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Introduction for talk 20.06.2024, 14:30 HGFei I

Wiener Amalgam Spaces are an extremely useful and versatile
tool, especially for Fourier Analysis, Time-Frequency Analysis and
Gabor Analysis. Although developed already 45 years ago they
have not found the attention which they might deserve, as a tool
which allows to describe local and global properties of a function
or distribution better than the usual Lp-spaces.
It is the purpose of this talk to demonstrate that they are easy to
understand and easy to use, given a few basic principles. Their
study paved the way to modulation spaces, which are nowadays an
important family of function spaces.
From the many application areas where they turn out to be useful
we choose those which are connected with Fourier or Gabor
Analysis, also in the wider context of Coorbit Theory.
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OUTLINE I

Gabor Analysis goes back to the claim of D. Gabor in his famous
1946 paper: Every function has a unique representation as a
double series, with building blocks (Gabor atoms) begin TF-shifted
Gaussians (vague citation!).

1 Gabor Analysis in the finite setting (Linear Algebra)

2 Gabor Analysis in the continuous setting

3 Functional Analytic Foundations

4 Wiener Amalgam Spaces and BUPUs (quick review)

5 Wiener Amalgams and Gabor Analysis

6 State of the Art of Gabor Analysis (outlook)

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

Gabor Analysis using MATLAB I

In this finite-dimensional setting we have cyclic shifts, a DFT/FFT
(we choose the unitary version), and a cyclic rotation on the
Fourier transform side, which corresponds to a pointwise
multiplication by a “character” or “pure frequency”, which is just
one of the rows (or columns) of the DFT matrix.
Note that there are N cyclic shift operators Tk , 0 ≤ k ≤ N − 1,
and the same number of modulation operators Mn = F−1 ◦Tn ◦ F ,
and thus N2 TF-shifts (time-frequency shifts) π(k , n) = MnTk .
In fact, they form an orthonormal basis for the space of N × N
matrices, called the spreading representation, using the Frobenius
scalar product for matrices (Hilbert Schmidt norm), given by

A =
1

N

∑
n,k

trace(A ◦ π(n, k)∗)π(n, k).
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Gabor Analysis using MATLAB II

Recall that one has

〈A,B〉HS =
∑
k,n

an,kbn,k = trace(A ∗ B∗).

In other words one uses the Euclidean structure (like pixel images)
here, or the Frobenius/Hilbert-Schmidt norm.

Gabor families are obtained by choosing for vector g ∈ CN and
applying a finite set of TF-shifts. Such a Gabor family is a Gabor
frame if it is a generating family for CN , and a Gabor Riesz
sequence if it is linear independent. Our main interest is in Gabor
frames with low redundancy, i.e. using M ≥ N vectors only
and thus red = M/N ≥ 1 (red = 1 is critical density).
For the so-called regular Gabor case one just ask, whether a
Gabor family is a generating system for CN , where
the parameter set is a subgroup Λ C ZN × ZN .
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Gabor Analysis using MATLAB III

Gabor Analysis in the finite ZN , the cyclic group of order N ∈ N, is
reducing the (functional analytic) problems arising in the
continuous context (Euclidean context, for Rd) context. Point
evaluations are obtained using unit vectors and there is no need for
infinite series (with potential convergence problems). In this way
the algebraic structure becomes clear: [fekolu09]. We determine
the subgroups of ZN × ZN (this depends on the number of
different divisors of N, e.g. N = 480) and so on.
On the other hand it is a special chapter of Linear Algebra. It tells
us that the Gabor frame question just means (putting the vectors
into a matrix) whether they form a generating system for CN , or
alternatively (using the so-called adjoint group), whether they
form a linear independent family, which in turn is equivalent
to the invertibility of their Gram matrix (Wexler-Raz condition).
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The ideas of D. Gabor from 1946

When one moves to the continuous setting many questions arise.
When D. Gabor suggested in 1946 that “every function” has a
signal expansion as a double series (with hopefully uniquely
determined coefficients) using time-frequency shifted Gaussians
(along the integer lattice), many natural questions have not even
been formulated. In fact, until around 1980 his approach was
mostly ignored by mathematicians, and Gabor Analysis as we call
it now started in the 80th of the last century.
For a more precise formulation let us recall the key players:
We need time-frequency shifts π(t, s) = MsTt , and the Gauss
function g0(t) = e−π|t|

2
(adjusted to our FT convention, with

F(g0) = g0).
D. Gabor has good arguments for choice of the Gauss function
(Heisenberg uncertainty), and to suggest a = 1 = b as lattice
constants in the TF-plane (short verbal explanation).
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A list of Gabor related questions

The first questions concern the coefficients. How can we establish
a rule for the coefficients, in analogy to Fourier expansions. Note
that we have a double series (so summability methods might help).

How can they be obtained and are they unique?

For which functions do they make sense? H = L
2(R)?

What about convergence, note the non-orthogonality!

In retrospect one might think that Gabor was hoping the the
system he has suggested could be a Riesz basis (non-orthogonal,
but stable basis) in the Hilbert space

(
L

2(Rd), ‖ · ‖2

)
.

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

Let us start with the Hilbert space I

It is natural to start the discussion with
(
L

2(Rd), ‖ · ‖2

)
, which is a

separable Hilbert space with respect to the usual scalar product

〈f , g〉
L

2(Rd ) :=

∫
Rd

f (t)g(t) dt f , g ∈ L2(Rd).

The hope is to establish an expansion of the form

f =
∑

(k,n)∈Z2

〈f , gk,n〉L2hk,n, f ∈ L2(Rd),

for suitable functions g , h ∈ L2(Rd) and gk,n = MnTkg (similarly
hk,n), with (unconditional norm convergence in

(
L

2(Rd), ‖ · ‖2

)
),

ideally with g = h (constituting a tight Gabor frame).
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Let us start with the Hilbert space II

In other words, one can hope for a Riesz basis for the Hilbert space(
L

2(Rd), ‖ · ‖2

)
, of Gaborian type. Then the biorthogonal Riesz

basis has to be also of the same form, and the roles of g and h can
be interchanged.
In fact, this is not impossible, one can take as g the indicator
function of the cube [0, 1)d ⊂ Rd and obtains an orthogonal
system by expanding the restrictions of f to each of the cubes
k + [0, 1)d , k ∈ Zd , into a d-dimensional Fourier series, but this is
not in the sense of Gabor, because the Fourier transform of χ[0,1)d

is not integrable, i.e. has pure decay. It is in fact a tensor product
of SINC-functions (which do not belong to L1(Rd)).
BUT one can show (this is known as the Balian-Low Principle)
that one cannot choose such a function in S(Rd), not even in
S0(Rd) (the corresponding function would be in S0(Rd) as
well and this creates a contradiction to Balian-Low).
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Let us start with the Hilbert space III

KEYPLAYERS of TF-ANALYSIS: TF-shifts and the STFT
Let us recall two basic facts from “continuous” TF-analysis:
The TF-shifts are unitary operators on the Hilbert space
H =

(
L

2(Rd), ‖ · ‖2

)
. Their composition law (with phase factors

showing up) implies that λ = (t, s) 7→ π(λ) = MsTt is a strongly
continuous projective representation of phase space Rd × R̂d on H.
Thus for functions f , g ∈

(
L

2(Rd), ‖ · ‖2

)
the STFT, given by

Vg f (λ) = 〈f , π(λ)g〉
L

2 , λ ∈ Rd × R̂d

defines a bounded continuous function in C0(R2d).
For normalized g with ‖g‖2 = 1 it defines even an isometric
embedding of

(
L

2(Rd), ‖ · ‖2

)
into

(
L

2(R2d), ‖ · ‖2

)
(Moyal).
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Let us start with the Hilbert space IV

So it seems that we do not need an admissibility condition, and in
fact the adjoint defines the inverse on the range. It is of the form

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)gdλ, F ∈ L2(R2d),

thus implying a representation of f ∈ L2(Rd) “in the weak sense”

f =

∫
Rd×R̂d

Vg f (λ)π(λ)gdλ =

∫
Rd×R̂d

〈f , gλ〉gλdλ,

showing analogy to the Fourier inversion formula for f , f̂ ∈ L1(Rd)

f (t) =

∫
R̂d

f̂ (s)χs(t)ds =

[∫
R̂d

〈f , χs〉χsds ](t).

In contrast, χs /∈ L2(Rd) (hence also no Riemannian sum).
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Bessel Condition for Gabor families I

We will restrict our discussion here to the regular case (irregular
means: no group structure involved).
The expected expansion using Gabor atoms requires first to study
for fixed g ∈ L2(Rd) the coefficient (or analysis) mapping

f 7→ (Vg f (λ))λ∈Λ

which is said to be a Bessel family if it is bounded from(
L

2(Rd), ‖ · ‖2

)
to (`2(Λ), ‖ · ‖`2(Λ)). Obviously this is the case if

and only if the adjoint mapping is bounded, which is the so-called
synthesis mapping

(cλ)λ∈Λ 7→
∑
λ∈Λ

cλπ(λ)g .

The frame operator Sg ,Λ is the composition of these two.
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Bessel Condition for Gabor families II

It is one of the fundamental insights of frame theory (which was
greatly influenced by Gabor analysis, because there are not
Gaborian orthonormal bases, unlike the wavelet case!) is the fact
that one “just has to verify the invertibility” (on H) of the frame
operator in order to come up with a representation based on the
simple identities Id = S−1

g ,Λ ◦ Sg ,Λ = Sg ,Λ ◦ S−1
g ,Λ, which can be

rewritten as (using Λ as index set)

f =
∑
λ∈Λ

〈f , gλ〉g̃λ =
∑
λ∈Λ

〈f , g̃λ〉gλ, f ∈ H, (1)

with unconditional convergence in H. For the regular case
one has g̃λ = π(λ)(g̃) = g̃λ with g̃ = S−1

g ,Λ(g), or Sg ,Λ(g̃) = g .
g̃ is called the dual Gabor window (given the pair (g ,Λ)).
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Classical Wiener Amalgam Spaces I

For the Euclidean case the classical Wiener amalgam (originally
Wiener-type) spaces are defined making use of a decomposition of
a given locally integrable function along shifts of a fundamental
domain for a lattice Λ along that lattice. For Λ = aZd with a > 0
this means that up to dilation (choice of a = 1) one restricts
f ∈ L1

loc (Rd) to the cubes Qk = k + [0, 1]d .
Given any solid BF-space (B, ‖ · ‖B) (nowadays called ball function
space, of Banach function space) one obtains a sequence of finite
norms for fk = f · 1Qk

, and thus defines a function space by
applying a sequence space norm (over Λ) to the (non-negative)
“sequence” (‖fk‖B)λ∈Λ.
For Λ = ZC R, (B, ‖ · ‖B) =

(
L
p(R), ‖ · ‖p

)
and sequence

space norms
(
`q, ‖ · ‖q

)
one obtains the classical spaces already

used by Wiener (e.g. p = 2, q = 1), written as `2(L1)(R).
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Classical Wiener Amalgam Spaces II

Recalling the concept of solid BF-spaces:
A Banach space (B, ‖ · ‖B) contained in L1

loc (Rd) is called a
BF-space if convergence in (B, ‖ · ‖B) implies L1-convergence over
compact subsets Q ⊂ Rd , i.e., for any compact set Q ⊂ Rd there
exists a constant CQ such that∫

Q
|f (x)|dx = ‖f · 1Q‖1 ≤ CQ‖f ‖B , f ∈ B.

It is called solid if it satisfies for any f ∈ B and g ∈ L1
loc(Rd):

|g(x)| ≤ |f (x)| a.e. ⇒ g ∈ B and ‖g‖B ≤ ‖f ‖B .

Such spaces are translation invariant, i.e. satisfy TxB ⊆ B if
and only if any of the translation operators Tx , x ∈ Rd

defines a bounded and linear operator on (B, ‖ · ‖B)
(This is a consequence of the closed graph theorem!).

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

Classical Wiener Amalgam Spaces III

In order to increase smoothness we can convolve any such family
(Tkϕ)k∈Zd by any probability measure, or g ∈ L1(Rd) with
ĝ(0) = 1 and it will still form a partition of unity.
For d = 1 the self-convolution of the box-car function gives the
triangular function ∆, which is piecewise linear, and satisfies also
∆(0) = 1, and ∆(k) = 0 for all k ∈ Zd \ {0}. W Taking further
convolution powers we obtain in this way the family of B-splines of
order k (piecewise linear corresponds to order 2, as it is continuous
and piecewise a polynomial order 2, i.e. with two coefficients).
Since cubic B-splines are piecewise cubic polynomials, concatenate
in a C 2-manner (twice continuous differentiable) they are of order
4 (their Fourier transform is SINC4(s) ≥ 0 and with good
decay for |s| → 0).
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Classical Wiener Amalgam Spaces IV

Anyway, we can say that (regular) BUPUs (or UCPUs) are
families of the form Tkϕ, k ∈ Zd , arising from a compactly
supported function (of some regularity), with∑

k∈Zd

ϕ(x − k) ≡ 1, x ∈ Rd .

Given a Banach space B ↪→ L
1
loc(Rd) we assume that the action of

the members of this family is uniformly bounded, i.e. there exists
some C > 0 such that

sup
k∈Zd

‖Tkϕ · f ‖B ≤ C‖f ‖B , f ∈ B. (2)

In this situation we call the family (Tkϕ)k∈Zd a B-BUPU, i.e.
a bounded uniform partition of unity FOR (B, ‖ · ‖B)
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Introducing BUPUs I

These problems have been overcome by the introduction of the
concept of BUPUs, which was inspired by the dyadic Fourier
decomposition used for the characterization of Besov spaces in the
work of Peetre, Triebel or Frazier-Jawerth. We will generalize the
concept of Wiener amalgam spaces not by using “better
decompositions” (allowing to measure locally with smoothness
spaces), and the go on to show that most of the time there are
equivalent “continuous norms”.
We will not do the most general case of BUPUs, which was very
useful in our subsequent work on the irregular sampling problem
respectively for coorbit theory (where irregularities are
unavoidable), but rather restrict our attention to the so-called
regular case, i.e. BUPUs associated with some lattice Λ C Rd .
Note however, the concept of BUPUs can be realized in over
general locally compact groups.
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Introducing BUPUs II

Arbitrary fine BUPUs have been constructed in a recent paper by
the author in [fe22] in order to realize “integrated group
representations” from isometric representations on Banach spaces,
giving something like L1(Rd) ∗ Lp(Rd) ⊆ Lp(Rd), but we will not
go into this direction today.
Starting with the most simple and perhaps most important
practical case let us look at the case Λ = Zd C Rd (the most
general lattice in Rd are obtained by applying suitable invertible
matrices to the standard lattice Zd , thus this case shows all the
relevant properties for fixed Λ).
We can start from the partition of unity over the cubes
Qk = k + [0, 1)d , or Qk = k + [−1/2, 1/2]d , with k ∈ Zd .
Integration of a probability measure against this (obvious,
discontinuous) partition of unity is known as histogram.
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Introducing BUPUs III

In order to increase smoothness we can convolve any such family
(Tkϕ)k∈Zd by any probability measure, or g ∈ L1(Rd) with
ĝ(0) = 1 and it will still form a partition of unity.
For d = 1 the self-convolution of the box-car function gives the
triangular function ∆, which is piecewise linear, and satisfies also
∆(0) = 1, and ∆(k) = 0 for all k ∈ Zd \ {0}.
Taking further convolution powers we obtain in this way the family
of B-splines of order k (piecewise linear corresponds to order 2, as
it is continuous and piecewise a polynomial order 2, i.e. with two
coefficients). Since cubic B-splines are piecewise cubic
polynomials, concatenate in a C 2-manner (twice continuous
differentiable) they are of order 4 (their Fourier transform is
SINC4(s) ≥ 0 and with good decay for |s| → 0).
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Introducing BUPUs IV

Anyway, we can say that BUPUs are families of the form
Tkϕ, k ∈ Zd , arising from a compactly supported function (of
some regularity), with∑

k∈Zd

ϕ(x − k) ≡ 1, x ∈ Rd .

Given a Banach space B ↪→ L
1
loc (Rd) we assume that the action of

the members of this family is uniformly bounded, i.e. there exists
some C > 0 such that

sup
k∈Zd

‖Tkϕ · f ‖B ≤ C‖f ‖B , f ∈ B. (3)

In this situation we call the family (Tkϕ)k∈Zd a B-BUPU, i.e.
a bounded uniform partition of unity FOR (B, ‖ · ‖B)
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b
Our notation for Wiener Amalgam spaces is W (B,Y ), where
(Y , ‖ · ‖Y ) is some discrete Banach function space (we call it solid
BF-space) over Λ. This raises several questions:

1 Does the definition depend on the ingredients (especially on
the lattice Λ or the(compact) fundamental domain)?

2 Even if both (B, ‖ · ‖B) and (Y , ‖ · ‖Y ) are isometrically
translation invariant, this is only true for a (complicated)
equivalent norm, not the “natural” norm.

3 If one wants to measure local properties such as smoothness,
say with respect to some Sobolev norm, sharp truncation is
not a good idea, one would have to take the restriction
norm which is cumbersome, as it requires to talk about
representatives for the quotient norm.
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For our discussion weighted `q-spaces are the prototypical
examples, such as (for s ∈ R, and q ∈ [1,∞)):

`qs := {
(
ck
)
k∈Zd |

(∑
k∈Zd |ck |q(1 + |k |)sq

)1/q
<∞}

endowed with the natural norm (similar for q =∞).
The corresponding (!continuous) weighted Lq-space is
L
q
s := {f ∈ L1

loc ,with f 〈·〉s ∈ Lp(Rd)}, with the natural norm
‖f ‖Lqs = ‖f 〈·〉s‖Lp(Rd ) , where we use

the standard convention 〈(〉x) = (1 + |x |2)1/2.
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Equivalence: BUPUs vs. continuous characterization I

While ϕ is moved only along the lattice and (better) satisfies the
BUPU condition, any compactly supported (non-zero) function φ
with the property that the family Txφ, x ∈ Rd defines a uniformly
bounded family of pointwise multipliers on (B, ‖ · ‖B) can be used
to define an equivalent “continuous norm” using the idea of a
control function κ(f , φ)(x) = ‖f · Txφ‖B , x ∈ Rd .
Most of the time (B, ‖ · ‖B) is isometrically invariant under
translation and then this condition boils down to the simple
assumption that φ is a pointwise multiplier of (B, ‖ · ‖B),
OR just φ · f ∈ B, for all f ∈ B. We have this equivalence:

Theorem

W (B, `qs ) = {f ∈ B
loc
, κ(f , φ) ∈ Lqs (Rd)}.
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Further key facts about Wiener Amalgams I

The discrete description using BUPUs is more convenient for
proofs, while the continuous description is somehow more elegant!
We can establish a couple of natural/expected facts:

1 Inclusions coordinatewise: e.g. W (FL1, `1) ⊂W (C0, `
2);

2 If S(Rd) is dense in (B, ‖ · ‖B) and finite sequences in
(Y , ‖ · ‖Y ), then S(Rd) is dense in

(
W (B,Y ), ‖ · ‖W (B,Y )

)
;

3 In this situation W (B,Y )′ = W (B ′,Y ′);

4 Complex interpolation applies “coordinatewise

5 Reflexivity of both (B, ‖ · ‖B) and (Y , ‖ · ‖Y ) implies
reflexivity of

(
W (B,Y ), ‖ · ‖W (B,Y )

)
.

6 Multiplication also goes coordinatewise;

7 Convolution can also be done “coordinatewise”.
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The usefulness of = S0(Rd), First Claims I

It is meanwhile established theory that S0(Rd) = W (FL1, `1)(Rd)
is helping to provide an answer to such questions (arguments will
follow later). We have to following results from the last 30 years of
Gabor analysis. Recall the chain of inclusions

S(Rd) ↪→
(
S0(Rd), ‖ · ‖S0

)
↪→
(
L

2(Rd), ‖ · ‖2

)
.

Consequently all the statements to follow are valid for Schwartz
functions or functions having sufficient smoothness and decay, but
S0(Rd) is a much larger (Banach) space.
Note that for function f ∈ L1(R) it is enough that a function
satisfies f ′, f ” ∈ L1(R), or that it is piecewise linear, with a set of
nodes of minimal distance (result of 2023). Any classical
summability kernel belongs to S0(R) (see F. Weisz).
Note also that these results are not restricted to the case
Λ = aZ× bZ.

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

The usefulness of = S0(Rd), First Claims II

1 For g ∈ S0(Rd) the family (π(λ)g)λ∈Λ is a Bessel family,
hence both analysis and synthesis operators and thus the
frame operator are bounded for each lattice Λ C Rd × R̂d

(with uniform estimates); [fezi98]

2 The dual window g̃ belongs to S0(Rd) by [grle04], and
depends continuously on g ∈ S0(Rd) and Λ = A∗Zd . [feka04]

3 The Riemannian sums for the inversion formula converge in
the sense of

(
L

2(Rd), ‖ · ‖2

)
whenever g ∈ S0(Rd).

(F. Weisz, various papers).

4 Given g ∈ S0(Rd) one can show that any sufficiently dense
lattice Λ generates a Gabor frame. In fact [fegr89],[fezi98]

lim
Λ→(0,0)

CΛSg ,Λ = Id .
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The Segal algebra S0(Rd) as a prototype I

The definition (see [fe81-2]) of the Segal algebra
(
S0(Rd), ‖ · ‖S0

)
(also well defined for LCA groups) as Wiener Amalgam spaces as
(W (FL1, `1)(Rd), ‖ · ‖

W (FL1,`1)) is a good example of the
usefulness of Wiener amalgams. We have a chain of continuous
embeddings:

W (FL1, `1)(Rd) ↪→ FL1(Rd) ↪→W (FL1, `∞)(Rd).

The largest space in this chain is in fact the space of pointwise
multipliers of the algebra S0(Rd) = W (FL1, `1)(Rd).
One inclusion follows from the pointwise relation

W (FL1, `∞) ·W (FL1, `1) ⊂W (FL1, `1),

taking local and global components separately.
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Wiener Amalgam in Action: Regularization

Convolution and pointwise multiplier results imply that

S0(Rd) · (S ′0(Rd) ∗ S0(Rd)) ⊆ S0(Rd) (4)

S0(Rd) ∗ (S ′0(Rd) · S0(Rd)) ⊆ S0(Rd) (5)

Proof.

The key arguments for both of these regularization procedures, be
it convolution followed by pointwise multiplication (a CP or
product-convolution operator), or correspondingly PC operators,
are based on the pointwise and convolutive behavior of generalized
Wiener amalgam spaces, such as the relation
S0(Rd) ∗ S ′0(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊆W (FL1, `∞).
Combined with the multiplier result of the last slide we are done.
The second one is the Fourier version of the same claim.
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Fourier Invariance

We know that
(
S0(Rd), ‖ · ‖S0

)
= (W (FL1, `1)(Rd), ‖ · ‖

W (FL1,`1))
is Fourier invariant (using e.g. the characterization via STFT with
Gaussian window), FT corresponds to rotation.
Obviously W (FL2, `2) = L

2(Rd) (with norm equivalence), and
thus also is Fourier invariant by Plancherel’s theorem. This implies

that also
(
W (FLp, `p)(Rd), ‖ · ‖W (FLp ,`p)(Rd )

)
is Fourier invariant

by complex interpolation for 1 ≤ p ≤ 2 and subsequently by duality
of p ∈ [2,∞].
Since

(
M

p,p(Rd), ‖ · ‖Mp,p

)
is (by definition) the inverse FT of(

W (FLp, `p)(Rd), ‖ · ‖W (FLp ,`p)(Rd )

)
, hence equal, this implies

that the spaces
(
M

p(Rd), ‖ · ‖Mp

)
form a scale of Fourier

invariant Banach spaces. For 1 ≤ p ≤ ∞ we have:

M
1(Rd) ↪→M

p(Rd) ↪→M
∞(Rd).
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Study of Gabor Multipliers I

One of the main reasons to study Gabor expansions is to use the
signal expansion in order to manipulate signals in the sense of
digital signal processing. The naive idea of just forming the
spectrogram of a signal f with - say - some Gaussian window, then
manipulate pixels of this (discrete) phase space “picture” of f does
not work for various reasons:

The Heisenberg uncertainty tells us that there it is not even
meaningful to try to determine the level of energy at a given
frequency and at a given time (cf. Dirac, Fourier basis etc.).

Small errors (at worst on a set of measure zero) would not
change the output under the given reconstruction regime.

Actual digital sound processing should be real time!
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The audio-engineer’s work: Gabor multipliers
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Study of Gabor Multipliers I

For the study of Gabor multipliers we are looking into expressions
of the form

GMm = GMm,g ,Λ =
∑
λ∈Λ

m(λ)Pλ

where Pλ(f ) = 〈f , gλ〉gλ is the orthogonal projection of f ∈ L2(Rd)
into the one-dimensional subspace generated by gλ = π(λ)(g).
Anti-Wick operators are a continuous analogue of the form∫

Rd×R̂d

m(λ)Pλdλ.

One can interpret Gabor multipliers (with bounded symbols) as
Anti-Wick operators, with upper symbol m =

∑
λ∈Λ m(λ)δλ,

i.e. a weighted Dirac comb.
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Connection to Anti-Wick Operators I

The theory of STFT-multipliers, also known as Anti-Wick
operators requires to make use of the Wiener amalgams. Among
others we know that for f , g ∈ L2(Rd) we have
Vg f ∈ L2(R2d) ∩ C0(R2d). For example, we have for g ∈ S0(Rd):

Vg f ∈W (FL1, `2)(Rd × R̂d) ↪→W (C0, `
2)(R2d).

In fact, not only bounded functions in L∞(Rd × R̂d) define
bounded STFT-multipliers on

(
L

2(Rd), ‖ · ‖2

)
, but also more

general multipliers define bounded operators, not only on(
L

2(Rd), ‖ · ‖2

)
, but also on

(
S0(Rd), ‖ · ‖S0

)
and its dual.

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

What are Wiener Amalgams good for I

They allow to separate local and global behaviour

Product operators improve global behaviour

Convolution operators improve local behaviour

Product-Convolution operators improve both, and thus they
are in fact compact operators

Shannon-type reconstruction formulas are if the form
f 7→ (f · tt) ∗ g . For band-limited functions in Lp(Rd) one
has the equivalence of the usual Lp-norm and that of . Hence

f · tt ∈W (C0, `
p) ·W (M , `∞) ⊂W (M , `p).

Thus one has for g ∈ S0(Rd) ⊂W (C0, `
1)(Rd):

(f · tt) ∗ g ⊂W (M , `p) ∗W (C0, `
1) ⊂W (C0, `

p).
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OUTLOOK on further Extensions I

Modulation spaces, as F−1(W (FLp, `q)(Rd));

The duality theory for Wiener amalgam spaces was actually
realized in the context of the (more general) decompositions
spaces, with P. Gröbner ([fegr85,fe87]), F. Voigtlaender.

As a special case he discussed the so-called α-modulation
spaces, which kind of geometrically interpolate between
Besov and modulation spaces; (P.Gröbner, PhD, 1992).

Coorbit Theory ([fegr88],[fegr89,fegr89-1], and [gr91])
develops the group theoretical aspect further, unifying among
others also wavelet and STFT, resp. Besov and modulation
spaces (different groups, different group representations, via
function spaces on groups, in particular Wiener Amalgams
on non-commutative groups, like ax + b or Heisenberg).
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Sobolev Algebras and Embedding

It is also not so difficult to show that (Hs(Rd), ‖ · ‖Hs

)
, the usual

Sobolev space satisfies Hs(Rd) = W (Hs , `
2) and to verify the

Sobolev embedding theorem for s > d/2, making use of our
Hausdorff-Young Theorem. In fact, by Cauchy-Schwarz we have
`2
s (Zd) ↪→ `1(Zd) for s > d/2 and thus we have

Hs(Rd) = F−1(W (L2, `2
s ) ↪→ F−1(W (L2, `1)) ⊆

⊆HY W (FL1, `2) ↪→W (C0, `
2) ⊂ L2(Rd) ∩ C0(Rd).

In a similar way ([fe90]) it is also not difficult to verify that the
space of pointwise multipliers of Hs(Rd) coincides with
W (Hs , `

∞).

Hans G. Feichtinger Wiener Amalgam Spacesfor Gabor Analysis



ABSTRACT Gabor Analysis in the finite setting Gabor Analysis in the Continuous Setting Functional Analytic Foundations Wiener Amalgam Spaces and BUPUs Usefulness of S0(Rd ) Gabor Multipliers Summary OUTLOOK Sobolev Embedding Thanks

Warning about Terminology I

The theory of then Wiener-type spaces in [fe83] (Budapest
Conference of summer 1980) has been developed with the goal to
produce smoothness spaces over LCA groups, where one cannot
define easily dyadic partitions of unity used for the definition of
Besov spaces. The idea was to decompose the Fourier transform
not into dyadic but into uniform blocks. The method should apply
for the full range of parameters, i.e. for 1 ≤ p ≤ ∞. Hence the
Fourier algebra FL1(Rd) ↪→ C0(Rd) (by Riemann-Lebesgue) had
to be a special case. Recalling the fact the smoothness of the
function on the Fourier transform side (e.g. two derivatives in
L

1(T) gives absolute summability of the Fourier coefficients) it was
just a matter of abstraction to come up with the notion of BUPUs
as developed in [fe83].
The control of overlaps of supports turned out to be the relevant
assumptions, which is encountered even in much more general
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Warning about Terminology II

situations, see “decomposition spaces” (typically over topological
measure spaces, e.g. spaces of homogeneous nature).
Early on I had discussions about modulation spaces with Hans
Triebel, but his emphasis was on 0 < p < 1 while I found that the
theory (restricted to Banach spaces, as a matter of personal
choice) should be realized over LCA groups.
In recent years some authors have started to suggest to change the
order in the mixed norm description of modulation spaces via the
STFT (in analogy to the transition between Besov or Triebel-L.
spaces), believing that they are describing new spaces.
Consequently they have to demonstrate that these spaces
coincide with (very special!) Wiener amalgam spaces.
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Warning about Terminology III
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Thanks!

THANK you for your attention
maybe you visit my homepage (talks/publications)
and checkout other talks and related material at my

homepage.

https://nuhagphp.univie.ac.at/home/fei.php

https://nuhagphp.univie.ac.at/home/feitalks.php
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