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Overall Motivation

Most of the time mathematical talks outline a specific set of
mathematical problems and describe ways how to come up with
solutions, or describe new methods to attack those problems,
mention the obstacles on the way and the improvements achieved
by the authors.

Survey talks summarize the field, provide a summary of the state
of the art and outline possible new methods for the solution of a
well-defined set of problems, e.g. characterizing functions with a
particular form of smoothness and so on.

THIS is a(onther) perspective talk putting established problem
settings into question and suggesting new ways to look at
well-known and less well-known mathematical problems.

Hans G. Feichtinger



Sketch/outline
0800000

Connections to Paris

As most of you know Paris has been very influential to the
development of wavelets, due to the work of Yves Meyer.

Yves Meyer: De la recherche petrolier et la geometrie des
espaces de Banach en passant par les paraproduite. In:
Seminaire sur les equations aux derivees partielles,
1985-1986 Exp. No. I, Ecole Polytechnique (1986), p.11.

Visiting Yver Meyer in Feb. 1986 he told me: We just have two
different constructions of wavelets (with P.G. Lemarie), AND:
Function spaces are (only) good for the description of operators!

For him the classical function spaces were good for the
description of Calderon-Zygmund operators.

Hans G. Feichtinger
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A Couple of Provocative Statements

Let me start with a couple of provicative statements:
@ Is it relevant to know the LP-behaviour of linear operators
(e.g. Hausorff-Young)?
@ s it really necessary to properly study topological vector
spaces in order to understand the Dirac Deltas 4,7
© Is the Kernel Theorem (based on the nuclearity of the
Frechet-space S(R?)) relevant for engineering applications?
@ What is the role of (rigged) Hilbert spaces (S, L2, S8')?
© s the space L(H) the correct universe for the world of all
relevant operators (with say trace class operators or Hilbert
Schmidt operatorsas a crucial subfamilies).
The usual argument is that integrability is crucical for the
definition of the Fourier integral or the pointwise definition of
convolution. And the L?(R9)-setting makes the sesqui-linear
pairing of functions symmetric and generates a_Hilbert space.

Hans G. Feichtinger
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The Concepts to be Popularized

Work in the context of Time-Frequency Analysis and extensive
studies of the subject using various function spaces, but also
performing quite a few numerical explorations have lead to the
following perspective and terminology:
e CONCEPTUAL HARMONIC ANALYSIS (integrating abstract
and computational harmonic analysis)
e Banach Gelfand Triple (Sp, L2 S§)(RY), for signals and
operators and their different representations;
o The term mild distributions for members of the space Sj(RY)
of all signals, and Feichtinger’s algebra as set of
measurements.

@ The kernel theorem characterizing bounded linear operator:
with mild distributions on R29.

Hans G. Feichtinger
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Original Abstract by HGFei |

For most purposes one may view SIGNALS as (not clearly defined)
objects which depend on a parameter, such as time, or location, or
even coordinates for a three dimensional space. Just think of audio
signals, pictures, or the temperature in a closed room. We can
record the audio signal (maybe compress it via MP3), and we can
compute the spectrogram (STFT) in real time. We can take pixel
images of a scene or measure the room temperature along an array
of thermometers in the room. But we could also think of the task
of synthesising a three-dimensional sound field using an array of
load-speakers. For all this the theory of LP-spaces does not really
help, nor a simplistic derivation of translation invariant linear
operators as convolution operators, using the impulse response

the system, or the description as a Fourier multiplier, using the
transfer function model for L!-functions. Here and in other plac

Hans G. Feichtinger
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Original Abstract by HGFei Il

the mysterious Dirac Delta is appearing, usually with a hint to the
theory of tempered distributions developed by Laurent Schwartz.
The thesis of this talk is the claim that the best model to-date for
general signals is that of mild distributions, i.e. the linear space of
objects which have a bounded STFT. They also have a naturally
defined Fourier transform. One just has to establish clear rules how
to handle these objects, and how to define convergence. In the
background is the concept of Banach Gelfand Triples. We will
explain how this leads to the identification of the signal space with
the dual of Feichtinger's algebra So(R9). The correct view on this
is to consider the elements of Sy(R9) as the collection of all
reasonable linear measurements! In a similar way the kernel
theorem arising in this context provides the insight that general
linear operators, namely operators which assign to each test
function f € Sp(RY) some signal T(f) can be described by a

Hans G. Feichtinger
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Original Abstract by HGFei Il

kernel, which is simply a mild distribution of 2d variables, in the
form of an abstract integral operator. Such operators also have a
spreading function and a Kohn-Nirenberg symbol. Furthermore one
can show that the Wigner distribution of a signal is a well-defined
mild distribution. Various examples of this situation will be listed,
emphasizing that all this can be developed without use of either
LY{RY) or even L2(RY).

Finally the approximation if signals by finite vectors (typically fine
regular samples of a continuous function over a sufficiently long
interval) will be indicated, and how discretizations (e.g. of the
Wigner distribution) can be obtained. Such questions are hard to
understand from the point of view of abstract harmonic analysis,
but also from a purely computational approach. But isn't a
high-resolution TV-set providing a good approximation of

images arising in the real world?

Hans G. Feichtinger
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Overview

Depending on the approach to Fourier Analysis or the education
received during the studies people take predominantly the following
approach to Fourier Analysis

The historical viewpoint (Fourier series to Schwartz theory);
The technical viewpoint (integration theory,..);

The analysis viewpoint (distribution theory);

The applied viewpoint (e.g. optics);

The engineering viewpoint (e.g. communication theory);
The physics background (continuous Dirac basis);

The computational approach (FFT);

The quantum world (simulation, quantum computer).

Hans G. Feichtinger
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Alternative Approach: APPLICATION ORIENTED FA

Over the years | have learned that the developments in Fourier
Analysis in application areas and in pure mathematics drift away
from each other, more and more! Depending on the application
area (from engineering, to physics, chemistry, optics or
astronophysics) there is a huge variety of tasks. What is common
to most of them?

@ It is about analyzing received signals;
@ filtering components from a given signal;
© Detect a signal hidden in noise (LIGO!);

@ Understanding the behaviour of e.g.
solutions to the Schrédinger equation;

© Simulate optical systems using coheren light.

Hans G. Feichtinger
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Which Mathematical Tools

UNFORTUNATELY the separation of communities has the effect
that we rarely have a discussion of the following very natural issues:

Which mathematical tools serve which purpose?

@ Integration theory secures the “existence” of a FT;

@ The FFT is used to compute (?) the Fourier transform;

© The theory of tempered distributions (L. Schwartz) allows a
generlized FT, including Dirac measures;

Q L. Hérmander established the connection to PDE;

© The theory of pseudo-differential operators is closely related
to slowly varying systems, Kohn-Nirenberg calculus,

O the metaplectic group (including the Fractional FT (FrFt)
appear e.g. in optics, e.g. Fresnel transforms, fiber optics;

@ There is a lot of interest in generalized Wigner transforms

(Weyl calculus, quantum theorv) recently.
Hans G. Feichtinger
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Common Ground: Linear Spaces

When it comes to the discussion of SIGNALs we often encounter
signal spaces, i.e. (complex) vector spaces of signals, e.g. trig.
polynomials etc.. We learn from linear algebra that such spaces
have a basis and thus uniquely determined coordinates, once a
basis is fixed. Linear mappings between vector spaces can thus be
described by their action on a given basis, stored in the form of a
matrix A.

Composition (and hence inversion) of linear mappings is thus
described by matrix multiplication or inversion of matrices.
Variants include the use of generating systems (frames) or linear
independent families (Riesz sequences) and thus the use of the
pseudo-inverse based on the SVD of a general matrix, givig

a simple approach to dual frames or biorthogonal systems.

Hans G. Feichtinger
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The Infinite-Dimensional Situation

Coming to the situation of continuous variable, be it functions on
the torus T or on the integers Z one encounters already the
problem of infinite dimensional vector spaces, which should be
better called not anymore finite dimensional (because they are to
“big” to contain a finite basis!).

It is then necessary to consider not only finite sums, but admit at
least some infinite sums, or series. All this opens the discussion of
convergence (in some norm, or in some topology, conditional or
unconditional, etc.) and leads to the need of (linear) functional
analysis.

It is no surprise (at least in retrospect) to realize the influence of
Fourier Analysis on the development of Functional Analysis and
thus on Mathematical Analysis in general.

Hans G. Feichtinger



Linear Algebra
00@00000

A Couple of Examples

@ Classical Fourier series found an “easy” explanation once it
was understood that it is just an orthogonal expansion in
some Hilbert space. Plancherel’'s Theorem (using the complex
exponantials) simply describe a unitary isomorphism between
(L2(T), | - l2) and £(Zy).

@ On the space S(RY) introduced by L. Schwartz the Fourier
transform defines a topological automorphism which extends
to the dual space S’(R9) (tempered distributions);

© Any PDE can be viewed as a multiplication operator on the
FT side (Hérmander).

Q Gabor Analysis requires the discussion of (Banach) frames
in L>(R?) and other modulation spaces MP9(R9),
such So(RY) = MYRY) and S{(R?) = M>>(RY).

Hans G. Feichtinger
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Related Facts at the Operator Level

© The characterization of Hilbert-Schmidt operators (so-to-say
integral operators with kernels of finite energy) appears as the
analogue for the matrix representation of linear mappings, but
it only allows to describe certain compact operators on Hilbert
spaces. ... In contrast we have for S(RY):

@ The Kernel Theorem is a well-established tool in order to
describe operators from S(Rd) to S'(]Rd). It also allows to
derive a Wey calculus or to define the Wigner distribution (in
S'(R?9)) of a tempered distribution f € S’(RY).

© Also the Kohn-Nirenberg calculus or the representation of an

operator using the spreading representation (in the
ultra-weak sense) can be developed on this basis.

Hans G. Feichtinger
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What is done at the Finite/Discrete Side

While many of the expressions described so far have an analogue in
the setting of LCA groups (some of those are relevant for quantum
groups etc.) relatively little has been done (so far) in order to use
computational methods based on (numerical) linear algebra in
order to approximate (e.g. simulate) the continuous, infinite
dimensional situation).

Often the naive approach is taken: Following a “continuous
heuristic” in an engineering paper one finds simulations, making
use of samples of a given continuous function and applying the
FFT whenever a Fourier transform is required.

This raises the question: When is the output of the discrete
computation indicative for the discussed output of
continuous operations. AND: If so, how would we describe

(or measure) the approximation quality, etc..

Hans G. Feichtinger
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Obtaining a Result at given Resolution |

The typical performance of a given algorithm involves some
reduction to a finite dimensional situation, such as taking samples,
then a linear algebra operation (matrix multiplication, FFT,
composition of spreading matrix, etc.) and finally the return to the
continuous domain, e.g. by some kind of (quasi-)interpolation.
Ideally one can fix a domain space (X, ||-||x) and a target space
(Y, |l-||v) and would like to have the constructively realizable
approximation of T(f) up to given error £ > 0.

Often the proofs provide a uniformly bounded family of operators
T, (of finite rank) which approximate the operator T in the strong
operator sense, i.e. for a finite set of input vectors fi, ..., f, and up
to a given precision € > 0.

In such a case one can extend the approximation to compact
subsets of (X, || -||x), such as the unit ball of compactly
embedded normed spaces inside X.

Hans G. Feichtinger
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Well established examples relate the operator T = Fourier
Transform (via Riemann integrals on (So(RY), | - ||s,) to the
corresponding FFT algorithm, using regular sampling (over a
sufficiently large domain) and at the end corresponding
interpolation (or quasi-interpolation) methods, such as piecewise
linear interpolation.

Correspondingly operations like convolution of taking the STFT
(with window and signal in So(R9)) can be realized as well.

A little bit more work (in progress) is required for the
approximation of so-called Anti-Wick operators (STFT-multipliers)
so that it is plausible, that the corresponding eigenvalues and
eigenvectors behave well if one takes the limit (more and more
samples at a higher rate).

Experimentally (using MATLAB) things look fine!

Hans G. Feichtinger
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The key-players for time-frequency analysis |

Time-shifts and Frequency shifts

Tf(t) = f(t —x)

and x,w, t € RY _
M, f(t) = ™ F(t).

Behavior under Fourier transform
(Tuf V= M_f  (Myf) = T.f

The Short-Time Fourier Transform

ng()‘) = <f7 M, Ttg> = <f,71’(>\)g> = <f7g>\>v A= (taw);

Hans G. Feichtinger
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Some important properties of the STFT |

Starting from the Hilbert space (L*(R), ||-|]2) with scalar product

(g = [ F)e0ax, F.g e LR

one can find that for fixed g the linear mapping f — V,f is
isometric from (L2(RY), ||-||2) into (L*(R3?), ||-||2). But also

Veflloo = max Ve FOI < [Ifll2llgll2
AERT x

by the Cauchy-Schwarz inequality, since |[7()\)g|l2 = [|g]|2, for any
A€ R? x RY.
There is also orthogonality for the windows, since we have

Vef(A) = (f,m(A)g) = (r(\)'f, g),

Hans G. Feichtinger
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Some important properties of the STFT Il

which gives essentially symmetry between f and g:
Vo f(t,s) = 2™ Vgl?(s, —t).

The next property is sometimes called the covariance property of
the STFT.

Lemma (3.1.3)

Whenever Vf is defined, we have
Vo (TuM,f)(x,w) = e 2V, f(x — u,w —1n) (3.14)

for x, u,w,n € R4. In particular,

| Ve(TuMyf)(x,w)| = [Vef(x — u,0 —n)|.

Hans G. Feichtinger
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A Typical Musical STFT

A typical piano spectrogram (Mozart), from recording
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A Musical STFT: Brahms, Cello

Hans G. Feichtinger
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A Musical STFT: Maria Callas

Hans G. Feichtinger
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Space of (Fei 1979) |

A function in f € L?(R9) is in the subspace Sy(RY) if for some
non-zero g (called the “window") in the Schwartz space S(R?)

[fllsy = | Vefllp = // \V f(x,w)|dxdw < oo.

The space (So(R?), | -||s,) is a Banach space, for any fixed,
non-zero g € So(R9)), and different windows g define the same
space and equivalent norms. Since So(RY) contains the Schwartz
space S(R?), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.

Hans G. Feichtinger
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Space of (Fei 1979) Il
Since one has for any pair f, g € L?(RY)

Veflloo < lIfll2llgll2,

as a simple consequence of the Cauchy-Schwarz inequality, this is
stronger then the corresponding norm in L2(R29). In fact one has

[Vefllz = |Ifll2llgll2,  f.g € LP(RY).

This implies that the range of V; is a closed, invariant subspace of
L?(RY), and the projection operator is (twisted convolution
operator), mapping (LZ(RM), |- ]l2) onto Ve (L3(RY)). If

g € So(RY), then the convolution kernel is in L*(R2%).

Assuming ||g|l2 = 1 we have the reconstruction formula:

F= [ VO,

which can be approximated in L? by Riemannian sums.

Hans G. Feichtinger
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Basic properties of M' = S3(RY)

Lemma

Let f € So(R?), then the following holds:
0 S(RY) — L' N Cy(RY) (dense embedding);

@ (So(RY),|[|-|ls,) is a Banach algebra under both
pointwise multiplication and convolution;

(1) w(u,n)f € So(Rd) for (u,n) € RY x I@d, and
[7(u,m)fllsy = [Ifls,-
(2) € S(RY), and ||f]|s, = [Iflls,-

In fact, (So(R7), |- ||s,) is the smallest non-trivial Banach
space with this property, and therefore contained in any of
the LP-spaces (and their Fourier images), for 1 < p < cc.

Hans G. Feichtinger



Banach Gelfand Triples
00

Banach Gelfand Triples appear to be the correct structure in order
to imitate situations like those encountered by the inclusion of the
number systems Q C R C C.

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space

Abbildung: Three layers
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The “inner layer” is where the actual computations are done, the
focus in mathematical analysis is all to often with the (yellow)
Hilbert spaces (taking the role of R, more complete with respect to
a scalar product, more symmetric, because it allows to be identify
the dual, via the Riesz representation Theorem, very much like
matrix theory is working, with row and column vectors), and the
outside world where things sometimes can be explained, and with
completeness in an even more general sense (distributional
convergence). In other words, we do not assume anymore that
on(f) is convergent for all f € H (the completion of the test
functions in #), but only for elements f in the core space!

What we are going to suggest/present is the Banach Gelfand Triple

(507 L2, Sé)(Rd)

consisting of Feichtinger's algebra (So(R9), || - ||s, ). the Hilbert
space (Lz(Rd), |- ||2) and the dual space (Sg(R9), || - lls;),

Hans G. Feichtinger
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known as space of mild distributions. Note that these spaces can
be defined without great difficulties on any LCA group G and that
it satisfies many desirable functorial properties, see the early work
of V. Losert ([lo83-1]).

For RY the most elegant way (which is describe in [gr01] or
[1a18]) is to define it by the integrability (actually in the sense of
an infinite Riemann integral over R?? if you want) of the STFT

ValF)(y) = [ Fely = x)e >y
and the corresponding norm
Iflls, == /R2d | Vo (F)(x,y)|dxdy < oc.

From a practical point of view one can argue that one has the
following list of good properties of So(RY).

Hans G. Feichtinger
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Theorem

0 S(RY) = (W(Co, £)(RY), |- lw) = LYRY) N Co(RY);
Q@ F(S(RY)) = So(RY) (isometrically);

© Isometrically invariant under TF-shifts
Ie()lls, = IMs Teflls, = IFllsy W(z,s) € RY x RY.

Q (So(RY), |- |ls,) is an essential double module
(convolution and multiplication)

L(RY) * S(R) C So(R)  FLI(R?) - So(R7) C Sp(RY),

in fact a Banach ideal and hence a double Banach algebra.
@ Tensor product property So(R¥)&So(RY) ~ So(R?) which
implies the Kernel Theorem.
@ Restriction property: For H<1 G: Ry(So(G)) = So(H).

Hans G. Feichtinger - -
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O (So(RY),||-||s,) has various equivalent descriptions, e.g.

o as Wiener amalgam space W (FL', £')(R9);
e via atomic decompositions of the form

f= ZC,‘W()\,’)g with (C,‘),'e/ € El(/).

iel

@ (So(RY), |- |ls,) is invariant under group automorphism;

© (So(RY),|[|-|ls,) is invariant under the metaplectic group, and
thus under the Fractional Fourier transform as well as the
multiplication with chirp signals: t + exp(—iat?), for a > 0.

In addition (So(R), | -[|s,) is quite universally useful in Classical
Fourier Analysis and of course for Time-Frequency Analysis and
Gabor Analysis, and as | am going to show also for QHA:
Quantum Harmonic Analysis. In short, it is easier to handle tha
the Schwartz-Bruhat space or even the Schwartz space S(RY),
and since S(R?) — (S(RY), || - ||s,) it is (much) bigger.

Hans G. Feichtinger
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Theorem

Q F(S,(RY)) = S{(RY) via 5(f) := o(f), f € S}

Q Identification of TLIS: Hg(So, S§) ~ S{(G)
(as convolutions of the form ) T(f) = o % f;

© Kernel Theorem: B := L(Sy, S§) ~ S§(R?9)
Inner Kernel Theorem reads: L£(S}, So) ~ So(IR?9).

@Q Regularization via product-convolution or convolution-product
operators: (S} * So) - So € So, (S} S0) * So € So

© The finite, discrete measures or trig. pols. are w*—dense.

QO HG — So(H) — So(G) via ty(o)(f) = o(Ruf), f € So(G).
Moreover the range characterizes {T € Sy(G) | supp(7) C H}.

Hans G. Feichtinger
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Theorem
O (Sy(RY). |- lls) = (M>¥(RY), |- | m=), with V(o) and
lolls; = I Ve(o)lloo, hence norm convergence corresponds to

uniform convergence on pahse space. Also w*—convergence is
uniform convergence over compact subsets of phase space.
@ (SR [l lls) = (LP@RT), || - lp) = (So(RY), |- Il).
with density for 1 < p < oo, and w*—density in Sj. Hence,
facts valid for Sy can be extended to S§ via w*—limits.
© Periodic elements (Tho = o, h € H) correspond exactly to
those with T = F (o) having supp(7) C H*.
Q The (unique) spreading representation
T = [po,ge F)TNAA, F € $(RY x RY) for T € B
extends to the isomorphism T < n(T) n: B ~ L(So, S}),
uniquely determined by the correspondence with
n(m(\) = 6x, A € RY x RY.

Hans G. Feichtinger - -
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Some conventions

Scalar product in HS:
(T,S)ys = trace(T * S¥)
In [feko98] the notation
aANT) =[r @ W](T) =7\ o Tor(\)*, AeR?xRY,
and the covariance of the KNS-symbol is decisive:

o(r@m*(A)NT)) = Ta(o(T)), T € L(S,S,),reR? xR

Hans G. Feichtinger



Signals ARE mild distributions

Thinking of actual signals and their measurements we can think of
a bilinear pairing.

The vague definition of a signal is something that can be measured.
The THESIS which works extremely well according to my
experience from the last 20 years is: Mild distributions, i.e.
continuous linear functionals provide a very good mathematical
model for the kind of signals occuring in the real world!! They can
be applied (by definition) to test functions f € Sp(R?) (the
Feichtinger algebra) in exactly the way we expect the pairing
between BRAs and KETs.

Hans G. Feichtinger
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A Couple of Natural Questions

We are facing the following natural questions:

@ What is the influence of the choice of the window? Maybe one
has for each different window another family of “signals”?

@ Is it necessary to know the boundedness for each offset in
both time and frequency? Or is it enough to know it for a
certain lattice (sampling in the time domain and the
frequency domain). Could there be a blow-up “in between”
those lattice points?

© What about convergence of signals? When should we view
signals close to each other? What does it mean that the CD
allows to realize a perfect reconstruction of the concert in
your home?

Hans G. Feichtinger



Mild convergence and w*—convergence

It is easy to recognize that the described convergence is just the
w*—convergence in a dual Banach space, which is correctly
described by nets (generalized sequences). However, since
(So(R9), |- ||s,) is a separable Banach space, it is enough to work
with sequences. Consequently the pointwise convergence of
functionals (meaning application to any given f € Sp(R9) implies
norm boundedness of the sequence (0)nen in (SH(RY), || - Is)-
Recall that the dual norm on (S(RY), || - lls;) is just

lollsirey == sup |o(f)].
SED T g <

As a matter of fact we have

lollsyrey = sup [Vgo(t,s)|.
(t,s)ERI xR4

Hans G. Feichtinger






Creating Discrete Hermite Functions

Abbildung: The spectrogram of a sum of four discrete Hermite functions

Hans G. Feichtinger



Discrete Hermite Functions

It is well known that the Hermite functions are (among others)
joint eigenvectors of Anti-Wick operators arising from rotationally
symmetric upper symbols (multipliers). These operators commute
with the Fourier transform, and in fact with Fractional Fourier
transform. Hence it is plausible that the corresponding discrete
version (which can be realized in MATLAB) using the covariance
of the Kohn-Nirenberg symbol of matrices. They commute with
the DFT and are thus also eigenvectors of the (normalized) FFT.
Such discrete Hermite functions (DHFs) can also be used to realize
(a discrete variant of) the Fractional Fourier Transform (FrFT) by
building the corresponding Hermite Multipliers.

Hans G. Feichtinger



Wigner of signal Wigner of FrFt of signal
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Abbildung: DemWigHerm20A.jpg: A discrete Wigner function of a signal
and the signal after Fractional Fourier transform.




Wigner of signal Wigner of FrFt of signal
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Abbildung: DemWigHerm20B.jpg: A discrete Wigner function of a signal
and the signal after Fractional Fourier transform.




Conclusion

In the current situation there is too little exchange between the
different communities. Specialization is going ahead without too
much reconnection to the “need” of say the applied side.

On the other hand one has the impression that in some of the
modern and fashionable areas of research things are reinvented
with new names or without verifying the existing literature.
Conceptual Harmonic Analysis may be a way to mitigate these
discrepancies a bit and allow simulations which lead to
quantitative results based on the combination of actual
computations and accompanying analytic considerations
(estimates).

Reliable transfer between the discrete and continuous setting he
to obtain quantitative results.

Hans G. Feichtinger



THANKS to the audience

THANKS you for your attention

maybe you visit www.nuhag.eu
and checkout other talks and related material. (password
protected!) hgfei
www.nuhag.eu/bibtex: all papers
www.nuhag.eu/talks: many talks on related subjects
NOTE: Talks require access code:
“visitor” and “nubhagtalks”
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