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General Views

To get started a few personal comments:
I consider myself an application oriented harmonic analyst. From
my education I was starting mathematically with
abstract harmonic analysis (AHA) under Hans Reiter,
while I was also a teacher student in physics.
Over the years I have supervised quite a few PhD students and
realized many joint projects with applied people from different
areas, especially in the context of engineering applications.
While I consider myself and expert on function spaces the goal of
most of my research is to make methods from Fourier Analysis
useful for the applied community, to reveal mathematical structures
to make dubious objects like the Dirac delta accessible, and so on.
Sometimes it was necessary to develop new methods,
sometime it is interesting to explore the usefulness
of new tools to classical questions.
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The Key Topics relevant for this talk

Short Historical Overview:

1 Fourier Series (1822)

2 Fourier Transforms via Lebesgue (ca. 1922)

3 Fourier Transform for tempered distributions (around 1950)

4 the Fast Fourier Transform (1965)

5 Gabor Analysis (1946, mathematics starting 1980)

6 Coherent states, phase space analysis (Folland 1989)

7 Wiener Amalgam spaces (HGFei, 1980)

8 S0(G ) (Feichtinger algebra), modulation spaces (1983)

9 Wavelet Analysis (1986), painless expansions

10 Coorbit Theory (1989) (with K.Gröchenig)
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A quick approach to Mild Distributions I

Throughout I will use the normalization of the Fourier Transform

f̂ (s) =

∫
Rd

f (t)e−2πistdt =

∫
Rd

f (t)χs(t)dt.

Using the Schwartz space S(Rd) of rapidly decreasing functions
the extended Fourier transform for the dual space, the space of
tempered distributions is defined via σ̂(f ) = σ(f̂ ), f ∈ S(Rd).
It is convenient to use the Gauss function g0(t) = e−π|t|

2
because

it is Fourier invariant: F(g0) = ĝ0 = g0 ∈ S(Rd).
Then we can define the STFT (Short Time Fourier Transform)

Vgσ(t, s) = σ(MsTtg0),

with Tt f (x) = f (x − t), Ms f (t) = χs(t)f (t). It can be shown
that Vgσ of at most polynomial growth for any σ ∈ S ′(Rd).
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Setting the stage I

In this situation we can define the modulation space(
M

p(Rd), ‖ · ‖Mp

)
, for 1 ≤ p ≤ ∞, by setting

M
p(Rd) := {σ ∈ S ′(Rd)|Vgσ ∈ Lp(R2d)}

and endow each such space with the norm

‖σ‖Mp(Rd ) := ‖Vgσ‖Lp(R2d )

It is not difficult to show that each of these spaces is a Banach
spaces, and in fact also Fourier invariant.
Furthermore one has the duality results(

M
p(Rd), ‖ · ‖Mp

)′
=
(
M

q(Rd), ‖ · ‖Mq

)
, for 1 ≤ p <∞.
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Feichtinger Algebra and Mild Distributions

We then have the following chain of dense embeddings:

S(Rd) ↪→M
1(Rd) ↪→M

p(Rd) ↪→M
∞(Rd) ↪→ S ′(Rd)

and using my more “classical notation”(
S0(Rd), ‖ · ‖S0

)
= (M1(Rd), ‖ · ‖

M
1) (Feichtinger algebra)

and (S ′0(Rd), ‖ · ‖S ′
0
) = (M∞(Rd), ‖ · ‖M∞) (mild distributions) we

have the following “rigged Hilbert space” situation:(
S0(Rd), ‖ · ‖S0

)
↪→=

(
L

2(Rd), ‖ · ‖2

)
↪→ (S ′0(Rd), ‖ · ‖S ′

0
),

the last embedding being w∗−dense only.
We summarize this situation by calling
(S0,L

2,S ′0)(Rd) THE Banach Gelfand Triple.
Via Wilson bases it can be identified with (`1, `2, `∞)
(the canonical Banach Gelfand Triple).
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Official Abstract Provided I

Taking the current viewpoint classical Fourier Analysis started from
the study the orthogonal expansion of periodic functions in the
Hilbert space L2(T), using the orthonormal system of pure
frequencies (described by complex exponential functions).
Moving on to the real line it was natural to view the Fourier
transform, given by the usual integral formula, as a linear mapping
defined on the Lebesgue space L1(Rd), mapping into the space
C0(Rd) of continuous functions, vanishing at infinity (by the
Riemann-Lebesgue Lemma). The convolution theorem then goes
on and describes this mapping as an injective Banach algebra
homomorphism, converting convolution into pointwise
multiplication. This is also the basis for the study of
summability methods which are used in order to verify the
validity of Fourier inversion formulas.
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Official Abstract Provided II

As it turned out, Lp-spaces are not so well suited for the study of
the Fourier transform (only L2(Rd) is invariant) and even less for
the modern theory of Time-Frequency Analysis (TFA) or Gabor
Analysis (a branch of TFA dealing with discrete representations).
Instead, modulation spaces are better suited. The prototypes in
this family are the Segal algebra S0(Rd), the so-called Feichtinger
algebra, and its dual, meanwhile known as Banach space S ′0(Rd) of
mild distributions. Together with the Hilbert space L2(Rd) they
form THE BGT: Banach Gelfand Triple (S0,L

2,S ′0)(Rd), which
behaves in many ways like the triple Q ⊂ R ⊂ C of Q (rational), R
(real) and (C: complex) numbers. Although these spaces can be
defined and are useful in the context of general locally compact
Abelian (LCA) groups we will discuss a (long) list of features
making them extremely useful, for the study of both
theoretical and applied (say in signal processing) problems.
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Official Abstract Provided III

THE BGT allows for an elegant derivation of the basic principles of
Fourier Analysis, but it is also a central tool for TFA and Gabor
Analysis. It also provides a solid foundation of a mind-set called
Conceptual Harmonic Analysis (CHA). Although it is pursued by
the author now for several years, it still lacks popularity, competing
with traditional approaches.
Overall CHA suggests to promote the integration of concepts from
basic functional and harmonic analysis with numerical
computations via efficient algorithms. It also supports the
modelling real world problems (such as recovery of signals from
sampling), thus avoiding purely heuristic “hand-waving”
arguments.
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Executive Summary I

We use the term Mild Distributions for the elements of the dual
space for the Feichtinger algebra

(
S0(Rd), ‖ · ‖S0

)
, also known as

modulation space (M∞(Rd), ‖ · ‖M∞).
It is well known that many problems in Fourier and Time-Frequency
Analysis can be well described using THE Banach Gelfand Triple
(S0,L

2,S ′0)(Rd). The many good properties of
(
S0(G ), ‖ · ‖S0

)
allow to use it, typically as a replacement to the Schwartz space
S(Rd), especially in the context of LCA groups. It is used in the
context of Gabor Analysis and appears implicitly in Classical
Fourier Analysis, since summability kernels belong to S0(Rd).

It is the purpose of this talk to feature the usefulness of
mild distributions, e.g., by emphasizing the problems of the
traditional approach using the Lebesgue spaces Lp(Rd).
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Using the Fourier Transform I

One can look at Fourier Analysis or more generally
Time-Frequency Analysis from many different angles.
The technical/mathematical viewpoint takes the Fourier transform
as an integral transform and tries to extend it to the Hilbert space(
L

2(Rd), ‖ · ‖2

)
(a unitary automorphism, by Plancherel’s

Theorem), or to (tempered) distributions (via duality).

While engineers typically do similar things in a discrete context it is
in the world of physics where “continuous bases” of Dirac
measures (δx)x∈Rd are used for heuristic arguments.
Abstract Harmonic Analysis (AHA) classifies the different types of
Fourier transforms as realizations of a general abstract principle
(dual group of “pure frequencies”), with the DFT/FFT
corresponding to the use of the cyclic group ZN of order N.
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Using the Fourier Transform II

Looking around in the real world and without formally defining
what a “signal” IS we can say:
Very few signals in the real world are either periodic (in a strict
sense), or well defined almost everywhere and square integrable
(meaning belonging to L2(Rd)). Nevertheless we have nowadays
very good signal processing algorithms which help us to record,
transmit, modify signals in many ways, even in real time. But is
the established mathematical theory helping us (except for
heuristic considerations)?

Recall, that TF-shifts are defined for λ = (t, s) ∈ Rd × R̂d :

π(λ)g(x) = [MsTt ]g(x) = e2πisxg(x − t).
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Basic Considerations concerning Mild Distributions I

Just recall the definition of (S ′0(Rd), ‖ · ‖S ′
0
). First we need the

definition of the STFT of a tempered distribution with respect to
the Gaussian window g0(t) = exp(−π|t|2): For σ ∈ S ′(Rd) set:

Vgoσ(t, s) = σ(M−sTsg0), with λ = (t, s) ∈ Rd × R̂d . (1)

We can define S ′0(Rd) = M
∞(Rd) by setting

S
′
0(Rd) := {σ ∈ S ′(Rd) |Vgoσ ∈ Cb(R2d)}, ‖σ‖S ′

0
:= ‖Vgoσ‖∞ <∞.

(2)
We have many good properties, such as invariance under the
Fourier transform (defined in many equivalent ways), e.g. via

σ̂(f ) = σ(f̂ ), f ∈ S0(Rd).
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Basic Operations on Mild Distributions

1 First: (S ′0(Rd), ‖ · ‖S ′
0
) is a Banach space with the dual norm;

2 TF-shifts π(λ) = MsTt act isometrically, automorphisms (e.g.
dilations) act boundedly on

(
S0(Rd), ‖ · ‖S0

)
;

3 Every σ ∈ S ′0 has a Fourier transform; it is an isometric
mapping on (S ′0(Rd), ‖ · ‖S ′

0
), preserving mild convergence,

and characterized by F(χs) = δs ;

4 Every σ ∈ S ′0 is the mild limit of test functions, e.g. from
S0(Rd), which may be obtained by regularization, or of (finite
discrete) measures, hence the unique extension of the usual
integral version of the FT;

5 Fractional FTs, even metaplectic operators act boundedly.
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Regularizations I

There are many ways to regularize a given mild distributions, such
as a Dirac comb tt =

∑
k∈Zd δk , which shows neither decay nor

smoothness (decay in the frequency direction).
The typical methods to approximate (in the “mild sense”) a given
σ ∈ S ′0 is to convolve it with a Dirac sequence, normalized in(
L

1(Rd), ‖ · ‖1

)
but sitting inside of S0(Rd), hence its FT (a

summability kernel) is a bounded approximate unit in the pointwise
sense. Thus it is good to know that S0(Rd) ∗ S ′0(Rd) ⊂ Cb(Rd)
with corresponding norm estimates, but more importantly

(S ′0(Rd) ∗ S0(Rd)) · S0(Rd) ⊆ S0(Rd)

(S ′0(Rd) · S0(Rd)) ∗ S0(Rd) ⊆ S0(Rd).

Hans G. Feichtinger Fourier Analysis using Mild Distributions



Regularizations II

There is also a discrete alternative, which makes use of Gabor
frames with windows g ∈ S(Rd) ⊂ S0(Rd). Think, for example of
g = g0, the standard Gaussian, with lattice Λ = aZd × bZd , for
ab < 1.
Then the dual window g̃ also belongs to S0(Rd) (by a result of
Gröchenig and Leinert) and consequently on has:

σ 7→ Vgσ|Λ ∈ `∞(Λ)

and

σ =
∑
λ∈Λ

Vgσ(λ)π(λ)g̃ ,

is unconditionally mildly convergent.
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Regularizations III

Obviously the finite partial sums belong to S0(Rd) (or even to
S(Rd)) and so it is not surprising that the family of partial sums

σF = σf ,g ,Λ,F :=
∑
λ∈F

Vgσ(λ)π(λ)g̃

are mildly convergent to σ. In other words:
Given a compact domain Q ⊂ Rd × R̂d and ε > 0 there exists
some finite set F0 (typically Λ ∩ (BR(0) + Q), where R depends
only on the concentration properties of g and g̃): such that one
has for any finite set F ⊇ F0:

|Vgσ(q)− VgσF (q)| ≤ ε, ∀q ∈ Q.
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THe MP3-BUPU: 512 samples long

Figure: mp3bupu.jpg
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Motivation from the MP3 coding method I

Next I will provide an “a posteriori motivation” for the
construction, meaning that first there was the mathematical
construction and only later it turned out that it is related to the
MP3 coding scheme (see Peter Balazs PhD thesis from 2005).
When it comes to the processing of music the best known
compression algorithm for audio data is the MP3 coding scheme.
It starts by cutting an audio signal into pieces of finite length, e.g.
30 seconds of 44100 samples corresponds to 30 ∗ 4410/496 slices
of length 512 = 29 ca. 2667 FFTs have to be performed. The
slight overlap of the slices (by 16 samples) allows to ensure that
the ends of each slice equals zero, so there is NO JUMP due to the
cyclic prolongation inherent in the DFT/FFT.
In mathematical terms we apply a regular BUPU, a partition of
unity which is generated by translation along the lattice 496Z,
from a window of length 512 (a typical smooth plateau function).
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Motivation from the MP3 coding method II

Given each position one thus obtains 512 Fourier coefficients, and
the compression relies on the so-called masking effect, i.e. the
effect that certain (low-amplitude) frequencies cannot be heard by
human beings if they are close to more dominant ones. So they
can be discarded without loss of information (from the point of
view of perception).
Due to the fact that the DFT defines an isometry one can claim
that the `2-norm of each of the slices corresponds to the `2-norm
of the corresponding slice, and since these slices are almost
orthogonal to each other the total `2-norm (over all positions and
all 512 frequencies) defines an equivalent norm on

(
L

2(Rd), ‖ · ‖2

)
.
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Figure: Gau8002tgtdu.jpg
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Banach-Gelfand-Tripel-Homomorphisms
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DIAGRAMS I

Think of X as (S0,L
2,S ′0), and Y = (`1, `2, `∞):

BANACH (Gelfand Triple) FRAME case: C is injective, but not
surjective, and R is a left inverse of R. This implies that
P = C ◦R is a projection in Y onto the range Y0 of C in Y :

Y

X Y0-
C

� R ?

P

�
�
�

�
��	

R
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Modulation Spaces and Gabor Expansions I

The problem of Gabor expansions of “signals” is equivalent to the
question of reconstructing a STFT Vgσ from samples.

If the samples are taken from a lattice Λ CRd × R̂d in phase space
we call this a regular Gabor expansions. Often one takes
Λ = aZd × bZd . Otherwise we talk of irregular Gabor families.
Anyway, the usual consideration is that of a problem of frame in
Hilbert space context, where the frame condition can be expressed
by a simple pair of inequalities. In words:
The sampling energy is supposed to be equivalent to

to energy (L2-norm) of the signal.
But it turns out that at least for regular Gabor families generated
by some g ∈ S0(Rd) that then one has in fact such a retract
situation according to the above diagram.
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Gabor Expansions of Mild signals I

Being defined as an adjoint mapping, which in fact extends the
classical integral transform given by

f̂ (s) =

∫
Rd

f (t)e−2πistdt,

which leaves
(
S0(Rd), ‖ · ‖S0

)
↪→ (S ′0(Rd), ‖ · ‖S ′

0
) isometrically

invariant, we know that the (extended) FT is w∗-w∗--continuous,
i.e. it preserves mild convergence.
But there is a more natural equivalent expression for this: A
sequence (or bounded net) σα is mildly convergent to σ0 if the
corresponding STFTs are uniformly convergent over compact
subsets of Rd × R̂d (phase space).
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Gabor Expansions of Mild signals II

In the context of Gabor Analysis, let us choose on of the most
simple cases, namely a Gaussian family of redundancy 2, with
a = 1/

√
2 = b. Then the elements of (S0,L

2,S ′0)(R) can be
characterized by the possibility of representing them as double
series over the lattice , with coefficients in (`1, `2, `∞).
Now there is a ’tight Gabor family’ (gn,k) = (MbnTakgt)(n,k)∈Z2

(red shape below) which allows to write any f ∈ (S0,L
2,S ′0) as

f =
∑

(k,n)∈Z2

〈f , gn,k〉gn,k . (3)

The Fourier invariance of g0 and the symmetry a = b implies that
also the tight version, i.e. this g is Fourier invariant, and thus

F(gn,k) = F(MnbTkag) = TnbM−kaF(g) = e2πiknabg−k,n.
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Gabor Expansions of Mild signals III

This implies that the Fourier transform can be simply applied (up
to a well explained phase factor) as a simple permutation of Gabor
atoms.

Figure: GabLocRec01.jpg
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What are the USPs for the space of mild distributions?

A couple of bold claims!
1 It is large enough to contain (almost) everything

2 It is small and simple enough (a Banach space)

3 It can be defined on any LCA group, from scratch (ETH20)

4 It can serve as a model for general SIGNALS

5 It allows to describe general OPERATORS

6 It is easy/intuitively to use (no Lebesgue, little topology)

7 It suggests structure preserving approximation schemes

8 It covers discrete and continuous, periodic and non-periodic

9 It covers mostly the engineering or physicists viewpoint
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P1: Simplicity I

Figure: Classical spaces and tempered distributions
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Classical spaces and Fourier

FL1/FMB

L1/MB

CO/LINF

S0P

LT

PM/FCO

SO

SOP

Figure: Classical spaces and Fourier
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TOPIC P1: SIMPLICITY

Figure: THE (simple) Banach Gelfand Triple
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P2: Historical Remarks, Schwartz-Bruhat I

The space
(
S
′
0(G ), ‖ · ‖S ′

0

)
of translation bounded quasi-measures

has been introduced shortly after the paper on the “New Segal
Algebra”

(
S0(G ), ‖ · ‖S0

)
(which goes now by the name of

Feichtinger’s algebra) in [?]. It appears in the Compt. Rend. Note
[?]. This paper from 1980 has as many/few citations as the recent
survey article [?] by Mads Jakobsen, which is a sign that
recognition came rather late.
In many earlier talks I have tried to emphasize the possible role of
the so-called Banach Gelfand Triple (S0,L

2,S ′0), especially for the
Euclidean case, as a universal tool for many questions arising
naturally in Fourier Analysis and Time-Frequency Analysis, in
particular in the context of Gabor Analysis.
This construction (also called a “rigged Hilbert space” setting) is
an important corner stone for the development of the idea of
“Conceptual Harmonic Analysis”, because very often
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P2: Historical Remarks, Schwartz-Bruhat II

Banach Gelfand Triple Morphisms (BGT-morphisms) allow to
widen the view on unitary mappings. The prototypical example is
Plancherel’s Theorem. It can be obtained by observing that(
S0(Rd), ‖ · ‖S0

)
is a space of continuous, Riemann integrable

functions which is invariant under the Fourier transform. Thus the
Fourier Inversion Theorem applies pointwise (even with Riemann
integrals), and by observing the L2-isometric property one naturally
extends the integral transform to a unitary automorphism of(
L

2(Rd), ‖ · ‖2

)
. But finally the (unique, w∗-w∗-continuous)

extension to all of S ′0(Rd) allows to observe that it just maps pure
frequencies into Dirac Deltas, similar to the fact that the DFT
maps pure frequencies on ZN into corresponding unit vectors
in the frequency domain.
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P2: Historical Remarks, Schwartz-Bruhat III

So this space is around for 45 years, and I have been using it a lot
for various applications. But still, its usefulness outside of
time-frequency analysis (where it is usually described as the
modulation space ) is not so clear within a wider community.
Therefore it is the purpose of this talk to provide a list of facts and
properties of S ′0(G ) which make it so useful. We will also explain
the effect of fundamental properties of

(
S0(G ), ‖ · ‖S0

)
for the

various descriptions of S ′0(G ), including the characterization of
w∗-convergent sequences (or better bounded nets).
As a final introductory remark let me note that (for a similar
reason) I decided to call the elements of S ′0(Rd) “mild
distributions” (because they behave better than general
tempered distributions), see [?] or [?].
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P2: Mild versus Tempered Distributions I

Although it is clear that the Schwartz space S(Rd) and its
(topological) dual, the space S ′(Rd) of tempered distributions not
only Fourier invariant, but also closed under differentiation, and
thus are the ideal tool for finding solutions of PDEs, it is quite
cumbersome to work with countable families of (semi-)norms
instead of just one simple norm as in the case of

(
S0(G ), ‖ · ‖S0

)
or(

S
′
0(G ), ‖ · ‖S ′

0

)
. However, for general LCA groups the so-called

Schwartz-Bruhat space is really cumbersome and may not have
much to do with differentiation (see [?]), which has been used in
the famous Acta paper by Andre Weil ([?]) about the metaplectic
group (including Fractional Fourier transforms as a compact
subgroup of unitary operators).
It was then H. Reiter who picked up this property in his
revision of Weil’s work in the Lecture notes [?].
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P3: Extending the FT to all
(
L
p(Rd), ‖ · ‖p

)
I

We have the following sandwich situation for 1 ≤ p ≤ ∞:(
S0(G ), ‖ · ‖S0

)
↪→
(
L
p(G ), ‖ · ‖p

)
↪→
(
S
′
0(G ), ‖ · ‖S ′

0

)
, ,

and thus it is no problem to define the FT for any such function.
This is in contrast to the limitations arising with the classical
L
p-spaces, where only the Hausdorff-Young estimate is valid (with

the usual convention 1/q + 1/p = 1):

F(Lp(G )) ↪→ L
q(Ĝ ), 1 ≤ p ≤ 2.

But, for example, with the observation that F(Lp(Rd)) ↪→ S
′
0(Rd)

we know much more than just the membership of f̂ ∈ S ′(Rd). Of
course, for p > 2 FLp(Rd) will contain true distributions which
are not represented by locally integrable functions!
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P3: Extending the FT to all
(
L
p(Rd), ‖ · ‖p

)
II

Among the spaces discussed above we have p =∞ as an
important special case. Obviously we have a continuous and dense
embedding of

(
S0(G ), ‖ · ‖S0

)
into

(
L

1(G ), ‖ · ‖1

)
(it is a true

Segal algebra in Reiter’s sense), and thus by duality we have(
L
∞(Rd), ‖ · ‖∞

)
↪→ (S ′0(Rd), ‖ · ‖S ′

0
).

Hence any h ∈ L∞(Rd) has a Fourier transform in S0(Rd), and
any such mild distribution has a support, defined in the usual way,
as one is used from the classical theory of distributions.
The idea to call supp(ĥ) the “spectrum of” h (we write spec(h))
can be justified by demonstrating that this natural viewpoint is
compatible with Reiter’s definition of the spectrum, using
closed ideals of

(
L

1(Rd), ‖ · ‖1

)
(cf. Reiter’s Ideal Theorem for

Segal algebras, see [?] and [?]).
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P4: Translation-bounded measures

Of course there as mild distributions which are not regular, i.e. not
represented by (locally) integrable functions, but true, potentially
unbounded measures.
Obvious examples are Dirac measures δx : f 7→ f (x), but also
Dirac combs (more or less Haar measures on lattices Λ C Rd):
ttΛ :=

∑
λ∈Λ δλ.

Poisson’s formula (valid for f ∈ S0(Rd)) implies

F(tt) = tt, and F(ttΛ) = CΛtt Λ⊥ ,

where Λ⊥ is the orthogonal group to Λ in R̂d = Rd .
I am currently engaged in a project with colleagues active in
quasi-crystals who find this form of FT quite convenient.
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P5: Sampling Theory, Shannon’s Theorem I

One of the basic principles of digital signal processing is the fact
that a band-limited signal can be recovered well from discrete
(regular) samples if only the Nyquist condition is satisfied. At the
basis (also for the finite discrete setting) is Poisson’s formula,
giving us

F(tt) = tt.

By applying a dilation on obtains a similar statements for general
lattices of the form tta := ttaZd , namely (up to normalization)

Ftta = Cattb, b = 1/a.

and obviously one has (by the extended convolution theorem):

F(a · f ) = Ca(f̂ ∗ ttb), f ∈ S0(Rd).
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P5: Sampling Theory, Shannon’s Theorem II

Since a bandlimited function f ∈ L1(Rd) belongs to S0(Rd) we can
state that the information in the sampled signal

∑
k∈Zd f (ak)δak is

the same as in the b-periodic version of f̂ . So if the periodized
spectrum is well separated it allows to recover f̂ by a simple
convolution on the time side (resulting in Shannon’s reconstruction
formula).
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P6: Translation invariant Systems and Convolution

In the work on multipliers between Lp-spaces Gaudry has
introduced the space of quasi-measures, which (according to
Cowling, see [?]) can be identified with FL∞loc).
As one can find in the book of Larsen about Multipliers (see [?])
any operator between (reflexive) Lp-spaces can be represented as a
convolution operator with a (uniquely determined) quasi-measure,
but since there are no global restrictions in this space one cannot
extend the Fourier transform to all the quasi-measures. Thus it is
not clear, whether such a “multiplier”, understood as Fourier
multiplier, can be described by pointwise multiplication with some
“transfer function” on the Fourier side. WE HAVE:
Multipliers T from

(
S0(G ), ‖ · ‖S0

)
to
(
S
′
0(G ), ‖ · ‖S ′

0

)
are exactly

convolution operators by unique elements σ ∈ S ′0(G ), (impulse
response) or as a pointwise multiplier on the Fourier side by
σ̂ ∈ S ′0(Rd) (which takes the role of a transfer function).
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P7: All the classical cases are just Special Cases I

It is clear that periodization provides a periodic function, and
pointwise multiplication of h ∈ Cb(Rd) with a Dirac comb ttΛ

defines a weighted Dirac comb (with bounded coefficients), which
belong to S ′0(Rd) and satisfy supp(h · ttΛ) ⊆ Λ.
For the case of tempered distributions this does not mean that we
have a distribution which is already defined on the subgroup!
Similar von continuous subgroups like the x-axis in R2. But - this
is meant by claiming that S ′0(Rd) is not too big - we have

Any σ ∈ S ′0 with supp(σ) ⊆ H C Rd arises from a unique
τ ∈ S ′0(H) via σ(f ) = τ(f |H), f ∈ S0(Rd).

The above situation is equivalent to the claim that
σ̂ is a H⊥ periodic distribution in S ′0(Rd).

These facts ARE IN CONTRAST with tempered distributions!
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There is just one Fourier Transform (for each dimension) I

The reservoir S ′0(Rd) contains all the typical cases, where usually
for each type a specialized Fourier transform seems to be in place:

1 First the “continuous non-periodic” case:(
L
p(Rd), ‖ · ‖p

)
↪→ (S ′0(Rd), ‖ · ‖S ′

0
) for 1 ≤ p ≤ 2, hence the

extended Fourier transform contains the Plancherel transform
and the Hausdorff-Young setting.

2 Periodic functions (with whatever period) in Lp (locally)
belong to (S ′0(Rd), ‖ · ‖S ′

0
) and the corresponding FT is

concentrated on the dual lattice (classical Fourier Series).

3 Periodic and discrete signals belong to S ′0(Rd) and their FT
can be obtained by the usual DFT/FFT algorithm.

4 Similar claims apply for discrete signals (DTFT) or
almost periodic functions.
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There is just one Fourier Transform (for each dimension) II

More importantly, we can (easily) show that the heuristic
transitions performed usually correspond to “mild convergence”
(i.e. w∗−convergence in S ′0(Rd)), such as:

1 lattice constants which are convergent, including to infinity,
i.e. to the non-periodic case (FT for L1(Rd));

2 approximation of discrete FTs (via Dirac sequences) from the
continuous case;

3 approximating the discrete and periodic case from
non-periodic discrete version by periodization

4 approximation of continuous densities of bounded measures by
discrete measures (using a simple discretization procedure),
whose inverse is smoothing using BUPUs (such as
piecewise linear interpolation), and so on.
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Q1: The Kernel Theorem I

Clearly a linear mapping T from Cn to Cm have a matrix
representation: T (x) = A ∗ x, where the entries are of the form

aj ,k = 〈T (ek), ej〉, 1 ≤ k ≤ m, 1 ≤ j ≤ n.

Hence one can expect that the continuous version allows to write
at least (certain integral) operators as

T (f ) =

∫
Rd

K (x , y)f (y)dy , f ∈ L2(Rd).

It turns out, that for K ∈ S0(R2d) these operators map S ′0(Rd)
into S0(Rd) in a w∗-to-norm continuous fashion and vice versa.
Moreover in analogy to the discrete case one has

K (x , y) = δx(T (δy )), x , y ∈ Rd .
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Q1: The Kernel Theorem II

Extending to the Hilbert space setting one finds that kernels in
L

2(R2d) give rise to the well-known Hilbert Schmidt operators. In
fact this is a unitary mapping, using the fact

‖K‖
L

2 = ‖T‖HS := trace(T ◦ T∗).

The outer layer describes the most general operator. The
correspondence identifies S ′0(R2d) with the space of all bounded
linear operators from

(
S0(Rd), ‖ · ‖S0

)
to (S ′0(Rd), ‖ · ‖S ′

0
). In this

setting one can even describe multiplication or convolution
operators, in particular the identity operator, which corresponds to
the distribution F 7→

∫
Rd F (x , x)dx , F ∈ S0(R2d), which is

well defined since the restriction of F ∈ S0(R2d) to the
diagonal is in S0(Rd) and hence integrable.
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Q1: The Kernel Theorem III

If one tries to rewrite the functional (representing the identity
operator) in the usual way (or observing that of course the identity
operator is an operator which commutes with translation, and thus
has to be a convolution operator, with the usual Dirac measure
δ0 : f 7→ f (0)) we have

f (t) =

∫
R2d

∫
Rd

K (x , y)f (y)dy , f ∈ S0(Rd),

which is only possible if one has in each row

K (x , .) = δx , x ∈ Rd .

(this is more or less the transition from the Kronecker delta
describing the unit-matrix to the Dirac delta, and is another
way of expressing the “sifting property” of δ0.)
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Q1: The Kernel Theorem IV

The composition law for matrices is the unique way of combining
information about two linear mappings which can be composed
(Domino rule) into a new matrix scheme, via standard matrix
multiplication rules: C = A ∗ B. Thus one expects for the
composition of operators a similar composition law for their
kernels, something like

K (x , y) =

∫
Rd

K1(x , z)K2(z , y)dz , x , y ∈ Rd .

If one make use of the kernel for the Fourier transform, i.e.
K2(z , y) = exp(−2πi〈y , z〉) and K1(x , z) = exp(2πi〈x , z〉), then,
even if the integrals do not make sense anymore in the Lebesgue
sense, it still suggest to claim that the resulting product operator is
the identity operator, which gives a meaning to formulas
appearing in engineering books on the Fourier transform.
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Q2: Spreading, Weyl, KNS-Calculus I

It is easy to explain the concept of the spreading function
corresponding to a given N × N matrix A, by decomposing it into
(N cyclic) side-diagonals and then applying a Fourier transform on
them. The KNS symbol κ(A) (Kohn-Nirenberg) then arises as the
(!symplectic) FT of the spreading function. It satisfies the
following important covariance property:

κ(π(λ) ◦ A ◦ π(λ)∗) = Tλκ(A).

This makes these descriptions suitable tools for the description of
e.g. Anti-Wick operators (STFT-multipliers).
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Q3: Mild distributions as upper symbols I

There are many good reasons to restrict the windows for the STFT
to the space S0(Rd). Then one can assure that any σ ∈ S ′0 has a
bounded and continuous STFT, denoted by Vgσ.
Anti-Wick operators are based on the consideration that (for a
normalized window g ∈ S0(Rd) with ‖g‖2 = 1) the inverse for the
isometric embedding f 7→ Vg f (from

(
L

2(Rd), ‖ · ‖2

)
into(

L
2(R2d), ‖ · ‖2

)
) is just the adjoint mapping V ∗g , of the form

V ∗g (F ) =

∫
Rd×R̂d

F (λ)π(λ)g dλ,

for F ∈
(
L

2(Rd), ‖ · ‖2

)
. Thus we have the reconstruction formula

f = V ∗g (Vg f ) =

∫
Rd×R̂d

Vg f (λ)π(λ)g dλ.
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Q3: Mild distributions as upper symbols II

For g ∈ S0(Rd) this integral can even be approximated by
corresponding Riemannian sums (according to F. Weisz).
Thus it is natural to define for bounded functions
m ∈ Cb(Rd × R̂d) an (Anti-Wick) operator of the form

Am(f ) = V ∗g (Vg f ) =

∫
Rd×R̂d

m(λ)Vg f (λ)π(λ)g dλ.

This obviously defines a bounded linear operator on(
L

2(Rd), ‖ · ‖2

)
, with

|‖Am|‖L2(Rd ) ≤ C‖m‖∞,

but it defines in fact a BGT-homomorphism, thus acting
boundedly also on

(
S0(Rd), ‖ · ‖S0

)
or (S ′0(Rd), ‖ · ‖S ′

0
).
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Q3: The “natural choice of upper symbols I

As it turns out, the correlation between neighboring elements from
the family π(λ)g , λ ∈ Rd × R̂d introduces some smearing of the
(upper) symbol. One can show that L2-symbols give Hilbert
Schmidt operators, but the converse is not true, it is enough that a
smeared version of m belongs to L2(Rd × R̂d).
With the idea that a “smeared version” of the upper symbol is
supposed to be in Cb(R2d) we may (correctly) expect that ANY
SIGNAL, i.e. any m ∈ S ′0(R2d) defines a BGTr homorphism, with
control of the norms through ‖m‖S ′

0
(at all three levels!).

The key for a verification is the following observation:
The restriction of : f 7→ Vg f , which acts isometrically on(
L

2(Rd), ‖ · ‖2

)
, is also bounded from

(
S0(Rd), ‖ · ‖S0

)
, and

not just into
(
L

1(Rd), ‖ · ‖1

)
. In fact, one has Vg f ∈ S0(R2d)

if and only if f and g belong to S0(Rd).
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Q4: Generalized Stochastic Processes I

As I learned from many discussions with engineers one should
sometimes take a probabilistic viewpoint. A signal is not “a true
signal” but just a stochastic realization of a process. So to say,
even “measuring the same thing several times” does not mean that
one gets exactly the same values.
Thus it is natural to ask what a “stochastic signal” could be.
Recall that a (continuous) function assigns to each point t a value
f (t). A generalized function σ assigns to each test function k
(average of point masses) some value σ(k). A stochastic process
ρ(t) assigns to each value t a probability measure, ideally a
member of some abstract Hilbert space H (defined in a
probabilistic manner). So a generalized stochastic signal (GSP) is
a bounded linear operator ρ :

(
S0(Rd), ‖ · ‖S0

)
→ (H, ‖ · ‖H)

(see work with W.Hörmann, 1989). [?]).
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Q4: Generalized Stochastic Processes II

For each GSP there is a Fourier transform, the associated spectral
process and a spectral representation (inverse Fourier transform),
by the usual rule

ρ̂(f ) = ρ(f̂ ), f ∈ S0(Rd).

For every GSP we have a autocorrelation σρ ∈ S ′0(R2d) with

σρ(f ⊗ g) = 〈f , g〉H, f , g ∈ S0(Rd).

As expected the autocorrelation of ρ̂ is just FR2d (σρ).
Wide sense stationarity means:

〈ρ(x), ρ(y)〉H = 〈ρ(x + h), ρ(y + h)〉H, x , y , h ∈ Rd .

Or in the case of generalized stochastic processes

〈ρ(f ), ρ(g)〉H = 〈ρ(Thf ), ρ(Th(g))〉H, h ∈ Rd , f , g ∈ S0.
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Where do MILD DISTRIBUTIONS appear naturally

We list topics according to relevance for engineering students!

1 Signals ARE mild distributions (talk at LMU, 7.6.2024)

2 Mild distributions describe impulse response and transfer
function. for TILS (translation invariant linear systems).

3 This approach allows a natural approach to convolution and
the Fourier transform (convolution theorem), see [?].

4 The interpretation of the FT as unitary BGTr automorphism
unifies different FFT variants and reveals connections.

5 This gives easy approach to Shannon Theorem.

6 The kernel theorem (also KNS symbols, spreading function)
opens a natural approach to “continuous matrix theory”.

7 Such considerations help in Quantum Harmonic Analysis.
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Thanks and LINKS

Thank you for your attention!
All relevant papers are downloadable from my homepage

https://nuhagphp.univie.ac.at/home/feipub db.php

Course notes (including YouTube Links) are found at
www.nuhag.eu/ETH20

Many other talks on related subjects can be downloaded from
https://nuhagphp.univie.ac.at/home/feitalks.php

User: visitor PWD: nuhagtalks
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