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Recall our Basic Courses
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In the analysis courses we teach our students that there are fields
such as rational, real and complex numbers, which allow to do the
usual arithmetics.

Abbildung: Our GOAL: COMPARISON with Q R — C
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Recall our Basic Courses
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Number systems

The field of rational numbers is convenient for exact computations,
for example, for any non-zero ration number p/q # 0 it is clear
that it has a multiplicative inverse which is simply q/p.

The advantage of the real numbers is the completeness, which
implies the existence of expressions such as v/2 or 7. Note that
expression such as 1/+/2 or 1/ are to be taken as SYMBOLS.
The advantage of complex number is the existence of i = /—1
and still having completeness, thus the exponential function is well
defined over C, AND we have Euler's formula

e>™™ = cos(2mx) + isin(2nx), x € R,
and the exponential law:

exp(z1) - exp(z2) = exp(z1 + z2), z1,z2 € C.
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Recall our Basic Courses
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Of course the cyclic group Up of unit roots of order N, of the
(natural) form uy = exp(2mik/N) = wk,

with k =0, ..., N — 1, isomorphic to the additive group Zy := 7Z(
mod NZ).

We can also do linear algebra on CV, but for the purpose of
(discrete) Fourier Analysis (via DFT/FFT) we consider vectors as
functions on Uy, or equivalently as periodic and discrete signals.
Endowed with the usual Euclidean scalar-product we view

CN = £2(Uy) as Hilbert space.

The DFT/FFT can be viewed as a mapping from coefficients of a
polynomial

p(z) = ap + a1z + ayzN T

to the values
[p(wo), p(u1), .-.p(uny )]
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It turns out that (up to the scaling factor \ﬂN) this is a unitary
mapping (realize by a Vandermode matrix).

The FFT (Fast Fourier transform) allows to perform this linear
mapping with O(N)log(N) multiplications (using that U,n consists
of just two copies of Uyn-1), i.e. by recursion. Since it is unitary
the inverse can be done in the same way (up to a flip).

This allows to replace the cumbersome convolution (computation
of the Cauchy-product at coefficient level) by pointwise
multiplication (convolution theorem).

This is one of the main reasons why the FFT is an important tool
for digital signal processing.
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Recall our Basic Courses
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Number theory

Going deeper in the analysis, also helping us to understand why
the (original) FFT algorithms works better for certain integers N
which are rich in divisors (like 360,480, 640, 720, or look up
formats of popular screens, or take the HiFi convention of
44100 = (2-3-5-6)2) we have to see that there is a natural
nested structure for the family of these unit groups:

Uy <Up < N|M  (divisor).
For us the trivial case M = 4N will be of particular interest, which
allows us to build chains of the form

[UN < [U4H < U]_ﬁN < [U64N <...

Identifying [0,1) with U via the mapping x — exp(2mix) we can
identify (starting with N = 1) the functions on Uy with step
functions on [0, 1) which are constant on the partitions
obtained from [0, 1) by continued bisection.
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Abstract Harmonic Analysis
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Abstract Harmonic Analysis

The DFT/FFT can be explained in simple term of linear algebra,
as a change of basis from the basis of ordinary unit vectors

0k(J) = 0xj (Kronecker delta) to the basis of pure frequencies.
These pure frequencies (the columns or rows of the symmetric
DFT matrix!) are the joint eigenvectors of the cyclic shift
operators (and hence of all linear combinations, i.e. exactly of the
cyclic convolution operators). This makes them so useful.
However the historical approach was a different one!

Starting from the theory of Fourier series (1822) important
branches of mathematical analysis have been developed, the
Riemann and Lebesgue integral, LP-spaces, Functional Analysis
and finally distribution theory (>> PDEs, Hormander).
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Abbildung: Illustration of pure frequencies
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Abstract Harmonic Analysis
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Abstract Harmonic Analysis: AHA

Given a LCA (locally compact Abelian) group G we consider the
dual group, i.e. all the characters of this group, i.e. the group
homomorphism from G into the (multiplicative) group

U = {z||z| = 1} (the torus group). They form the dual group
(with respect to pointwise multiplication).

The classical cases are the following elementary groups:

© The torus group itself U, with characters of the form z — zk,
for a uniquely determined k € Z, or U ~ Z.

@ The integer group (Z,+) with k > exp(2misk) for a uniquely
determined s € [0,1) (in fact: Z ~ U).

© The real line (R, +), which is self-dual (! R ~ R), via

Xs(t) = exp(2mis - t), seR.
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Elementary LCA groups

Using the structure theory for LCA groups one can extend
concepts of AHA to general LCA, using the existence of an
invariant Haar measure, the Banach convolution algebra
(Ll(G), |-][1), find a Fourier transform, satisfying the
Riemann-Lebesgue Lemma, i.e. with

F(LY(G)) = Co(G), with |[fllec < [If]1-

For elementary groups one can use product constructions:

@ The dual group of a direct product is the product of dual
groups (thus characters of R? are plane waves etc.;

@ Any finite Abelian group is a product of finite cyclic groups;
© Elementary LCA groups are of the form

G=RYxU*x2Z"x D.
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Engineering terminology

In the world of engineering these settings are described by the
classifications of “signals” as

o DISCRETE or CONTINUOUS
o PERIODIC or NON-PERIODIC
o FINITE: periodic and discrete
See for example [call]
G. Cariolaro. Unified Signal Theory.
Springer, London, 2011. He refers to books of Abstract Harmonic

Analysis (Loomis, Rudin) in content and presentation.
Connections are discussed e.g. by Jens Fischer in [fil8]

J. Fischer. Four particular cases of the Fourier transform.
Mathematics, 12(6):335, 2018.
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Technical difficulties of Classical Fourier Analysis

A first step towards a FA view-point was the introduction of the
Lebesgue integral, thus e.g. (LYRY), ||-||1), later (LP(R9), ||-|»)
for 1 < p < co. We do not have functions anymore, but
equivalence classes of measurable functions. Moreover, even in the
classical setting we may see divergence of the partial sums of the
Fourier series at every point (by Kolmogorov) for some functions in
L'(U). On the other hand summability theory (Fejer, Riesz etc.)
was developed in order to overcome such problems with (what was
thought to be “natural”) pointwise convergence almost
everywhere.

Moreover, the building blocks, the characters xys do NOT belong
to the Hilbert space L2(R9), thus it is hard to view them as
eigenvectors for the (still unitary!) FT (Plancherel’'s Theorem).
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Practical Issues

Although there is a “natural Fourier transform” for each such
group there are many practical shortcomings:

@ Given two periodic functions with incompatible periods, their
some is not periodic anymore (such cases are still covered by
the theory of almost periodic functions);

e Often signals are only locally periodic (vowels) or have varying
periodicity (like heart-beat);

@ In the theory of translation invariant systems one cannot
describe such a TILS as a convolution operator (with impulse

response) or ans a Fourier multiplier (with transfer function)
in an equivalent way.
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A Zoo of Banach Spaces for Fourier Analysis
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Time-Frequency Analysis

To some extent time-frequency analysis tries to overcome some of
these difficulties, e.g. by taking Fourier transforms only locally, via
the so-called Sliding-Window (or Short-Time) Fourier transform.
Very much like a musician analyzes the change of the sound and
the energy distributions of a given instrument as something which
changes over time. So to say a “mathematical score”, given the
recorded sound.

The procedure consists in a sliding window (which has smooth and
vanishing at the boundaries of its support) which localizes the
given signal (function, or distribution) and then a Fourier
transform is taken (usually plotted in the vertical direction), thus
producing a function of time (x-axis) and frequency (y-axis). The
natural parameters are in RY x I@d, the so-called phase space.
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A Musical STFT: Brahms, Cello
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The Banach Gelfand Triple
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Banach Gelfand Triples appear to be the correct structure in order
to imitate situations like those encountered by the inclusion of the
number systems Q C R C C.

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space

Abbildung: Three layers




The Banach Gelfand Triple
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The “inner layer” is where the actual computations are done, the
focus in mathematical analysis is all to often with the (yellow)
Hilbert spaces (taking the role of R, more complete with respect to
a scalar product, more symmetric, because it allows to be identify
the dual, via the Riesz representation Theorem, very much like
matrix theory is working, with row and column vectors), and the
outside world where things sometimes can be explained, and with
completeness in an even more general sense (distributional
convergence). In other words, we do not assume anymore that
on(f) is convergent for all f € H (the completion of the test
functions in #), but only for elements f in the core space!

What we are going to suggest/present is the Banach Gelfand Triple

(507 L2¢ Sé)(Rd)

consisting of Feichtinger's algebra (So(R9), || - ||s, ). the Hilbert
space (Lz(Rd), |- ||2) and the dual space (Sg(R9), || - lls;),
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The Banach Gelfand Triple
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known as space of mild distributions. Note that these spaces can
be defined without great difficulties on any LCA group G and that
it satisfies many desirable functorial properties, see the early work
of V. Losert (1083-1 :[10]).

For RY the most elegant way (which is describe in gr01 :[7] or
jal8 :[8]) is to define it by the integrability (actually in the sense
of an infinite Riemann integral over R?? if you want) of the STFT

ValF)(xy) = [ Fely = x)e >y
and the corresponding norm
Ifllss = |, Ve )y < .
R2d

From a practical point of view one can argue that one has the
following list of good properties of So(RY).

Hans G. Feichtinger




The Banach Gelfand Triple
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Theorem

0 S(RY) = (W(Co, £)(RY), |- lw) = LYRY) N Co(RY);
Q@ F(S(RY)) = So(RY) (isometrically);

© Isometrically invariant under TF-shifts
Ie()lls, = IMs Teflls, = IFllsy W(z,s) € RY x RY.

Q (So(RY), |- |ls,) is an essential double module
(convolution and multiplication)

L(RY) * S(R) C So(R)  FLI(R?) - So(R7) C Sp(RY),

in fact a Banach ideal and hence a double Banach algebra.
@ Tensor product property So(R¥)&So(RY) ~ So(R?) which
implies the Kernel Theorem.
@ Restriction property: For H<1 G: Ry(So(G)) = So(H).

Hans G. Feichtinger




The Banach Gelfand Triple
oe

Q (So(RY),||-||s,) has various equivalent descriptions, e.g.

o as Wiener amalgam space W (FL', £')(R9);
e via atomic decompositions of the form

f= ZC;W()\,')g with (C;),’e/ € El(/).

iel

@ (So(RY),||-|s) is invariant under group automorphism;

© (So(RY),[|-|ls,) is invariant under the metaplectic group, and
thus under the Fractional Fourier transform as well as the
multiplication with chirp signals: t + exp(—iat?), for a > 0.

In addition (So(R7), |- |s,) is quite universally useful in Classical
Fourier Analysis and of course for Time-Frequency Analysis and
Gabor Analysis, and as | am going to show also for QHA:
Quantum Harmonic Analysis. In short, it is easier to handle than
the Schwartz-Bruhat space or even the Schwartz space S(RY),
and since S(R?) — (S(RY), || - ||s,) it is (much) bigger.

Hans G. Feichtinger




By definition a mild distribution is a tempered distribution which
has a bounded STFT. The norm on (S5(R9), || - |s;) as a dual
space is equivalent to the sup-norm of Vo (over phase space) (for
any fixed, non-zero window g from So(R9) (e.g. from the Schwartz
space S(RY)).

We also need w*-convergence of mild distributions, which
corresponds to uniform convergence over compact subsets of phase
space (or just pointwise convergence, for bounded families).

A CD-record provides such a finite-dimensional approximation of a
piece of music, for the duration of the song and up to 20kHz, up
to minor quantization errors.

Note that there is also a sequential (Lighthill style) approach to
mild distributions!
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Members of the dual space

o First of all ordinary functions (e.g. from (Lp(Rd), 1-115))
define such mild distributions, because
So(RY) < L1 N Cy(RY), so called regular distributions:

ow(f)= | f()k(x)dx, f € S(RY).
Rd
o Dirac measures (point evaluations) belong to S§(R?), with
dx(f) = f(x), also Dirac combs over lattices:

LLIACF) == > 6a(F) = F(N).
YN
@ In fact A could be any discrete set with minimal distance
(or finite unions of such sets), appearing in sampling theory
(as relatively separated sets A.
@ The Haar measure of a subgroup H, applied to the restriction
of f € S(RY) to H.
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Theorem

Q F(S,(RY)) = S{(RY) via 5(f) := o(f), f € S}

Q Identification of TLIS: Hg(So, S§) ~ S{(G)
(as convolutions of the form ) T(f) = o % f;

© Kernel Theorem: B := L(Sy, S§) ~ S§(R?9)
Inner Kernel Theorem reads: L£(S}, So) ~ So(IR?9).

@Q Regularization via product-convolution or convolution-product
operators: (S} * So) - So € So, (S} S0) * So € So

© The finite, discrete measures or trig. pols. are w*—dense.

QO HG — So(H) — So(G) via ty(o)(f) = o(Ruf), f € So(G).
Moreover the range characterizes {T € Sy(G) | supp(7) C H}.

Hans G. Feichtinger



Theorem
O (Sy(RY). |- lls) = (M>¥(RY), |- | m=), with V(o) and
lolls; = I Ve(o)lloo, hence norm convergence corresponds to

uniform convergence on pahse space. Also w*—convergence is
uniform convergence over compact subsets of phase space.
@ (SR [l lls) = (LPRT), || - lp) = (So(RY), || -Il).
with density for 1 < p < oo, and w*—density in Sj. Hence,
facts valid for Sy can be extended to S§ via w*—limits.
© Periodic elements (Tho = o, h € H) correspond exactly to
those with T = F (o) having supp(7) C H*.
Q The (unique) spreading representation
T = [po,ge F)TNAA, F € $(RY x RY) for T € B
extends to the isomorphism T < n(T) n: B~ L(So, S}),
uniquely determined by the correspondence with
n(m(\) = 6x, A € RY x RY.

Hans G. Feichtinger



Some conventions

Scalarproduct in HS:
(T,S)ys = trace(T = S*)
In feko98 :[5] the notation
aAN(T) =[r@m*W](T) =7\ o Tor(N)*, AeR?xRY,
and the covariance of the KNS-symbol is decisive:

o(r@m*(A)NT)) = Ta(o(T)), T € L(S,S),reR? xR

Hans G. Feichtinger



Periodization and sampling

The context of mild distributions allows to discuss periodic
functions of (!) different periods within one setting (without
normalizing the period), and the concept of w*—convergence
allows to give the heuristic derivation of the continuous Fourier
transform and its inverse, from the theory of Fourier series. Thus
providing the classical integral formulas

f(s) :/ f(t)-e >=tdt t,seR? (1)
Rd
The inverse Fourier transform then has the form

F(t) = /R ) d )

Hans G. Feichtinger



Sampling and Periodization

The setting does not only provide the possibility of defining the
Fourier transform of a Dirac comb, in fact, the integer Dirac comb
L zd = Y xeza Ok is invariant under the Fourier Transform, as a
consequence (in fact equivalent reformulation) of

Poisson’s Formula : Z f(k) = Z f(n), Vf € So(RY). (3)

kezd nezd

Combined with the Convolution Theorem, claiming that
multiplication on the “time side” corresponds to convolution at the
frequency side (and vice versa!) we come to a mathematical
justification of the claim that sampling on the time side
corresponds to periodization of the Fourier spectrum.

Hans G. Feichtinger



SIGNAL 1 (unitary) FFT-1
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SIGNAL 1

(unitary) FFT-1
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Abbildung: A low pass signal, with spectrogram
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doubling period and sampling rate
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Abbildung: Adding the red values: period is twice as long and the
sampling rate is twice as big, i.e. two time the new step-width is
the original (blue) one.

Hans G. Feichtinger



Functions on Z, versus Z, |

It is a harmless but important observation that the squares of the
elements of Z, (rotation by multiplies of 27r/n) are just the
elements of Z, > (only for n is even!), repeated twice.

Thus for us the operator which replaces a given function (or
matrix) by its 2-periodic and 2-sampled version will be of big
relevance. Also, since all the information comes twice (for matrices
in both the world of column AND the world of rows) we have to
understand how to extract properly the subsequence of indices
“most representative” for such a reduction (turning vectors of
length n into vectors of length n/2) or just of length 2n into
vectors of length n and matrices of size 2n x 2n into matrices of
size n, in a compatible way.

We will illustrate this by some plots and also verify that this
procedure is well compatible with many of the representations

of functions of operators.
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Functions on Z, versus Z,, |l

As a basic example let us take a function with small support, then
produce its p-periodic version, and then sample at the rate of 1/p,
p € N. Then you will find that the “representing sequence” of the
Fourier version of such a function, treated in the same way, will be
just (suitable normalized) the FFT of the finite vector (of length
p?, of course) of the vector in o/a representing the discrete and
periodic signal on R.
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squares of unit roo1t1s of order 16
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sampling and periodization by a factor of 2 each
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Abbildung: The reduction from the original curves (in blue) to the
red curve is by sampling. Since every second value is zero the
graph looks filles, plus periodic repetition.




original spectrogram action of persamp on extension
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Abbildung: The picture in the STFT domain. Actually, it is the
(twisted) convolution with a 2D Dirac comb with 4 points,
so it is a 2D-periodization of the spectrogram.
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symmetric sampling, enginering style
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Abbildung: Naive versus correct (group theoretical) sampling. There
is natural behavior with respect to refinement of the sampling and taking
multiples of the period




Fourier matrices of order 9 (red) and 18 (blue)
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Abbildung: Overlay: fft(eye(9)) (red) over fft(eye(18)) (blue)’
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matrix i 2-di i ing, n > n/4

25 -20 -15 -10 5 0 5 10 15 20 25
number of points: 144

Abbildung: Subsampling from a matrix, using a QUARTER of each
row and column, reducing the number of entries by the factor 16.




Structure perservig operations

We summarize the situation in the finite/discrete case:

@ Many of the relevant operation on functions on phase space,
or RY x R? or Z,, x Z, are highly compatible with the
reduction steps announced;

@ In particular the DFT/FFT of a periodized and sampled
version can be obtained via the corresponding FFT;

@ The mapping from functions on Z;, to functions on Z, is a
homomorphism of algebras, for both the pointwise (obvious)
and thanks to the FFT-observation also (circular) convolution
(up to rescaling)!

@ It is also complatible with the shear-operator (first step
towards Kohn-Nirenberg), and the spreading representaton;

@ As a special case (!flat tori) the STFT is compatible
with the reduction step.
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Next we start to discuss the approximation of functions from the
samples of a peridiozed and sampled version of a given function in
(So(R9), || - ||s,)- The established results use quasi-interpolation
operators arising from certain BUPUs (bounded in the Fourier
algebra, like the sequence of B-splines of order 2 and higher).
These are qualitative results and may not provide optimal speed of
recovery, BUT they apply to all functions in (So(R?), | -||s,)-

Let us first give an explanation for the case d = 1, i.e. for the real
line, where all the discrete (cocompact) subgroups A <R are of the
form A = aZ, for some o > 0.

Hans G. Feichtinger



Definition

We call a sequence of pairs (cu, Bk)k>1 with dx = Bx/ax € N
exhausting if they satisfy

limae =0 and lim B = 00
k—o0 k— o0

@ A natural, bounded sequence of operators SPy from
(So(®). |- I5,) to (S5(R). |- ls;) is then given by sampling

combined with periodization:
(f) == aklly, - (f xLLg,) = [oklln, - ] * LLig,

@ There exists a sequence of operators Ry with

((F)) — flls, = 0.

lim ||
k—o0
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Note: it is plausible that the sequence (f) contains all the required
information about f because one has for k — oo:

w=lim ooy, =1 and  w™lim g, fLLIG = do,
so that one has in fact for any f € Sy(R9):

f=(f1)%d0=w"limyoo(f) = (f*xdp)- 1.

Lemma

It is clear that each of the periodic discrete signals which are in the
range of can be viewed as an element of the cyclic group

Gk = Zg,, k > 1 of order di.. Moreover the Fourier transform in the
Si-sense of these discrete periodic functions corresponds to the
DFT/FFT on the corresponding finite group G.

Hans G. Feichtinger



Written in formulas (and ignoring the explicit formulation of the
isomorphism, even if one has to be careful in practice) this means,
let us assume for simplicity that ax = 1/5k, with S € N tending
to infinity, like Bx = 2k:

~

(f) = ((£))- (4)

The approximation result of a joint paper with N. Kaiblinger
(fekaO7 :[4], then gives:

Theorem

If = ((F)lls, =0, Vf € So(RY).

lim
k—o00

For the computation of dual FTs and dual Gabor atoms this
has been used by N. Kaiblinger in ka05 :[9].
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Recipes for transfer

The question addressed here is the transfer between insight (e.g.
MATLAB simulations) in the finite-discrete case and related
continuous problems:

@ By taking the AHA view-point one can expect that replacing
sums by integrals and the FFT by the continuous Fourier
transform will give an heuristic starting point.

@ At the level of B (inner kernel theorem) this is actually true
for all the cases discussed in this paper

© Showing unitarity one can extend to the HS level

@ By duality or a sequential approach to mild distributions one
can extend it to the outer layer.

© NEW: one can expect to get for the “inner case” good
numerical evidence by applying the above SP-principles.

Hans G. Feichtinger
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It is a simple consequence of the Hilbert-Schmidt kernel theorem
and the characterization of FL'(R9) as L?(R9) x L?(R9) which
gives the following factorization theorem:

Theorem

HSxopHS = FLY(R?9).
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Theorem

For any pair of operators T1, T2 in L(w*S{, Sp) we have
F = Tixop T2 € So(R*), with |Flls, < Cl|T{ |5 || T35

but the finite linear combinations of such functions do not exhaust
all of So(R??). On the other hand there exists a constant C; > 0
(depending in the choices of norms on the different spaces) such
that one can find for every F € So(R??) two sequences of
operators (T{)n>1 and (TJ)n>1 such that

S ITIs1TEls < GliFls, and F= S T{+op T3.

n=—0o0 n=—0o0
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In the discussion of Gabor frame operators one has to consider the
Gabor frame-operator

SgA = Z Py, = Zﬂ' ® (AP,
AEA AEA

In the QHA context this can be written as convolution of the mild
distribution LLIA with the rank-one operator Pg: S, n = LLIA x Pg.
According to the FT-rules (symplectic Fourier transform for us)
this means (see feko98 :[5]!) that

Fw(Sgn) = (CAllipe - n(Pg) = Cr Y Vi(g)(A°)oxe
A°eNe
or taking the (inverse) symplectic FT we get
Sgn = Ca Z Vi( m(A%). Janssen representation.

ACEN°
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Since V;(g)(0,0) = (,g,7(0,0)g),2 = g2 = 1 for normalized
windows this gives access to the invertibility S, o (Gabor frame
property) if 3 \ocne rozo |Ve(8)(A7)] < 1.

Double preconditioning provides methods to reach this status
within the algebra of A-invariant operators.

For the case that A° <1 A this lattice is a commutative lattice and
Zak transform (Gelfand transform) methods apply. For d = 1 this
corresponds to the case of integer redundancy (see Gestur).
Since V,(g) € So(R??) for g € So(RY) this corresponds to the
well-known principle that periodization of a function corresponds
to sampling on the Fourier side. E.g. every periodic function in

h € (A(T), || - ||a) is the Z periodization of some function in

f € S(R) and the Fourier coefficients of h are just the

o~

samples (f(n))nez, or h(t) =3,z F(n)e271'int‘
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CLAIM 1: At the level of functions, signals, distributions and
even for the analysis of operators (via their kernels) the world of

mild distributions, i.e. members of S{(RY) or M>(R9)
appears to be the suitable framework, not only for time-frequency
analysis, but also for many questions of classical Fourier analysis
and engineering applications. Mild distributions are so-to-say the
signals which can be measured, e.g. the sound recorded by a
microphone. There are no point values of such signals (e.g. the
Dirac measure), but they all have a (bounded) spectrogram,
obtained by measuring the impact on a translated and modulated
Gauss-function, providing the “average” TF-content of the signal
at time t and frequency w, displayed as |Vgo(t,w)| as a function
over phase phase R? x RY. The allowed profiles are the members
of the Feichtinger algebra (So(R?), | - [|s,)-
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CLAIM 2: The environment of Sj(IR?) (or more generally
(So(G), |l -Ils). for LCA groups) allows to deal not only with

functions which decay (like LYR9), L>(R9)), but also with periodic
or discrete ones (measures, weighted Dirac combs). All of them
have a Fourier transform and the concept of w*—convergence
(locally uniform convergence of STFTs over compact subsets of
phase space) is the appropriate concept of convergence. It includes
Fourier transforms for almost periodic functions or
translation-bounded measures as they arise in quasi-crystallography.
It can be used to turn heuristic derivations of one of the Fourier
transforms to another one (e.g. discrete FT from continuous, or
even continuous FT from FFT) into mathematically correct
arguments. As Jens Fischer has formulated it (and of course
this is known since Laurent Schwartz):

There is only one Fourier Transform!
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Sampling, periodization, Shannon's sampling Theorem (at the basis
of modern mobile communication) and many other engineering
questions can be formulated properly. Finally the “sifting property”
of the Dirac Delta, or the view on (dx)xerr as a family of “unit
vectors” (as done in physics) can be given a precise meaning.
CLAIM 3: The so-called Banach Gelfand Triple (So, L2 S})(R9),
which consists of the three spaces

(So(RY), [l lls,) == (L2(RY), [I-1|2) = (Sp(RY), - Il s;)
can be used very much in the spirit of the triple of numbers

QcRcC.
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At the level of So(R) all the integrals exists, Fourier (!) inversion
works well (just using Riemann integrals), Poisson's formula is
valid and much more. As in linear algebra one has a representation
of linear operators, now from (So(R9), ]| - ||s,) to (S5(RY), | - Is7),
by means of a “continuous matrix’ K € S(R?9). The outer level
gives the most freedom and explanations, e.g. telling us that the
FT maps pure frequencies into corresponding Dirac Deltas.
There are also rules how to move within the BGT, e.g. by
regularizing a mild distribution. By analogy (integrals correspond
to sums, etc.) we have a very natural transfer from one setting to
the other (and computational implementation).
CLAIM 4:

Structure preserving approximation allows numerical work!
Finally we can go to the finite, or better discrete and periodic
setting (isomorphic!!), where actual computations take place.
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The FFT implements the (generalized) Fourier transform of
periodic and discrete signals (linear combinations of Dirac combs
of lattices in RY) exactly!

The key result here is the fact, that (Sp(R), |- ||s,) has the
property, that its members f € Sy(R?) can be reconstructed from
the samples of a periodized version of f, e.g. by local
reconstruction using piecewise linear interpolation (not step
function!) or quasi-interpolation using cubic B-splines (say).

In the TF-picture this corresponds to the availability of more

and more information so that larger and larger pieces of the
spectrogram can be well recovered (in (S(R?), || |s))-

A nested structure of finite Abelian groups arising as quotients of
fine over coarse lattices can then be used to form structure
preserving approximations of many problems in Fourier analysis.
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For real functions this means essentially that one has finer and
finer sampling over longer and longer intervals. The situation is
particular easy for sampling at rate 1/p, where p € N is the period.
In such a case the operator of periodization and sampling commute
with the Fourier transform. The transition from p to 4p has a very
natural interpretation (double the period and the sampling rate!).

There is a LONG LIST of expressions which can be treated in this
way: Starting from a unitary Banach Gelfand Triple isomorphism
(such as the FT) one comes up with a discrete analogue and a
clear concept of validated transition between the two worlds:
STFT, KNS-symbol, spreading function, Wigner distribution,
Gabor expansion, dual Gabor atoms and so on.

Hans G. Feichtinger



THANKS to the audience

THANKS vyou for your attention

maybe you visit www.nuhag.eu
and checkout other talks and related material.
(password protected!) hgfei
My last course is found at www.nuhag.eu/ETH
www.nuhag.eu/bibtex: all papers
www.nuhag.eu/talks: many talks on related subjects
NOTE: Talks require access code:
“visitor” and “nubhagtalks”

Hans G. Feichtinger



Selected References |

@ E. Cordero, H. G. Feichtinger, and F. Luef.

Banach Gelfand triples for Gabor analysis.
In Pseudo-differential Operators, volume 1949 of Lect. Notes Math., pages 1-33. Springer, Berlin, 2008.

@ H. G. Feichtinger.
Thoughts on Numerical and Conceptual Harmonic Analysis.
In A. Aldroubi, C. Cabrelli, S. Jaffard, and U. Molter, editors, New Trends in Applied Harmonic Analysis.
Sparse Representations, Compressed Sensing, and Multifractal Analysis, Applied and Numerical Harmonic
Analysis, pages 301-329. Birkhduser, Cham, 2016

@ H. G. Feichtinger.

A novel mathematical approach to the theory of translation invariant linear systems.

In I. Pesenson, Q. Le Gia, A. Mayeli, H. Mhaskar, and D. Zhou, editors, Recent Applications of Harmonic
Analysis to Function Spaces, Differential Equations, and Data Science., Applied and Numerical Harmonic
Analysis., pages 483-516. Birkhduser, Cham, 2017

@ H. G. Feichtinger and N. Kaiblinger.
Quasi-interpolation in the Fourier algebra.
J. Approx. Theory, 144(1):103-118, 2007
H. G. Feichtinger and W. Kozek.

Quantization of TF lattice-invariant operators on elementary LCA groups.
In H. G. Feichtinger and T. Strohmer, editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal.,
pages 233-266. Birkhduser, Boston, MA, 1998

@ H. G. Feichtinger, W. Kozek, and F. Luef.

Gabor Analysis over finite Abelian groups.
Appl. Comput. Harmon. Anal., 26(2):230-248, 2009

Hans G. Fei




Selected References Il

[
[
[
[

K. Gréchenig.

Foundations of Time-Frequency Analysis.
Appl. Numer. Harmon. Anal. Birkhauser, Boston, MA, 2001

M. S. Jakobsen.

On a (no longer) New Segal Algebra: a review of the Feichtinger algebra.
J. Fourier Anal. Appl., 24(6):1579-1660, 2018

N. Kaiblinger.

Approximation of the Fourier transform and the dual Gabor window.
J. Fourier Anal. Appl., 11(1):25-42, 2005.

V. Losert.

Segal algebras with functorial properties.
Monatsh. Math., 96:209-231, 1983.




	STARTing
	Recall our Basic Courses
	Abstract Harmonic Analysis
	Time-Frequency Analysis
	The Banach Gelfand Triple
	Mild distributions
	Properties of the dual space
	Sampling and periodization
	The hierarchy of finite groups
	Structure preserving operations
	Approximating the continuous case
	Recipes for transfer
	References
	Factorization results
	Periodization of operators
	Summary
	THANKS

