
 A

< 注) < 注

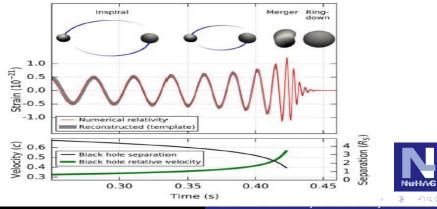
## Astronomial Insight

Time-Frequency Analysis and Black Holes

Breaking News of Oct. 2017

In Oct. 3rd, 2017, the **Nobel Prize in Physics** was awarded to three physicists who have been key figure for the **LIGO Experiment** which led in the year 2016 to the detection of **Gravitational Waves** as predicted 100 years ago by Albert Einstein!

The Prize-Winners are


#### Rainer Weiss, Barry Barish und Kip Thorne.

They have supplied the key ideas to the so-called LIGO experiment which has meanwhile 4-times verified the existence of Gravitational waves by means of a huge laser-inferometric setup. The first detection took place in September 2016.

https://en.wikipedia.org/wiki/Gravitational-wave\_observat

#### The shape of gravitational waves

Einstein had predicted, that the shape of the gravitational wave of two collapsing black holes would be a chirp-like function, depending on the masses of the two objects.



Hans G. Feichtinger

#### Gravitational waves and Wilson bases

Aside from the experimental setup there is a huge signal processing task involved, comparable to the literal "needle in the haystack" problem.

There had been two strategies:

- Searching for 2500 explicitely determined wave-forms;
- Using a family of 14 orthonormal Wilson bases (a variant of Gabor Analysis);

The very **first** was detected by the second strategy, because the masses had been out of the expected range of the predetermined wave-forms.

NEW FINDINGS have been made in April of this year!

https://science.orf.at/stories/2979350/



## A few Relevant References/BOOKS

K. Gröchenig: Foundations of Time-Frequency Analysis, 2001.
H.G. Feichtinger and T. Strohmer: Gabor Analysis, 1998.
H.G. Feichtinger and T. Str.: Advances in Gabor Analysis, 2003.
G. Folland: Harmonic Analysis in Phase Space, 1989.
A. Benyi and K. Okoudjou Modulation Spaces. With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations, 2020.
E. Cordero and L. Rodino Time-frequency Analysis of Operators

and Applications. 2020.

See also www.nuhag.eu/talks or www.nuhag.eu/ETH20 (ETH course by HGFei).

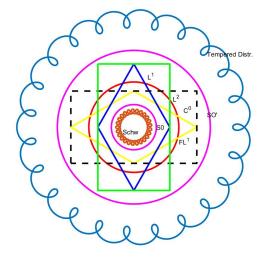


The question of Gabor frames is of interest, when a signal (say some audio signal, or some image, cf. introduction) is to be *decomposed* into meaningful elementary building blocks, somehow like *transcription*. Ideally the distribution of *energy* in the signal goes over into an equivalent energy distribution. AND WHAT can we do with this:

a) contributions may be irrelevant (or disturbing) and can be eliminated (the bird contributing to the open air classical concert): denoising of signals

b) signals can be separated in a TF-situation;

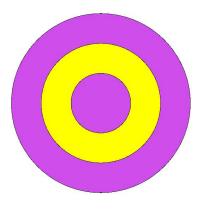
c) unimportant, small contributions can be omitted (+ masking effect): allows for efficient lossy compression schemes >> MP3.


### Further Topics and Outlook

Obviously there is a long list of topics which can be connected with the topic of Fourier and Gabor Analysis:

- Despite the fact that Fourier Analysis is well established mathematically we should change the perspective in teaching it, making it more application oriented, but still mathematically correct.
- Make use of modern tools (media, mathematical Software, like MATLAB or GEOGEBRA) and encourage mathematical experiments, already to high-school students.
- Mathematicians and applied scientists should talk more to each other and explain their work.
- A new, simplified theory of distributions ("mild distributions", based on the Segal algebra S<sub>0</sub>(ℝ<sup>d</sup>)) is on the way.




| History | Mathematical Results | Abstract Harmonic Analysis | FA in Real Life | Gabor Analysis | Concl |
|---------|----------------------|----------------------------|-----------------|----------------|-------|
|         |                      |                            |                 |                | 0000  |



◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ ○ ○ ○ ○

## The Simplified Situation

Feichtinger's algebra  $(S_0(\mathbb{R}^d), \|\cdot\|_{S_0})$ , the Hilbert space  $(L^2(\mathbb{R}^d), \|\cdot\|_2)$  and the space  $(S'_0(\mathbb{R}^d), \|\cdot\|_{S'_0})$  of mild distributions.





## THANK YOU

# Thank you for your attention!!

## More at www.nuhag.eu

Access to the collection of all Talks by HGFei can be obtain by request at hans.feichtinger@univie.ac.at as well as to all of the NuHAG publications.

