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Submitted Abstract |

In contrast to Abstract Harmonic Analysis which describes signals
defined over locally compact groups and makes use of the
corresponding Fourier decomposition the treatment of actual
signals (audio-recordings, images, movies for streaming) rather
views these signals as a collection of localized objects which are
provided “up to some resolution”. The MP3-coding scheme is a
good example. It provides full information about a piece of music
for the duration of a song, up to 20 kHz, by storing the relevant
information for segments of length 512 samples (at the sampling
rate of 44100, for HiFi recordings). This extension is different from
the approach to a generalized Fourier transform using the Schwartz
theory of tempered distributions.
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The mathematical theory of mild distributions arose from
investigations in time-frequency, specifically Gabor Analysis, i.e.
the attempt to put D. Gabor's idea from 1946, claiming that any
signal can be described as a double series of time-frequency shifted
Gaussians, on solid mathematical grounds. As it turned out, the
Segal algebra So(9) (the Feichtinger algebra) is a universal tool
serving this purpose.

The talk will describe the setting, how it can be used efficiently for
the mathematical description of basic problems in engineering. The
thesis is simply that “mild distributions” (elements of S§(9), the
dual of Sp) are the perfect model for signals, with their evaluation
on test functions in Sy being the possible measurements. Another
important feature of this setting: all relevant operators have a
continuous matrix representation using mild distributions of 2
variables (the Kernel Theorem in this setting).
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By using appropriate concepts of mild convergence (appearing
naturally) one can turn heuristic arguments into more conceptual
considerations and derive the form of special version of the Fourier
transform (e.g. the classical variant for periodic functions, or the
DFT/FFT variant for the case of finite signals) into natural
variants of one general scheme (the Extended FT for mild
distributions).

The goal of this presentation will be to shed some light on the
treatment of classical concepts (like the spectrum), using this
approach.
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Fourier history of in a nut-shell

© 1822: J.B.Fourier proposes: Every periodic function can be
expanded into a Fourier series using only pure frequencies;

@ up to 1922: concept of functions developed, set theory,
Lebesgue integration, (L2(]R), - 1l2);

© first half of 20th century: Fourier transform for Rd:

@ A. Weil: Fourier Analysis on Locally Compact Abelian Groups;

© L. Schwartz: Theory of Tempered Distributions

@ Cooley-Tukey (1965): FFT, the Fast Fourier Transform

@ L. Hormander: Fourier Analytic methods for PDE
(Partial Differential Equations);
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The Life of Fourier: 1768 - 1830

https://en.wikipedia.org/wiki/Joseph Fourier
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Classical Fourier Series

The classical approach to the theory of FOURIER SERIES appears
in the following form: Looking at the partial sums of the (formally
then infinite) Fourier series we expect them to approximate “any
periodic function” in some sense!:

N
sn(x) = % + Z[an cos(2mnx) + by sin(2mnx)]. (1)
n=1

Assuming this is possible it is not so hard to find out, using the
properties of the building blocks (cos(x), sin(x), addition rules,
derivatives, integration) that one can expect for any z € R:

z+1 z+1
ap = / f(x) cos(2mnx)dx, b, = / f(x) sin(2mnx)dx.

For simplicity we assum period 1!
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What are the Ingredients and Questions 1

In my course on Fourier series | was taught (like many classical
talks) that the representation

f(x) ~ % + Z[a,, cos(2mnx) + by, sin(2wnx)]. (3)

n=1

should be taken only as a “formal expression”, which has to be
formalized using various kinds of mysterious tricks!

But was does this mean?
What kind of concrete, mathematical questions should be asked?
Why and how are summability methods saving the situation,
and in which sense?

Until now Fourier series are seen as a mystery!
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What are the Ingredients 2

First of all we have to note that by the time (1822!!, which was at
the life-time of Carl Friedrich Gauss! [1777-1855]) the modern
concept of a function was not available as it is now. Thanks to
Leonhard Euler ([1707 - 1783]) the complex numbers and their
connection to trigonometric functions had been known

e™ = cos(x) + isin(x), i=+—1. (4)

It was known what polynomials are and how to compute with
them, and even to take “polynomial of infinite degree” (power
series, with well defined regions of uniform convergence), hence
Taylor expansions were known (going back to the English
mathematician Brook Taylor [1685-1731]).
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What are the Ingredients 3: the Integral

Of course the determination of the coefficients using integrals
(over the period of the involved functions) is one of the corner-
stones of the classical theory, raising some questions:

@ What is the meaning of an integral in the most general case?

e What kind of functions can be integrated (over [a, b]?

@ What can be said about the Fourier coefficients

(an)nZO or (bn)n21?

While the foundations of “Calculus” had been laid down by Isaac
Newton [1642 - 1726] and Gottfried Wilhelm Leibniz [1646 - 1716]
long before Fourier it was Bernhard Riemann [1826 - 1866]
who gave a clean definition and showed that e.g. every
continuous function can be integrated over any interval [a, b].
He showed that the Fourier coefficients tend to zero (n — c0).
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What are the Ingredients 4: the Timeline

Another non-trivial part of the reasoning is the computation of the
formula. In fact, it is only a necessary condition on the coefficients
which can be easily obtained, using integrals

Isaac Newton [1642 - 1726]

Gottfried Wilhelm Leibniz [1646 - 1716]

AFTER FOURIER

Bernhard Riemann [1826 - 1866]
Karl Weierstrass [1815-1897]

Henri Leon Lebesgue [1875 - 1941]
Norbert Wiener [1894 - 1964]
Andre Weil [1906 1998]
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What are the Ingredients 5: Perfect Integrals

By the beginning of the 20th century Henri Leon Lebesgue had
developed his integral, and also given lectures on the application of
this new techniques to trigonometric series.

He published a number of important papers between 1904 and
1907 in this direction.

From a modern (functional analytic) view-point his integral, which
included the definition of the so-called Lebesgue spaces such as
(Ll(Rd), | ]l1) or (Lz(]Rd), |- 1l2) (and of course later the
LP-theory, duality etc.) opened the way to the field of (linear)
functional analysis, which developed rapidly, the foundations
being lead by e.g. David Hilbert [1862 - 1943], Friedrich

Riesz [1880 - 1956] and Stefan Banach [1892 - 1945].
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Convergence Issues: Pointwise

So let us return to the question of convergence: The key question
being: In which sense do the partial sums converge?

In fact, it turned out that a more general problem appeared: What
does convergence mean, and can one form classes of functions
(nowadays Banach spaces or even topological vector spaces of such
objects) such that one can guarantee convergence in those space in
the corresponding norm (or topology).

The classical view-point was of course: Can one establish pointwise
convergence (Dirichlet-conditions, J.P. Lejeune-Dirichlet
[1805-1859])7 Or uniform convergence at least for continuous
functions (no, according to A.N.Kolmogorov [1903-1987], already
in 1923 a found a counter-example and in 1926 he was able to
prove that the Fourier series of an L'-function can diverge
everywhere!).
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Convergence Issues: The idea of Summability

Of course one has to mention Lipolt Fejer [1880 - 1959] and a
long list of names pursuing the problems related to summability.

The idea is to change the question from the question of
convergence of the (partial sum) of the Fourier series to the
question of recovering a function from its Fourier coefficients. For
example, Fejer was suggesting to take (as a replacement for the
ordinary partial sums) the arithmetic means of the partial sums.

Fejer's Theorem of 1900 states that for every continuous periodic
function f the (now known as) Fejer means of the Fourier series
converges uniformly to f.
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Orthogonal Expansions, ONBs in Hilbert Spaces

The pure frequencies x,(x) := exp(2minx), n € Z form a complete
orthonormal system for the Hilbert space H = (L*(T), |- ||2):

F=> (f,xaxn, feEH (5)

nez

with unconditional convergence in the L2-norm

1]l == /0 ().

The coefficients c, := (f, xn), n € Z are uniquely determined and
satisfy Parseval's equality:

Il = [ leal>
nez

Hans G. Feichtinger




Fourier History
oooe

Almost everywhere convergence, Lusin's Conjecture

The convergence issue, in the form of Lusin’s conjecture about the
convergence of Fourier series in the pointwise almost everywhere
sense was provided by Lennart in his famous Acta Mathematica
paper of 1966. He showed that for every f € L?(T) the Fourier
series is almost everywhere convergent.

Lennart Carleson On convergence and growth of partial sums of
Fourier series. Acta Math., 116:135-157, 1966.

This result was of course the counterpoint to Kolmogorov's
negative results in the Ll-setting (Kolmogorov was a student of
Lusin).
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Engineering View-Point |

Engineers use the Fourier transform and the concept of
convolution for various important applications:

@ Translation invariant systems are described either by their
impulse response (convolution kernels) or by their transfer
function, which is the Fourier transform of the impulse
response, i.e.

T(f)=oxf or T(f)=F '(h-f),

obviously with h = F(o).

@ Sampling is described as periodization on the Fourier
transform side, hence complete recovery can be realized for
band-limited functions, if the Nyquist criterion is satisfied,
i.e. if aliasing is avoided.
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Engineering View-Point [l

The derivation of these two key principles (and others) is either
done only heuristically, or by mystification of an object, known ad
Dirac Delta (function? measure? distribution?).

Typically in all these cases one has to distinguish between discrete
and continuous signals, but also between periodic and
non-periodic, one- or multi-dimensional (e.g. images), because
each setting requires the use of a different form of what is always
called the Fourier transform and the inverse Fourier transform.

Often enough there is not much discussion whether a given signal
“has a Fourier transform” or whether integrals make sense.
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Striking Role of Lebesgue Integration |

It appears absolutely natural that the study of the concepts of a
Fourier transform and the convolution of functions requires the
“optimal theory of integration” (Lebesgue Theory, L(R?)):

f(s) = f(t)e*%fstdt and f(t) = ;?(5)(:_,27ristds7
R4 R

but also the pointwise (a.e.) definition of convolution

Frg() = [ Flx—yet)dy.

—

Combined to the Convolution Theorem we have f x g = f - &.
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Abstract Harmonic Analysis (AHA)

Abstract Harmonic Analysis goes on to define the Banach
convolution algebra (L*(G), |- ||1), starting from the existence of
a Haar measure on a LCA (locally compact, Abelian) group G, and
goes on to define the Fourier transform as the concrete form of a
Gelfand Transform. The dual group G is identified with the
domain, and Pontryagin’s Theorem allows to identify the dual
group of G with the original group G.

This approach allows a unified viewpoint towards the different
settings. The dual group of the torus group T is Z, a discrete,
non-compact group, the dual group (the/\group of pure frequencies,
with pointwise multiplication) of RY is R, by identifying

s € R? with the character xs(t) = exp(2mist), t € RY.
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Fourier Multipliers

In analogy to “system theory” the theory of (Fourier) multipliers
was an important topic in the 60s, when the multipliers, the linear
operators commuting with translations where studied on the
Lebesgue spaces LP(G). It was shown that they can be
characterized as convolution operators by some quasi-measures and
also as Fourier multipliers by some (other) quasi-measures, but
unfortunately the space of quasi-measures has no global restrictions
and this is to big to claim a Fourier transform relationship (in the
spirit of impulse response versus transfer function).
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Shannnon’s Sampling Theorem

The exact recovery of band-limited functions in L?(R9) with
spec(f) = supp(f) C Q from regular samples (i.e. along some
discrete lattice) can be seen as the Fourier variant of the classical
Fourier series expansion of £l

In fact, the Fourier coefficients of (a periodic version) of f are
exactly the samples of f, and the pure frequencies, restricted to

the (say cubic) domain give the so-called SINC-function, yielding

f(t)=Co Y _ f(ak)SINC(t — ak)

kezd

for any such band-limited f in LP(R?), with 1 < p < co.
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Theory of Tempered Distributions

It is of course well known that the theory of tempered distributions
as introduced by Laurent Schwartz allows to define the (extended)
Fourier transform, not only for f € LP(RY) with 1 < p <2
(Hausdorff-Young), but for any locally integrable function of
polynomial growth (say), or to partial derivatives of the Dirac
delta. The define partial differential operators and are thus the
key-players for PDE theory, now understood as multiplication
operators by polynomials on the Fourier side (L. Hérmander, etc.).
Schwartz-Bruhat theory imitates the situation over LCA groups.
For experts this approach is still of limited scope and they replace
the Schwartz space S(R?) of rapidly decreasing functions by

even smaller (nuclear Frechet) spaces, in fact algebras, of test
functions which allow to introduce spaces of ultra-distributions.

Hans G. Feichtinger



Motivation
000000080

Downsides of Classical Approach |

The classical/mathematical approach to Fourier Analysis has a
couple of downsides:

@ It is hard to use classical methods to analyze time-variant
signals, such as music or heart-beat signals;

@ It is not possible to describe time-variant filters (focussing at
different levels at different locations), or slowly-time variant
signals as they appear in mobile communication (due to
Doppler), or astronomy (change in atmosphere);

© Engineers use numerical variants of existing algorithms
without bothering too much about actual approximation of
the underlying continuous model;

@ most of the existing theory is mathematically highly
demanding (topological vector spaces, etc.) and thus
difficult to use for applied scientists.

Hans G. Feichtinger
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Downsides of Classical Approach |

The classical/mathematical approach to Fourier Analysis has a
couple of downsides:

@ It is hard to use classical methods to analyze time-variant
signals, such as music or heart-beat signals;

@ It is not possible to describe time-variant filters (focussing at
different levels at different locations), or slowly-time variant
signals as they appear in mobile communication (due to
Doppler), or astronomy (change in atmosphere);

© Engineers use numerical variants of existing algorithms
without bothering too much about actual approximation of
the underlying continuous model;

@ most of the existing theory is mathematically highly
demanding (topological vector spaces, etc.) and thus
difficult to use for applied scientists.

Hans G. Feichtinger



FA via Mild Distributions
©00000000

Mild Distributions: Key Facts |

@ The Feichtinger algebra (So(R9), ]| - ||s,) and its dual, the
space of mild distributions are isometrically invariant under
TF-shifts and the FT!, via o(f) = o(f);

@ All relevant function spaces (such as periodic or discrete
signals or LP-spaces) are contained in S§(R?), in fact, it

makes sense to view S{(R9) as the “space of signals”;

© The natural convergence in S{(R9) is the w*—convergence,
also called "mild convergence”. It corresponds to uniform
convergence of their STFT over compact subsets of RY x R¢;

@ Dirac combs (over lattices) belong to Sj(RY);

@ Sequences from So(R?), or discrete (and/or periodic)
signals allow to approximate any o € Sj(RY).

Hans G. Feichtinger
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|dentifying Concrete Special Cases |

First of all let us recall that (So(RY), ]| - ||s,) is a Banach algebra of
continuous and absolutely integrable functions on RY which is
dense in Sp(RY). In fact, it is a so-called Segal algebra, hence a
Banach ideal in (LYR?), |- 1), satisfying

lg = flls, < llgll Iflls, g €LY f e S

Consequently the Fourier inversion formula applies directly to
functions f € So(RY), but due to the simply fact that

Ifllc, <|Ifllx (for f € So(RY)) it is clear that the FT can be
extended to a bounded linear mapping from (Ll(Rd), - 112)
onto (FLAR), || -[l711) = (oY), |- |oc)-

Due to the Fourier invariance we also have

lh- fllsy < Il z Iflls, heFLYf € So.

Hans G. Feichtinger
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|dentifying Concrete Special Cases Il

It is a well-known fact that f € LYR?) does NOT imply

f € LYRY), and thus there are many cases which do not allow to
apply the Fourier inversion formula directly, even (or especially) if
one makes use of Lebesgue integration theory. Thus one has to
apply summability methods. Choosing some function g € So(RY)
with [pq g(x)dx = g(0) = 1 one defines h = g, thus with h(0) = 1
and multiplies f by D,h (with D,h(y) = h(py), for p — 0.

Since D,h = F(), with St,g(x) = p~?g(x/p) forming a Dirac
sequence one can recover f from f since

L RV AT
f-/!l_r;r})Stpg*f in (LR?), || 1)

It has been verified by F. Weisz (ELTE Univ., Budapest) that
all the classical summability kernels actually belong to So(R9),
thus providing a kind of universal argument for their usefulness.

Hans G. Feichtinger
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Dirac Combs |

Another important setting are discrete, periodic signals. Usually
one has to use the DFT (Discrete Fourier transform), realizable by
the FFT (Fast FT) in order to compute the FT in this setting. But
since such signals can be viewed as finite linear combinations of
Dirac combs. Noting furthermore that they can be obtained by
transformation of the standard Dirac comb LLI = ), ;4 §x under
the (extended) Fourier transform, which is (aside from the
Gaussian) the most important Fourier invariant signals. In order to
verify F(LLI) = LLI one “has to verify” Poisson’s formula:

k) =1L(F) = d(f) = Y F(k), f € S(RY).

kezd kezd

We mention that the same result is much weaker if one only
requires the invariance in the sense of tempered distributions,
i.e. Poisson’s formula for f € S(RY).
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Periodic Functions |

The classical Fourier transform for periodic functions should
actually be seen as the Fourier transform applied to functions
which have been obtained by periodization! of some compactly
supported function (e.g. by localizing the periodic function with
the help of a piecewise linear partition of unity); In this way we
find that the functions in Wiener's algebra of absolutely convergent
Fourier series arise by periodization of functions from Sp(RY).
Such functions of the form p = f % LLI5 for some lattice A, with
LLIA = D yen Oa 0y, and by the convolution theorem:

F(p) = F(Lp*f) = F(Lip) - f = LI = > F(A)6ye.
Altent

Of course, these coefficients do not depend on the particular
choice of f (as long as p = f % LLI5) and the coefficients
appearing are just the classical Fourier coefficients.
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Letting the Period go to Infinity

The transition from the classical Theory of Fourier Expansions for
periodic functions to the continuous integral formula is often
motivated heuristically by letting the period go to infinity In the
sense of mild convergence one has in fact

lim Wigaxf=f, fe So(R9)
and thus these periodic version tend to f in the sense of mild
distributions. Recalling the dilation property of the FT we have
F(Ll 7)) = T_d|_|_|2d/7_. This corresponds to mild convergence of
the discrete measures (in fact uniformly bounded measures) on the
FT side:

?' T_dLUZd/T — ?\, fe So(Rd)
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Giving a Meaning to Terms used in Physics |

While it is difficult to explain how discrete measures can converge
to a continuous function in LYRY), even in the sense of bounded
measures, it is plausible that one has mild (and in this case in fact
equivalently vague) convergence. At a technical level it boils down
to the observation that Riemann sums converge to the Riemann
integral whenever on applies them to a function h = f - g, with
f,g and hence h € Sy(RY).

In a similar way one can give a meaning to formulas used by
physicists, such as the resolution of identity via pure frequencies

Id:/ |Xs><Xs|d5
Rd
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Giving a Meaning to Terms used in Physics Il

(using the Bra-Ket notation of Dirac) or the sifting property of the
Dirac Delta used by engineers:

f :/ f(x)dcdx, f € So(RY)
Rd
or also (in the sense of mild limits):

Id:/ 16:) (5| dx,
Rd

which is used in order to describe translation invariant linear
systems, even if g is not in the domain of this operators
(say defined on L2(RY)).

Hans G. Feichtinger
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The key-players for time-frequency analysis |

Time-shifts and Frequency shifts

Tf(t) = f(t —x)

and x,w, t € RY _
M, f(t) = ™ F(t).

Behavior under Fourier transform
(Tuf V= M_f  (Myf) = Tf

The Short-Time Fourier Transform

ng()‘) = <f7 M, Ttg> = <f,71’(>\)g> = <f7g>\>v A= (taw);
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Some important properties of the STFT |

Starting from the Hilbert space (L*(RY), ||-|]2) with scalar product

(g = [ F0g0ax, F.g e LR

one can find that for fixed g the linear mapping f — V,f is
isometric from (L2(RY), ||-||2) into (L*(R3?), ||-||2). But also

Veflloo = max Ve FOI < [IFll2llg]l2
AERT x

by the Cauchy-Schwarz inequality, since ||7()\)g|l2 = [|g]|2, for any
A€ R? x RY.
There is also orthogonality for the windows, since we have

Vef(A) = (f,m(A)g) = (r(\)'f, &),

Hans G. Feichtinger
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Some important properties of the STFT Il

which gives essentially symmetry between f and g:
Vo f(t,s) = 2™ Vgl?(s, —t).

The next property is sometimes called the covariance property of
the STFT.

Lemma (3.1.3)

Whenever Vf is defined, we have
Vo (TuM,f)(x,w) = e 2V, f(x — u,w —1n) (3.14)

for x, u,w,n € R4. In particular,

| Ve(TuMyf)(x,w)| = [Vef(x — u,0 —n)|.

Hans G. Feichtinger
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A Typical Musical STFT

A typical piano spectrogram (Mozart), from recording
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A Musical STFT: Brahms, Cello
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A Musical STFT: Maria Callas
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Space of (Fei 1979) |

A function in f € L?(R9) is in the subspace Sy(RY) if for some
non-zero g (called the “window") in the Schwartz space S(R?)

[fllsy = | Vefllp = // \V f(x,w)|dxdw < 0.

The space (So(R?), | -||s,) is a Banach space, for any fixed,
non-zero g € So(R9)), and different windows g define the same
space and equivalent norms. Since So(RY) contains the Schwartz
space S(R?), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Space of (Fei 1979) Il
Since one has for any pair f, g € L?(RY)

Veflloo < lIfll2llgll2,

as a simple consequence of the Cauchy-Schwarz inequality, this is
stronger then the corresponding norm in L2(R29). In fact one has

[Vefllz = |Ifll2llgll2, f.g € L2(RY).

This implies that the range of V; is a closed, invariant subspace of
L?(RY), and the projection operator is (twisted convolution
operator), mapping (LZ(RM), |- ]l2) onto Ve (L3(RY)). If

g € So(RY), then the convolution kernel is in L*(R2%).

Assuming ||g|l2 = 1 we have the reconstruction formula:

F= [ Ve,

which can be approximated in L? by Riemannian sums.

Hans G. Feichtinger
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Basic properties of M' = S3(RY)

Lemma

Let f € So(R?), then the following holds:
0 S(RY) — L' N Cy(RY) (dense embedding);

@ (So(RY),|[|-|ls,) is a Banach algebra under both
pointwise multiplication and convolution;

(1) w(u,n)f € So(Rd) for (u,n) € RY x I@d, and
[7(u,m)fllsy = [Ifls,-
(2) € S(RY), and ||f]|s, = [Iflls,-

In fact, (So(R7), |- ||s,) is the smallest non-trivial Banach
space with this property, and therefore contained in any of
the LP-spaces (and their Fourier images), for 1 < p < cc.

Hans G. Feichtinger
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Banach Gelfand Triples appear to be the correct structure in order
to imitate situations like those encountered by the inclusion of the
number systems Q C R C C.

the RIGGED Hilbert Space situation

L2 = Hilbert

S0 -
test space

Abbildung: Three layers




Banach Gelfand Triples
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The “inner layer” is where the actual computations are done, the
focus in mathematical analysis is all to often with the (yellow)
Hilbert spaces (taking the role of R, more complete with respect to
a scalar product, more symmetric, because it allows to be identify
the dual, via the Riesz representation Theorem, very much like
matrix theory is working, with row and column vectors), and the
outside world where things sometimes can be explained, and with
completeness in an even more general sense (distributional
convergence). In other words, we do not assume anymore that
on(f) is convergent for all f € H (the completion of the test
functions in #), but only for elements f in the core space!

What we are going to suggest/present is the Banach Gelfand Triple

(507 L2, Sé)(Rd)

consisting of Feichtinger's algebra (So(R9), || - ||s,). the Hilbert
space (Lz(Rd), |- ||2) and the dual space (Sg(R9), || - lls;),

Hans G. Feichtinger
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known as space of mild distributions. Note that these spaces can
be defined without great difficulties on any LCA group G and that
it satisfies many desirable functorial properties, see the early work
of V. Losert ([lo83-1]).

For RY the most elegant way (which is describe in [gr01] or
[1a18]) is to define it by the integrability (actually in the sense of
an infinite Riemann integral over R?? if you want) of the STFT

ValF)(y) = [ Fely = x)e >y
and the corresponding norm
Iflls, == /R2d | Vo (F)(x,y)|dxdy < oo.

From a practical point of view one can argue that one has the
following list of good properties of So(RY).
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Banach Gelfand Triples
[1e]

Theorem

0 S(RY) = (W(Co, £)(RY), |- lw) = LYRY) N Co(RY);
Q@ F(S(RY)) = So(RY) (isometrically);

© Isometrically invariant under TF-shifts
Ie()lls, = IMs Teflls, = IFllsy W(z,s) € RY x RY.

Q (So(RY), |- |ls,) is an essential double module
(convolution and multiplication)

L(RY) * S(R) C So(R)  FLI(R?) - So(R7) C Sp(RY),

in fact a Banach ideal and hence a double Banach algebra.
@ Tensor product property So(R¥)&So(RY) ~ So(R?) which
implies the Kernel Theorem.
@ Restriction property: For H<1 G: Ry(So(G)) = So(H).
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Banach Gelfand Triples
oe

Q (So(RY),||-||s,) has various equivalent descriptions, e.g.

o as Wiener amalgam space W (FL', £')(R9);
e via atomic decompositions of the form

f= ZC,‘W()\,’)g with (C,‘),'e/ € El(/).

iel

@ (So(RY), |- |ls,) is invariant under group automorphism;

© (So(RY),[|-|ls,) is invariant under the metaplectic group, and
thus under the Fractional Fourier transform as well as the
multiplication with chirp signals: t + exp(—iat?), for a > 0.

In addition (So(R7), |- |s,) is quite universally useful in Classical
Fourier Analysis and of course for Time-Frequency Analysis and
Gabor Analysis, and as | am going to show also for QHA:
Quantum Harmonic Analysis. In short, it is easier to handle tha
the Schwartz-Bruhat space or even the Schwartz space S(RY),
and since S(R?) — (S(RY), || - ||s,) it is (much) bigger.
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Theorem

o
2]

o

F(S5(RY)) = S§(RY) via 5(f) := o(f), f € S},

Identification of TLIS: Hg(So, Sj) ~ S{(G)

(as convolutions of the form ) T(f) = o % f;

Kernel Theorem: B := L(Sy, S§) ~ S§(R>9)

Inner Kernel Theorem reads: L£(S}, So) ~ So(IR?9).
Regularization via product-convolution or convolution-product
operators: (S} * So) - So € So, (S} S0) * So € So

The finite, discrete measures or trig. pols. are w*—dense.
H<G — Sy(H) = So(G) via ty(o)(f) = o(Ruf), f € So(G).
Moreover the range characterizes {T € Sy(G) | supp(7) C H}.
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Theorem
O (Sy(RY). |- lls) = (M>¥(RY), |- | m=), with V(o) and
lolls; = I Ve(o)lloo, hence norm convergence corresponds to

uniform convergence on pahse space. Also w*—convergence is
uniform convergence over compact subsets of phase space.
@ (SR [l lls) = (LP@RT), || - lp) = (So(RY), |- Il).
with density for 1 < p < oo, and w*—density in Sj. Hence,
facts valid for Sy can be extended to S§ via w*—limits.
© Periodic elements (Tho = o, h € H) correspond exactly to
those with T = F (o) having supp(7) C H*.
Q The (unique) spreading representation
T = [po,ge F)TNAA, F € $(RY x RY) for T € B
extends to the isomorphism T < n(T) n: B~ L(So, S}),
uniquely determined by the correspondence with
n(m(\) = 6x, A € RY x RY.
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Some conventions

Scalar product in HS:
(T,S)ys = trace(T * S¥)
In [feko98] the notation
oA(T) =[r@r (W(T)=r(\) o Tor()', AeRIxR,
and the covariance of the KNS-symbol is decisive:

o(r@m*(A)NT)) = Ta(o(T)), T € L(S,S),reR? xR
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Observables and States |

The current status of the development suggest to consider to BE
mild distributions (Isynonymously). Signal spaces but also
measurement have the structure of a linear space and of course
one expects that the measurement process is a bilinear mapping.
We propose to model this process by the pairing defined on
S{(RY) x So(RY) (viewed as a Banach space), with measurements
of signals being ugiven by

(0,f) = o(f), o€ SHRY),f € SHRY).

In analogy to the representation of linear mappings on R” via
n X n-matrices A one can describe operators via “mild
distributions on the product space”. In fact, there is a Kernel
Theorem describing a one-to-one correspondence between the
(most general) bounded linear operators T € £(So, S§)(RY)
and the corresonding kernels o = o1 € S§(R??).
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Observables and States Il

This identification can be seen as a starting point for the study of
(many, quite general) operators T. Among the various descriptions
of the corresponding signals o1 of (phase space) “two variables”,
also known as observables, some are more suitable for the study of
physical measurements than others. In particular, the Weyl-Wigner
calculus, but also the pair of Kohn-Nirenberg or spreading function
representations are the most important ones. They appear in the
study of slowly time-variant systems or pseudo-differential
operators.

If we think of the Hilbert-Schmidt version of the kernel theorem
and observe that any o € L2(R?9) C S}(R??) defines a (compact)
Hilbert-Schmidt operator. At this level the kernel theorem becomes
a unitary mapping, if we use the scalar product for T,5S € HS

the formula (T, S)ys := trace(TS™).
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Observables and States I

Finally we point to the so-called Inner Kernel Theorem, which
describes the operators T with kernel o7 € Sp(R2?). These
operators from a Banach space of operators which are all trace
class (but in fact more restrictive). These operators have the
property that they map bounded, w*—convergent sequences in
(S§(RY), || - |s;) into norm convergent sequences in

(So(R9), |- ||s). i-e. they have a regularizing property.

Typical examples are product-convolution operators of the form
fis (fxg)-h, with g, h € So(R9), or finite partial sums for Gabor
frames arising from (g, A), with A <TR9 x RY, g € So(RY).
Obviously the duality between those nuclear/regularizing operators
and the general operators, which can be realized by the trace at
the level of Hilbert-Schmidt operators, can be extended to this
pairing, including unbounded operators on L?(R9).
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Observables and States IV

The Wigner function of a given function f € L?>(R9) is a
real-valued function on phase space RY x R9. If f is normalized
with ||f]2 = 1 then the scalar product between a bonded operator
T on Lz(Rd) and the corresponding projection operator on
L?(R9), given by h — P¢(g) = (h, f)2f, is given by trace(T o Py),
or equivalently the ordinary L2(R?)-scalar product of their Weyl
symbols. Since the Wigner function of f (in Co(IR?)) is just the
Weyl symbol of the projection operator Moyal’s Identity implies

trace(T o Pr) = /Rdxlﬁd Weyl(T)(x,&) - Wig(f)(x, &)dxd€

Specifically of f is an eigenvector of T = T* one has:

(T, Peyus = (FITIF) 2 = (FAF) 2 = A f]|2 = \.
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Observables and States V

A Feichtinger state (according to Maurice de Gosson) arises from
an element f € So(R9) which is normalized in L2(R9) and since
the space of self-adjoint operators obtained as absolutely
convergent sums of such operators is just the space of operators
with kernels in So(R??) (as described by the inner kernel theorem)
the duality can be extended to all the operators in £(So, SO (RY).
The so-called Weyl-Heisenberg operators T, with z = (x, &) then
just correspond to the Dirac measures §, on phase space. This can
be considered as one of the starting points of Quantum Theory.
There is also a raising area of analysis, called Quantum Harmonic
Analysis, which goes back to a paper by R. Werner (1984). It
introduces a convolution of operators and a (operator) Fourier
transform which turns this convolution into multiplication....
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Comments on Observables from Literature |

In quantum mechanics, an observable is a measurable physical
quantity such as position, momentum, or energy. Each observable
corresponds to a Hermitian (self-adjoint) operator acting on a
Hilbert space of quantum states. The eigenvalues of this operator
represent the possible outcomes of a measurement, and the state
collapses into the corresponding eigenvector upon measurement.
Let A be the Hermitian operator associated with an observable A.
For a state [¢)), the expectation value of A is

(A) = (Bl A)
Eigenvalues {a;} and eigenvectors {|¢;)} satisfy

Algi) = ail¢i)
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The Bra-Ket Notation |

In quantum mechanics, the expression (¢|A|¢) represents the
expectation value of the observable associated with the operator A
when the system is in the state |¢). Detailed reasoning:

The ket |¢) is a vector representing the quantum state.

The bra (¢| is the Hermitian conjugate (dual vector) of |¢).
The operator A acts on |¢) to produce a new vector A|@).
The inner product (@\A|q§> is a complex number obtained by
combining (¢| with A|®).

Since A is Hermitian (self-adjoint), (¢|A|@) is real;
Physically, if many measurements of the observable A are
performed on identically prepared systems in state [¢),

their average outcome converges to (¢|A|p).

Thus (¢|A|®) gives the expected (mean) measurement value
of the observable/signal A in the quantum state |¢).
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Advantages of the Mild Context |

Although the kernel theorem allows to deal with operators which
are not just bounded on (L?(R?), |- [|2) but even preserve the
structure of the BGT (Sp, L S)(RY), this level of generality is
only of minor importance in this context.

Most of the time we are interested in self-adjoint (Hermitean)
BGT-morphisms, i.e. linear operators which are self-adjoint at the
Hilbert space level, but also map (So(R9), || - ||s,) into itself. In
such a case the self-adjointness implies that they also map
(So(RY), || - |ls;) into itself (boundedly and w*w*continuously).

This has the big advantage that one may hope to find true
eigenvectors, let as call them perhaps eigen-signals inside of
S{(R9). The prototypical example is the commutative family of
translation operators with pure frequencies xs as eigenvectors.
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Summary on Mild Distributions |

The setting of THE Banach Gelfand Triple (Sp, L2 S{)(R9) allows
to describe not only phenomena arising in the context of
time-frequency and Gabor Analysis (where they are almost
indispensable tools) but they also help to make vague and heuristic
transitions used especially in applied courses (for engineers and
physicist) mathematically correct in the sense of a well-defined
limit in the sense of mild convergence.

Compared to the well-established theory of tempered distributions
it is much easier from a technical point of view, and since

S{(RY) < S'(RY) as a relatively small subspace statements which
can be formulated in the context of mild distributions (such as
F(LLJ) = LLJ) are stronger! because it expresses the validity of
Poisson’s formula for either just f € S(R9) or in Sp(R?). In
addition it allows to handle the Fractional Fourier transform.
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Links and Refs

Let us provide a few links:

ETH Course Notes are found at: www.nuhag.eu/ETH20
At the page www.nuhag.eu/feitalks:
you find my talks and also recorded talks from some courses, e.g.
FROM LINEAR ALGEBRA TO GELFAND TRIPLES.
Various Lecture Notes can be downloaded from
https://www.univie.ac.at/nuhag-php/home/skripten.php
The public version of my publications can be provided upon
request, via hans.feichtinger@univie.ac.at !!

This talk provides some thought related to the
CONCEPTUAL HARMONIC ANALYSIS idea.
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Fractional Fourier Transforms |

The fractional Fourier transform of order o € R is defined as:

Falf](u) = ef’fsg“(si““)/“/ F()Ka(t u) dt,

J =00

where the kernel K,(t, u) is given by:

\/mehr(tQ cot a—2tu csc a+u? cota)’ a # nm,
Ka(t, u) = € 6(t — u), a = 2nm,
3(t + u), a=(2n+1)m.

Using chirp multipliers and the ordinary Fourier transform, the
Fractional Fourier Transform can be implemented as follows,
using chirp multipliers. Recall that csc(6) = 1/sin(6) and
cot() = cos(d)/sin(0).
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Fractional Fourier Transforms Il

© Multiply £(t) by e~/ ©t(@)/2 t5 obtain:
f(t) = f(t)e Mt cot@)/2,

@ Compute the Fourier transform:

fo(u) = FIA(1)](v).
© Multiply fio(u) by e~/m*cot(e)/2,

f(u) = f(u) - e—i7ru2 cot(a)/2.
© Scale the result by \/m and include the phase factor;
Falf)(u) = v/ escla)fe /4 ().
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