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March 2007

Second Talk:

March 25th, 2007

Beyond Banach Gelfand Triples:

Modulation spaces and Gabor Analysis

The second talk will show that in addition to the triple of Banach space�
S0(Rd),L2(Rd),S0(Rd)

�
there is a whole family of Banach spaces “around” these

spaces, in particular the by now classical spaces M s
p,q(R) or the space Mp

vs
(Rd) or

Mp
s(R

d) which are obtained using radial symmetric weights of polynomial growths of

order s, s ∈ R on phase space.
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Outline of the first TALK

• Typical questions of (classical and modern) Fourier analysis

• Fourier transforms, convolution, impulse response, transfer function

• The Gelfand triple (S(R),L2(R),S ′(R)) resp. (S,L2,S ′)(Rd)

• The Banach Gelfand Triples (S0,L
2,S0

′)(Rd) and their use;

• various (unitary) Gelfand triple isomorphism involving (S0,L
2,S0

′)
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Definition 1. A triple (B,H,B′), consisting of a Banach space B, which
is dense in some Hilbert space H, which in turn is contained in B′ is
called a Banach Gelfand triple.

Definition 2. If (B1,H1,B
′
1) and (B2,H1,B

′
2) are Gelfand triples then

a linear operator T is called a [unitary] Gelfand triple isomorphism if

1. A is an isomorphism between B1 and B2.

2. A is a [unitary operator resp.] isomorphism between H1 and H2.

3. A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′

1 and B′
2.

The prototype is (`1, `2, `∞). w∗-convergence corresponds to coordinate
convergence in `∞. It can be transferred to “abstract Hilbert spaces” H.
Given any orthonormal basis (hn) one can relate `1 to the set of all elements
f ∈ H which have an absolutely convergent series expansions with respect
to this basis. In fact, in the classical case of H = L2(T), with the usual
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Fourier basis the corresponding spaces are known as Wiener’s A(T). The
dual space is then PM , the space of pseudo-measures = F−1[`∞(Z)].
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Realization of a GT-homomorphism

Very often a Gelfand-Triple homomorphism T can be realized with the help
of some kind of “summability methods”. In the abstract setting this is a
sequence 1 An, having the following property:

• each of the operators maps B′
1 into B1;

• they are a uniformly bounded family of Gelfand-triple homomorphism on
(B1,H1,B

′
1);

• Anf → f in B1 for any f ∈ B1;

It then follows that the limit T (Anf) exists in H2 respectively in B′
2 (in

the w∗-sense) for f ∈ H1 resp. f ∈ B′
1 and thus describes concretely the

prolongation to the full Gelfand triple. This continuation is unique due to
the w∗-properties assumed for T (and the w∗-density of B1 in B′

1).
1 or more generally a net
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Classical Approach to Fourier Analysis

• Fourier Series (periodic functions), summability methods;

• Fourier Transform on Rd, using Lebesgue integration;

• Theory of Almost Periodic Functions;

• Generalized functions, tempered distributions;

• Discrete Fourier transform, FFT;

• Abstract (>> Conceptional) Harmonic Analysis over LCA groups;

• . . . but what are the connections??
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Tempered distributions as unifying tool:

• Fourier Series (periodic functions), summability methods;

• Fourier Transform on Rd, using Lebesgue integration;

• Theory of Almost Periodic Functions;

• Generalized functions, tempered distributions ;

• Discrete Fourier transform, FFT;

• Conceptional Harmonic Analysis over LCA groups;
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The classical view on the Fourier Transform

Schw L1

Tempered Distr.

L2

C0

FL1
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What are our goals when doing Fourier analysis

• find relevant “harmonic components” in [almost] periodic functions;

• define the Fourier transform (first L1(Rd), then L2(Rd), etc.);

• describe time-invariant linear systems as convolution operators;

• describe such system as Fourier multipliers (transfer function);

• deal with (slowly) time-variant channels (communications);

• describe changing frequency content (“musical transcription”);

• define FT on Lp-spaces, or more general functions/distributions;
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The GOAL of this presentation:

• Provide a relative simple minded approach to Fourier analysis;

• based on standard arguments from functional analysis only;

• provide clear rules, based on basic Banach space theory;

• comparison with extensions Q >> R resp. R >> C;

• provide confidence that “generalized functions” really exist;

• provide simple descriptions to the above list of questions!
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Key Players for Time-Frequency Analysis

Time-shifts and Frequency shifts

Txf(t) = f(t− x)
and x, ω, t ∈ Rd

Mωf(t) = e2πiω·tf(t) .

Behavior under Fourier transform

(Txf )̂ = M−xf̂ (Mωf )̂ = Tωf̂

The Short-Time Fourier Transform

Vgf(λ) = Vgf(t, ω) = 〈f,MωTtg〉 = 〈f, π(λ)g〉, λ = (t, ω);
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A Typical Musical STFT
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S0(Rd) = M1(Rd) := M0
1,1(Rd)

A function in f ∈ L2(Rd) is (by definition) in the subspace S0(Rd) if for
some non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0 := ‖Vgf‖L1 =
∫∫

Rd×cRd
|Vgf(x, ω)|dxdω < ∞.

The space (S0(Rd), ‖ · ‖S0) is a Banach space, for any fixed, non-zero
g ∈ S0(Rd), and different windows g define the same space and equivalent
norms. Since S0(Rd) contains the Schwartz space S(Rd), any Schwartz
function is suitable, but also compactly supported functions having an
integrable Fourier transform (such as a trapezoidal or triangular function)
are suitable windows. Often the Gaussian is used as a window. Note that

Vgf(x, ω) = ̂(f · Txg)(ω), i.e., g localizes f nearx.
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Lemma 1. Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0 = ‖f‖S0.

(2) f̂ ∈ S0(Rd), and ‖f̂‖S0 = ‖f‖S0.

Remark 2. Moreover one can show that S0(Rd) is the smallest non-
trivial Banach spaces with this property, i.e., it is continuously embedded
into any such Banach space. As a formal argument one can use the
continuous inversion formula for the STFT:

f =
∫

Rd× bRd
Vgf(λ)π(λ)gdλ

which implies

‖f‖B ≤
∫

Rd× bRd
|Vgf(λ)|‖π(λ)g‖B dλ = ‖g‖B‖f‖S0.
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Basic properties of S0(Rd) resp. S0(G)

THEOREM:

• For any automorphism α of G the mapping f 7→ α∗(f) is an isomorphism
on S0(G); [with(α∗f)(x) = f(α(x))], x ∈ G.

• FS0(G) = S0(Ĝ); (Invariance under the Fourier Transform)

• THS0(G) = S0(G/H); (Integration along subgroups)

• RHS0(G) = S0(H); (Restriction to subgroups)

• S0(G1)⊗̂S0(G2) = S0(G1 ×G2). (tensor product stability);
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Basic properties of S0
′(Rd) resp. S0

′(G)

THEOREM: (Consequences for the dual space)

• σ ∈ S(Rd) is in S0
′(Rd) if and only if Vgσ is bounded;

• w∗-convergence in S0
′(Rd) is equivalent to pointwise convergence of Vgσ;

•
(
S0
′(G), ‖ · ‖S0

′
)

is a Banach space with a translation invariant norm;

• S0
′(G) ⊆ S ′(G), i.e. S0

′(G) consists of tempered distributions;

• P (G) ⊆ S0
′(G) ⊆ Q(G); (sits between pseudo- and quasimeasures)

• T (G) = W (G)′ ⊆ S0
′(G); (contains translation bounded measures);
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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Basic properties of S0(Rd) continued

THEOREM:

• the Generalized Fourier Transforms, defined by transposition
〈σ̂, f〉 = 〈σ, f̂〉,

for f ∈ S0(Ĝ), σ ∈ S0
′(G), satisfies F(S0

′(G)) = S0
′(Ĝ).

• σ ∈ S0
′(G) is H-periodic, i.e. σ(f) = σ(Thf) for all h ∈ H, iff there

exists σ̇ ∈ S0
′(G/H) such that 〈σ, f〉 = 〈σ, THf〉 .

• S0
′(H) can be identified with a subspace of S0

′(G), the injection iH
being given by

〈iHσ, f〉 := 〈σ,RHf〉.
For σ ∈ S0

′(G) one has σ ∈ iH(S0
′(H)) iff supp(σ) ⊆ H.
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The Usefulness of S0(Rd)

Theorem 1. (Poisson’s formula) For f ∈ S0(Rd) and any discrete
subgroup H of Rd with compact quotient the following holds true: There
is a constant CH > 0 such that∑

h∈H

f(h) = CH
∑
l∈H⊥

f̂(l) (1)

with absolute convergence of the series on both sides.

By duality one can express this situation as the fact that the Comb-
distribution µZd =

∑
k∈Zd δk, as an element of S0

′(Rd) is invariant under
the (generalized) Fourier transform. Sampling corresponds to the mapping
f 7→ f · µZd =

∑
k∈Zd f(k)δk, while it corresponds to convolution with µZd

on the Fourier transform side = periodization along (Zd)⊥ = Zd of the
Fourier transform f̂ . For f ∈ S0(Rd) all this makes perfect sense.
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Regularizing sequences for (S0,L
2,S0

′)

Wiener amalgam convolution and pointwise multiplier results imply that

S0(Rd)·(S0
′(Rd)∗S0(Rd)) ⊆ S0(Rd) S0(Rd)∗(S0

′(Rd)·S0(Rd)) ⊆ S0(Rd)

e.g. S0(Rd) ∗ S0
′(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊆ W (FL1, `∞).

Let now h ∈ FL1(Rd) be given with h(0) = 1. Then the dilated
version hn(t) = h(t/n) are a uniformly bounded family of multipliers
on (S0,L

2,S0
′), tending to the identity operator in a suitable way. Similarly,

the usual Dirac sequences, obtained by compressing a function g ∈ L1(Rd)
with

∫
Rd g(x)dx = 1 are showing a similar behavior: gn(t) = n · g(nt)

Following the above rules the combination of the two procedures, i.e.
product-convolution or convolution-product operators of the form provide
suitable regularizers: Anf = gn ∗ (hn · f) or Bnf = hn · (gn ∗ f).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

The Fourier transform is a prototype of a Gelfand triple isomorphism.
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The Fourier transform as Gelfand Triple Automorphism

Theorem 2. Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),

(2) F is a unitary map between L2(Rd) and L2(R̂d),

(3) F is a weak∗ (and norm-to-norm) continuous bijection from S0
′(Rd)

onto S0
′(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (2)

is valid for (f, g) ∈ S0(Rd) × S0
′(Rd), and therefore on each level of the

Gelfand triple (S0,L
2,S0

′)(Rd).
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The properties of Fourier transform can be expressed by a Gelfand bracket

〈f, g〉(S0,L
2,S0

′) = 〈f̂ , ĝ〉(S0,L
2,S0

′) (3)

which combines the functional brackets of dual pairs of Banach spaces and
of the inner-product for the Hilbert space.

One can characterize the Fourier transform as the uniquely
determined unitary Gelfand triple automorphism of (S0,L

2,S0
′)

which maps pure frequencies into the corresponding Dirac
measures 2

2as one would expect in the case of a finite Abelian group.

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis



25

The Kernel Theorem for general operators in L(S0,S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then

there exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉

for f, g ∈ S0(Rd), where g ⊗ f(x, y) = g(x)f(y).

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis
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The Kernel Theorem for general operators in L(S0,S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then

there exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉

for f, g ∈ S0(Rd), where g ⊗ f(x, y) = g(x)f(y).
Formally sometimes one writes by “abuse of language”

Kf(x) =
∫

Rd
k(x, y)f(y)dy

with the understanding that one can define the action of the functional
Kf ∈ S0

′(Rd) as

Kf(g) =
∫

Rd

∫
Rd

k(x, y)f(y)dyg(x)dx =
∫

Rd

∫
Rd

k(x, y)g(x)f(y)dxdy.
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This result is the ”outer shell of the Gelfand triple isomorphism. The
“middle = Hilbert” shell which corresponds to the well-known result that
Hilbert Schmidt operators on L2(Rd) are just those compact operators

which arise as integral operators with L2(R2d)-kernels.

Again the complete picture can again be best expressed by a unitary Gelfand
triple isomorphism. We first describe the innermost shell:

Theorem 4. The classical kernel theorem for Hilbert Schmidt operators
is unitary at the Hilbert spaces level, with 〈T, S〉HS = trace(T ∗ S′) as
scalar product on HS and the usual Hilbert space structure on L2(R2d)
on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if the
corresponding operator K maps S0

′(Rd) into S0(Rd), but not only in
a bounded way, but also continuously from w∗−topology into the norm
topology of S0(Rd).
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Remark: Note that for ”regularizing” kernels in S0(R2d) the usual
identification (recall that the entry of a matrix an,k is the coordinate
number n of the image of the n−th unit vector under that action of the
matrix A = (an,k):

k(x, y) = K(δy)(x) = δx(K(δy).

Since δy ∈ S0
′(Rd) and consequently K(δy) ∈ S0(Rd) the pointwise

evaluation makes sense.

With this understanding our claim is that the kernel theorem provides
a (unitary) isomorphism between the Gelfand triple (of kernels)
(S0,L

2,S0
′)(R2d) into the Gelfand triple of operator spaces(

L(S0
′(Rd),S0(Rd)), HS, L(S0(Rd),S0

′(Rd))
)
.

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis



28

The Kohn Nirenberg Symbol and Spreading Function

The Kohn-Nirenberg symbol σ(T ) of an operator T (respectively its
symplectic Fourier transform, the spreading distribution η(T ) of T ) can
be obtained from the kernel using some automorphism and a partial Fourier
transform, which again provide unitary Gelfand isomorphisms. In fact, the
symplectic Fourier transform is another unitary Gelfand Triple (involutive)

automorphism of (S0,L
2,S0

′)(Rd × R̂d).
Theorem 5. The correspondence between an operator T with kernel K
from the Banach Gelfand triple

(
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

)
and the corresponding spreading distribution η(T ) = η(K) in
S0
′(R2d) is the uniquely defined Gelfand triple isomorphism between(
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

)
and (S0,L

2,S0
′)(Rd × R̂d)

which maps the time-frequency shift operators My ◦ Tx onto the Dirac
measure δ(x,y).
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Kohn-Nirenberg and Spreading Symbols of Operators

· Symmetric coordinate transform: TsF (x, y) = F (x + y
2, x−

y
2)

· Anti-symmetric coordinate transform: TaF (x, y) = F (x, y − x)

· Reflection: I2F (x, y) = F (x,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

Kohn-Nirenberg correspondence
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1. Let σ be a tempered distribution on Rd then the operator with symbol σ

Kσf(x) =
∫

Rd
σ(x, ω)f̂(ω)e2πix·ωdω

is the pseudodifferential operator with Kohn-Nirenberg symbol σ.

Kσf(x) =
∫

Rd

( ∫
Rd

σ(x, ω)e−2πi(y−x)·ωdω
)
f(y)dy

=
∫

Rd
k(x, y)f(y)dy.

2. Formulas for the (integral) kernel k: k = TaF2σ

k(x, y) = F2σ(η, y − x) = F−1
1 σ̂(x, y − x)

= σ̂(η, y − x)e2πiη·xdη.
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3. The spreading representation of the same operator arises from the
identity

Kσf(x) =
∫∫

R2d
σ̂(η, u)MηT−uf(x)dudη.

σ̂ is called the spreading function of the operator Kσ.

If f, g ∈ S(Rd), then the so-called Rihaczek distribution is defined by

R(f, g)(x, ω) = e−2πix·ωf̂(ω)g(x).

and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,R(f, g)〉 = 〈Kσf, g〉

is well-defined and describes a uniquely defined operator from the Schwartz
space S(Rd) into the tempered distributions S ′(Rd).
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Weyl correspondence

1. Let σ be a tempered distribution on Rd then the operator

Lσf(x) =
∫∫

R2d
σ̂(ξ, u)e−πiξ·uf(x)dudξ

is called the pseudodifferential operator with symbol σ. The map
σ 7→ Lσ is called the Weyl transform and σ the Weyl symbol of the
operator Lσ.

Lσf(x) =
∫∫

R2d
σ̂e−πiu·ξT−uMξf(x)dudξ

=
∫

Rd

( ∫
Rd

σ̂(ξ, y − x)e−2πiξx+y2

)
f(y)dy.
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2. Formulas for the kernel k from the KN-symbol: k = T −1
s F−1

2 σ

k(x, y) = F−1
1 σ̂

(x + y

2
, y − x

)
= F2σ

(x + y

2
, y − x

)
= F−1

2 σ
(x + y

2
, y − x

)
= T −1

s F−1
2 σ.

3. 〈Lσf, g〉 = 〈k, g ⊗ f〉. (Weyl operator vs. kernel)

If f, g ∈ S(Rd), then the cross Wigner distribution of f, g is defined by

W (f, g)(x, y) =
∫

Rd
f(x + t/2)g(x− t/2)e−2πiω·tdt = F2Ts(f ⊗ g)(x, ω).
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and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,W (f, g)〉 = 〈Lσf, g〉

is well-defined and describes a uniquely defined operator Lσ from the
Schwartz space S(Rd) into the tempered distributions S ′(Rd).

(Uσ)(ξ, u) = F−1(eπiu·ξσ̂(ξ, u)).

KUσ = Lσ

describes the connection between the Weyl symbol and the operator kernel.

In all these considerations the Schwartz space S(Rd) can be correctly
replaced by S0(Rd) and the tempered distributions by S0

′(Rd).

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

Fourier transform is a prototype of a unitary Gelfand triple isomorphism.
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Back to the Classical Problems

We want to give an interpretation of the usual summability methods showing
the relevance of S0(Rd) in this business for a number of sufficient conditions
for f to belong to S0(Rd): in the case of d = 1 a sufficient condition is
that f is an integrable and piecewise linear function with not too irregular
nodes, or f, f ′, f ′′ ∈ L1(R). Recall S0 · FL1 ⊆ S0.
The typical reasoning where summability methods are applied is in order to
give the usual inversion formula f(t) =

∫
Rd f̂(s)e2πistds a meaning, even

if f̂ /∈ L1(Rd). This is done by multiplying it with some integrable and
continuous function h, with h(0) = 1, which is then dilated. In other words,
one replaces the integrand f(s) by f(s)h(%s), for some small value of %.
It can be shown for all the “good classical kernels” that they are of this
form, for some h ∈ S0(Rd). This means of course that s 7→ h(%s) is the
Fourier transform of some compressed S0(Rd) version St%g of some function
g (with ĝ = h) and hence St%g ∗ f converges to f in

(
L1(Rd), ‖ · ‖1

)
.
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Characterize translation invariant operators as convolution operators

Let us start by citing the introduction of Larsen’s book [5]: Given any pair
of Banach space of [equivalence classes] of functions on a locally compact
Abelian group one may ask: “what are the bounded linear operators between
them which are also commuting with translations”. Let us call those spaces
(B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)), and ask for HG(B1,B2):

HG(B1,B2) = {T : B1 7→ B2, bd. and linear, Tx ◦ T = T ◦ Tx, ∀x ∈ G }.
(4)

In most cases one shows that it equals HL1(B1,B2), defined as follows:

HL1(B1,B2) = {T : B1 7→ B2, bd. and linear, T (g∗f) = g∗Tf , ∀g ∈ L1 },
(5)

which will be called the space of all L1-module homomorphism between
(B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) (cf. Rieffel! [6]). There are not too many
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cases where this space can be identified in an easy and complete way:

1. Wendel’s Theorem, p = 1, ([5])

HL1(L1,L1)(G) ≈ Mb(G)

or in words: The bounded operator on L1 commuting with L1-
convolution are exactly the convolution operators with bounded measures
µ ∈ Mb(G).

2. p = 2 :
HL1(L2,L2)(G) ≈ FL∞

i.e. the bounded L1-homomorphism on L2(G) are exactly the operators
of the form f 7→ F−1(hf̂), for some h ∈ L∞. By a suitable interpretation
of FL∞ it can is called the space P (G) of pseudo-measures, and T is
represented as convolution with a pseudo-measure.
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3. For general p ∈ (1,∞) one can show that HL1(Lp,Lp) equals

HL1(Lp ′,Lp ′) for 1/p + 1/p′ = 1. It follows therefrom via complex
interpolation (with the choice θ = 0.5) that

HL1(Lp,Lp) ⊆ HL1(L2,L2) = FL∞.

This implies that in the context of Lp-spaces (except for p = ∞)
one can describe L1-homomorphism as convolution operators with a
pseudo-measure.

4. As soon as one wants to generalize this characterization of L1-
homomorphism to the case where the two spaces are not equal anymore,
i.e. when one is interested in the characterization of HL1(Lp,Lq), for
some pair of values p and q one finds that pseudo-measures are not
sufficient anymore! Just note that obviously any L2-function h defines a
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bounded linear operator from L1 into L2 via convolution, since obviously

ĥ ∗ f = ĥ · f̂ ∈ FL2 · FL1 ⊆ FL2. 3

The theory of quasi-measures was a vehicle providing a way out of
this dilemma. From todays view-point quasi-measures are exactly the
(tempered) distributions which equal locally pseudo-measures, but the
original definition was much more involved (going back to Gaudry, see
[4] the equivalence was established by Cowling in [2]).

In contrast, from the point of view of the Banach Gelfand Triple
(S0,L

2,S0
′) this question has a fairly simple answer, however. Since

S0(G) ⊆ Lp(G) ⊆ S0
′(G) for any value of p ∈ [1,∞] (due to the

minimality of S0(G), hence the maximility of S0
′(G)) it is easy to observe

the following natural embeddings:

HL1(Lp,Lq) ↪→ HL1(S0,S0
′) ≈ S0

′(G). (6)
3 We only need L1 ∗ L2 ⊆ L2 !?
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We only have to recall the definition of the convolution of σ ∈ S0
′(G)

with f ∈ S0(G), indeed the standard interpretation of the convolution of
a bounded linear functional with a test function applies:

σ ∗ f(x) = σ(Txf̌).

This also implies that S0
′(G) ∗S0(G) ⊆ Cb(G). Hence it in fact possible

to recover σ, given the operator T : f 7→ σ ∗ f , by means of the identity
σ(f) = T (σ̌)(0).

It is of course not difficult to show that the generalized FT on S0
′(G)

allows to describe T as a “multiplication operator on the FT side”,
by giving a meaning to the formula: T (f) = F−1(σ̂ · f̂). The transfer
function σ̂ is therefore an element of S0

′, hence a quasi-measure. This
fact has to be proven separately in the book of Larsen ([?]), because the
space Q(Rd) of quasi-measures is too large in order to be invariant with
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respect to the Fourier transform (leave alone the fact that the original
definition of the space of quasi-measures was a quite complicated one).

5. Sometimes unbounded measures still have measures as Fourier
transforms. The so-called chirp function x 7→ eπi|x|

2
is an excellent

example, because it is even invariant under the Fourier transform. Dilated
version therefore are mapped onto correspondlingly inversly dilated chirp
functions. The most general theory in this direction has been developed
by Argabright and Gil de Lamadrid ([1]) in the 1970-th. It can also be
subsumed in the S0

′-context.
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END OF THE FIRST LECTURE

THANK you for your attention! HGFei
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Modulation space for Gabor Analysis

March 25th, 2007

Beyond Banach Gelfand Triples:
Modulation spaces and Gabor Analysis

The second talk will show that in addition to the triple of Banach space�
S0(Rd),L2(Rd),S0(Rd)

�
there is a whole family of Banach spaces “around” these

spaces, in particular the by now classical spaces M s
p,q(R) or the space Mp

vs
(Rd) or

Mp
s(R

d) which are obtained using radial symmetric weights of polynomial growths of

order s, s ∈ R on phase space.
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Preview

• Wiener amalgams and modulation spaces;

• (Banach) frames and Riesz basis viewed as retracts;

• Retracts in Gabor Analysis;

• spline type spaces;

• Gabor multipliers and their properties;
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What are function spaces good for?

• Describe the smoothness or variation/oscillation of functions;

• Describe (rate of) decay of functions, summability properties;

• Describe the mapping properties of linear operators, domains of unbounded operators;
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What are function spaces good for?

• Describe the smoothness or variation/oscillation of functions;

• Describe (rate of) decay of functions, summability properties;

• Describe the mapping properties of linear operators, domains of unbounded operators;

There is a huge zoo of Banach spaces of functions or distributions used in the literature:

• the classical Lp-spaces, but also Lorentz or Orlicz spaces (typically defined by the

distribution of their values, hence rearrangement invariant);

• Lipschitz spaces, Besov-Triebel-Lizorkin spaces, Bessel potential spaces;

• weighted spaces, mixed norm spaces;

• spaces describing bounded variation, Morrey-Campanato spaces;

• Hardy spaces, characterized by atomic decompositions;

• Herz spaces, defined by decompositions;
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Wiener Amalgams: Wiener’s Role

First appearance in Norbert Wiener’s theory of generalized harmonic analysis (“The Fourier

Transform and Certain of its Applications”) and Tauberian Theorems around 1929-1932:

[W (L1, L2) and W (L2, L1), W (L1, L∞) and a bit later W (L∞, L1)], using the

discrete norm for these spaces:

‖f‖W (Lp,`q) =

�X
n∈Z

�Z n+1

n

|f(t)|p dt
�q/p�1/q

, (7)

with the usual adjustments if p or q is infinity. Advantage over ordinary Lp-spaces:

natural inclusions, in the local component as over the torus, while globally on has the

natural inclusions between sequence spaces, with opposite orientation.

Hence W (L∞, `1) is the smallest within this family and W (L1, `∞) is the largest.

The closure of test functions in this space (resp. the continuous functions in this space)

forms Wiener’s algebra, which we denote by W (C0, `
1)(Rd).
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CLASSICAL Wiener Amalgams: Basic Properties

The use of amalgam spaces (cf. e.g. the survey article by Fournier and Stewart,

Bull. Amer. Math. Soc., 1980) shows their usability in a wide range of problems of analysis.

In most cases one can just argue, that one has to think coordinatewise.

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis



49

CLASSICAL Wiener Amalgams: Basic Properties

The use of amalgam spaces (cf. e.g. the survey article by Fournier and Stewart,

Bull. Amer. Math. Soc., 1980) shows their usability in a wide range of problems of analysis.

In most cases one can just argue, that one has to think coordinatewise.
For example, with respect to duality, pointwise multiplication, or a Hausdorff-Young type

statement for the Fourier transform:

W (L
p
, `
q
)
′
= W (L

p′
, `
q′
), 1 ≤ p, q,<∞

FW (L
p
, `
q
) ⊆ W (L

q′
, `
p′
), 1 ≤ p, q,≤ 2

However, if one uses smooth partitions of unity, one can also characterize S0(Rd) as a

(generalized) Wiener Amalgam space of the form W (FL1, `1)(Rd). In other words,

given a continuous function ϕ with compact support and ϕ̂ ∈ L1(Rd), satisfying the

BUPU-condition
P

k∈Zd Tkϕ ≡ 1, we have f ∈ FL1(Rd) belongs to S0(Rd) if and

only if
P

k ‖f.Tkϕ‖FL1 =
P

k ‖Mkϕ̂ ∗ f̂‖L1 <∞.
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Bounded Uniform Partitions of Unity

Definition 3. A bounded family Ψ = (ψn)n∈Zd in a Banach algebra (A, ‖·‖A) is a
regular A-Bounded Uniform Partition of Unity ifX

n∈Zd

ψ(x− n) = 1 for all x ∈ Rd
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A B−spline partition of unity
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Wiener Amalgam Convolution Theorem

Theorem 1. Assume the indices pi, qi and the moderate weights wi are such that there
exist constants C1, C2 > 0 so that

∀h ∈ Lp1, ∀ k ∈ Lp2, ‖h ∗ k‖Lp3 ≤ C1 ‖h‖Lp1 ‖k‖Lp2,

∀h ∈ Lq1w1
, ∀ k ∈ Lq2w2

, ‖h ∗ k‖
L
q3
w3

≤ C2 ‖h‖Lq1w1
‖k‖

L
q2
w2
.

Then there is a constant C > 0 such that for all f ∈ W (Lp1, Lq1w1
) and g ∈

W (Lp2, Lq2w2
) we have

‖f ∗ g‖
L
q3
w3

≤ C ‖f‖
W (Lp1,L

q1
w1

)
‖g‖

W (Lp2,L
q2
w2

)
.

In other words, if Lp1 ∗ Lp2 ⊆ Lp3 and Lq1w1
∗ Lq2w2

⊆ Lq3w3
, then

W (L
p1, L

q1
w1

) ∗W (L
p2, L

q2
w2

) ⊆ W (L
p3, L

q3
w3

).
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Wiener Amalgam Space: General local/global components

Definition 4. A Banach space (B, ‖·‖B) of tempered distributions is called a standard
space if it satisfies the following conditions:

1. S(Rd) ↪→ B ↪→ S′(Rd),
2. B is translation and modulation invariant
TxB = B and MyB = B for all x, y ∈ Rd.
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Wiener Amalgam Space: General local/global components

Definition 4. A Banach space (B, ‖·‖B) of tempered distributions is called a standard
space if it satisfies the following conditions:

1. S(Rd) ↪→ B ↪→ S′(Rd),
2. B is translation and modulation invariant
TxB = B and MyB = B for all x, y ∈ Rd.

3. The Banach algebra A of pointwise multipliers of B contains S(Rd).
4. There is some Beurling algebra L1

w(Rd) which acts boundedly on B through
convolution, i.e.

‖g ∗ f‖B ≤ ‖g‖1,w‖f‖B ∀f ∈ B, g ∈ L1
w.

A class of spaces as above are the space FLq, the image of Lq(Rd) under the Fourier

transform (in the spirit of S0
′(Rd) or S(Rd)). Obviously it suffices to take A = FL1(Rd)

in this case, since L1(Rd) ∗ Lq(Rd) implies FL1(Rd) · FLq(Rd) ⊆ FLq(Rd).
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Selective, Continuous Description of Wiener Amalgam Spaces

Definition 5. (Wiener Amalgam spaces) Let (B, ‖.‖B) be a standard space and
(C, ‖.‖C) a solid and translation invariant Banach space of functions, i.e., a complete
space of measurable functions, such that f ∈ C, g measurable and |g(x)| ≤ |f(x)|
for all X, implies g ∈ C and ‖g‖C ≤ ‖f‖C as well as TxC = C. Then we define
for f ∈ Bloc and some compactly supported ”window” k ∈ A the so-called control
function with respect to the B-norm:

K(f, k) : x 7→ ‖(Txk) · f‖B.
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Selective, Continuous Description of Wiener Amalgam Spaces

Definition 5. (Wiener Amalgam spaces) Let (B, ‖.‖B) be a standard space and
(C, ‖.‖C) a solid and translation invariant Banach space of functions, i.e., a complete
space of measurable functions, such that f ∈ C, g measurable and |g(x)| ≤ |f(x)|
for all X, implies g ∈ C and ‖g‖C ≤ ‖f‖C as well as TxC = C. Then we define
for f ∈ Bloc and some compactly supported ”window” k ∈ A the so-called control
function with respect to the B-norm:

K(f, k) : x 7→ ‖(Txk) · f‖B.

On the basis of this control function a linear space, the Wiener amalgam space with local
component B and global component C, denoted by W (B,C) is defined as follows:

W (B,C) := {f ∈ Bloc|K(f, k) ∈ C} .

Different windows k define the same space and equivalent norms.
If S(Rd) is dense in B and C, than W (B,C)

′
= W (B′,C′).
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A Typical Control Function
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Selective, Discrete Description of Wiener Amalgam Spaces

Theorem 6. Assume that A ·B ⊆ B, with ‖h ·f‖B ≤ ‖h‖A‖f‖B for all h ∈ A, f ∈
B. Then f ∈ W (B, Lqw), 1 ≤ q < ∞, if and only if for each (or just for one
individual) A-BUPU Ψ one has

‖f‖′W =

 X
i∈I

‖fψi‖qBw
q
(xi)

!1/q

< ∞

Modulation Spaces (HF: around 1983)
Definition 6.

M
s
p,q(R

d
) = F−1

(W (FL
p
, `
q
s))
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Selective, Discrete Description of Wiener Amalgam Spaces

Theorem 6. Assume that A ·B ⊆ B, with ‖h ·f‖B ≤ ‖h‖A‖f‖B for all h ∈ A, f ∈
B. Then f ∈ W (B, Lqw), 1 ≤ q < ∞, if and only if for each (or just for one
individual) A-BUPU Ψ one has

‖f‖′W =

 X
i∈I

‖fψi‖qBw
q
(xi)

!1/q

< ∞

Modulation Spaces (HF: around 1983)
Definition 6.

M
s
p,q(R

d
) = F−1

(W (FL
p
, `
q
s))

Vgf(t, ω) = 〈f,MωTtg〉
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Modulation Spaces

The modulation spaces occur in the study of the concentration of a function in the

time-frequency plane. They are defined in the following way:

Let g ∈ S be a Schwartz function, 1 ≤ p, q <∞, s ∈ R, then

M
s
p,q(R) = {f ∈ S ′ : with ‖f‖ <∞},
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Modulation Spaces

The modulation spaces occur in the study of the concentration of a function in the

time-frequency plane. They are defined in the following way:

Let g ∈ S be a Schwartz function, 1 ≤ p, q <∞, s ∈ R, then

M
s
p,q(R) = {f ∈ S ′ : with ‖f‖ <∞},

where the norm ‖f‖ is given as Z �Z
|〈f,MyTxg〉|pdx

�q/p
(1 + |y|)sqdy

!1/q

,
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Modulation Spaces

The modulation spaces occur in the study of the concentration of a function in the

time-frequency plane. They are defined in the following way:

Let g ∈ S be a Schwartz function, 1 ≤ p, q <∞, s ∈ R, then

M
s
p,q(R) = {f ∈ S ′ : with ‖f‖ <∞},

where the norm ‖f‖ is given as Z �Z
|〈f,MyTxg〉|pdx

�q/p
(1 + |y|)sqdy

!1/q

,

i.e. for which Vgf belongs to some weighted mixed norm space over phase space. In the

“classical” case the weight depends only on frequency, hence the spaces are isometrically

translation invariant. The only important facts about the constraint imposed on Vgf is

the membership in some solid and translation invariant Banach space of functions.
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The modulation space Ms
pq(R) is a Banach space of tempered distributions, the definition

is independent of the analyzing function g, and different g’s yield equivalent norms on

these spaces.

Among the modulation spaces are the following important function spaces:

(a) the Segal algebra S0(R) as S0 = M0
1,1.

(b) L2(R) = M0
2,2;

(c) the Bessel potential spaces as Ms
2,2;

(d) the Shubin classes Qs(R
d) for the weighted L2(R2d) spaces, with radial symmetric

weights vs(λ) = (1 + |λ|2)s/2.
A lot of details on these spaces can be found in the book of Gröchenig, and in the survey

note (written in 1983, and published in 2003) [3].
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A short reminder about frames and Riesz bases in Cm

A family of vectors (ak)1≤k≤n is a generating set in Cm if and only if x 7→ A ∗ x
is surjective (the columns of A span Cm), or equivalently if y 7→ (〈y, ak〉)1≤k≤n is

injective. By a compactness argument this is equivalent to the existence of positive

numbers A,B > 0 such that

A‖y‖2 ≤
X
k

|〈y, ak〉|2 ≤ B‖y‖2

This is of course in a Hilbert space an appropriate definition for a frame.

A family of vectors in Cm is linear independent if the mapping x 7→ A ∗ x is injective
which again is equivalent to the validity of an estimate, for some constants C,D > 0 of

the following form:

C‖x‖2 ≤ ‖
X
k

xkak‖2 ≤ D‖x‖2

which is of course a suitable definition of Riesz bases resp. Riesz basic sequences.
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Frames and Riesz Bases: Commutative Diagrams

Think of X as something like Lp(Rd), and Y = `p:

Frame case: C is injective, but not surjective, and R is a left inverse of C. This implies:

P = C ◦R is a projection in Y onto the range Y 0 of C in Y :

Y

X Y 0-

C
�

R
?

P

�
�

�
�

�
�

�
��	

R
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Riesz Basis case: E.g. X0 ⊂ X = Lp, and Y = `p: R is injective, but not surjective,

and C is a left inverse of R. This implies: P = R◦C is a projection in X onto the

range X0 of R in X:

X

X0 Y-
C

�

R

?

P

@
@

@
@

@
@

@
@@R

C

An instructive example for this case are (say - cubic) spline type space. Here R maps as

sequence c = (cn)n∈Zd into a sum of the form f =
P

n cnTnϕ (for suitable B-splines

ϕ). The range is closed within Lp(Rd). In this case the coefficients (even for a general

f ∈ Lp(Rd) can be determined via cn = f ∗ eϕ(n), n ∈ Zd, where eϕ is the so-called

dual generator or the spline-type space.
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Unconditional Banach Frames

A suggestion for bringing the well established notion of Banach frames closer to the

setting we are used from the Hilbert space and `2-setting:

Definition 7. A mapping C : B → Y defines an unconditional (or solid) Banach
frame for B w.r.t. the sequence space Y if

1. ∃R : Y → B, with R ◦ C = IdB,
2. (Y, ‖‖Y) is a solid Banach space of sequences over I, with c 7→ ci being continuous

from Y to C and solid, i.e. satisfying z ∈ Y, x : |xi| ≤ |zi|∀i ∈ I ⇒ x ∈
Y, ‖x‖Y ≤ ‖z‖Y (hence, w.l.o.g., ei ∈ Y),

3. finite sequences are dense in Y (at least in the w∗-sense).
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Unconditional Banach Frames

A suggestion for bringing the well established notion of Banach frames closer to the

setting we are used from the Hilbert space and `2-setting:

Definition 7. A mapping C : B → Y defines an unconditional (or solid) Banach
frame for B w.r.t. the sequence space Y if

1. ∃R : Y → B, with R ◦ C = IdB,
2. (Y, ‖‖Y) is a solid Banach space of sequences over I, with c 7→ ci being continuous

from Y to C and solid, i.e. satisfying z ∈ Y, x : |xi| ≤ |zi|∀i ∈ I ⇒ x ∈
Y, ‖x‖Y ≤ ‖z‖Y (hence, w.l.o.g., ei ∈ Y),

3. finite sequences are dense in Y (at least in the w∗-sense).

Corollary 3. By setting hi := Rei we have Rc = R(
P
eiei) =

P
i∈I cihi

unconditional in (B, ‖·‖B), hence f =
P

i∈I T (f)ihi as unconditional series.

We may talk about Gelfand frames (or Banach frames for Gelfand triples) resp. Gelfand

Riesz bases (as opposed to a Riesz projection basis for a given pair of Banach spaces).
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Gelfand Triples, Modulations Spaces, . . . continued

We have seen so far, that the notions of “generating sets of vectors in Rd” (> frames,

Banach frames) resp. that of a linear independent set (> Riesz bases, Riesz projection

bases) are characterized by a “triangular diagram” 4 The combination of both properties

(i.e. the case Y 0 = Y exactly describes exact frames resp. unconditional bases. Such

a diagram - characterizing a retract - also makes sense for Banach Gelfand triples (even

families), leading to Banach frames and Riesz projection bases.
Y

X Y 0-
C

� R ?

P

�
�

�
�

��	

R

The interpretation of e.g. Besov (or also Wiener amalgam) spaces as retracts of

vector-valued sequence spaces is the usual way of proving complex interpolation results!!
4 representing the fact that the range of a 5× 3-matrix A in R5, i.e. the column space of A, can be identified with R3 if A

has maximal rank, and sits within R5 as a complemented subspace. Moreover the so-called pseudo-inverse (denoted by PINV in
MATAB) describing the minimal norm least square solution of A ∗ x = b defines a left inverse R to C : x 7→ A ∗ x, completing
the diagram.
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Examples of Gelfand Triple Isomorphisms

1. The standard Gelfand triple (`1, `2, `∞).

2. The family of orthonormal Wilson bases (obtained from Gabor families by suitable

pairwise linear-combinations of terms with the same absolute frequency) extends the

natural unitary identification of L2(Rd) with `(I) to a unitary Banach Gelfand Triple

isomorphism between (S0,L
2,S0

′) and (`1, `2, `∞)(I).

3. The Fourier transform is a prototype of a unitary GT-automorphism for (S0,L
2,S0

′).

4. There is an important Gelfand triple of Operator spaces, namely�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
, which is characterized by its

mapping property, but due to suitable unitary Gelfand triple isomorphisms to

(S0,L
2,S0

′)(R2d) (kernel theorem), or (S0,L
2,S0

′)(Rd × bRd) (using the spreading

η(T ) or the Kohn-Nirenberg σ(T ) relation, which are connected between the

symplectic Fourier transform over Rd × bRd).
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The following lemma is more or less a reformulation of the definition of S0(Rd) (or rather

one of the many equivalent characterizations of this space).

Lemma 4. For any g ∈ S0(Rd) the short-time Fourier transform f 7→ Vgf establishes
a retract from (S0,L

2,S0
′) into (L1,L2,L∞)(Rd × bRd), with left inverse

V
∗
g : F 7→

Z
Rd×bRd

F (λ)π(λ)g dλ

One can however show that Vgf ∈ S0
′(Rd × bRd) if and only if f, g ∈ S0(Rd) and

therefore one can also formulate the following claim:

Lemma 5. For any g ∈ S0(Rd) the short-time Fourier transform f 7→ Vgf establishes
a retract from (S0,L

2,S0
′) into (S0,L

2,S0
′)(Rd × bRd), with left inverse:

V
∗
g : F 7→

Z
Rd×bRd

F (λ)π(λ)g dλ.
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It is even more interesting that for any TF-lattice Λ the restriction of Vgf to Λ, i.e.

Theorem 7. For g ∈ S0(Rd) the mapping C : f 7→ (Vgf(λ))λ∈Λ is a bounded Gelfand
triple morphism into (`1, `2, `∞)(Λ).
The mapping C defined above is a retract if and only if the family (π(λ)g)λ∈Λ is
a (Gabor) frame. Indeed, the dual Gabor atom eg is automatically!! in S0(Rd) if the
frame operator is invertible. Consequently the mapping R : c 7→

P
Λ cλπ(λ)eg is also

a Gelfand triple morphism from

(`
1
, `

2
, `

∞
)(Λ) into (S0,L

2
,S0

′
)(Rd).

Remark 6. The above statement is really a Banach Gelfand triple version of the usual
frame characterization. While the Hilbert space case only emphasizes that the coefficient
mapping f 7→ Vgf |Λ is a retract from L2(Rd) into `2(Λ), we see that it extends to
all three levels, and allows, among others, to characterize f ∈ S0(Rd) by the property
that

P
λ∈Λ |Vgf(λ)| <∞
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In the background the following important result by Gröchenig and Leinert has to be

formulated:

Theorem 8. Assume that for g ∈ S0(Rd) the Gabor frame operator

S : f 7→
X
λ∈Λ

〈f, π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd), then it is also invertible on S0(Rd) and in fact
on S0

′(Rd).
In other words: Invertibility at the level of the Hilbert space automatically !! implies
that S is (resp. extends to ) an isomorphism of the Gelfand triple automorphism for
(S0,L

2,S0
′)(Rd).

To find other situations where this happens is an interesting task.

Remark 7. Recall also that the Balian-Low principle prohibits the existence of a
“Gaborian Riesz basis” for L2(Rd) with an atom g ∈ S0(Rd)!
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Gabor Riesz Projection Bases

In some other cases, e.g. for applications in applications such as mobile communication,

one would like to recover coefficents from linear combinations of the form
P◦

Λ cλ◦gλ◦, in

other words, one needs Gabor Riesz bases.

Theorem 9. For g ∈ S0(Rd) the mapping C : c 7→
P

Λ◦ cλ◦gλ◦ is a bounded Gelfand
triple morphism (`1, `2, `∞)(Λ◦) into (S0,L

2,S0
′).

The mapping C defined above is a retract if and only if the family (π(λ◦)g)λ◦∈Λ◦

is a (Gabor) Riesz basis. Indeed, the generator of the biorthogonal Gabor atom eg
is automatically in S0(Rd) and the Gram operator is invertible on (`1, `2, `∞)(Λ◦).
Consequently the mapping R : f 7→ V

egf(λ◦) is a Gelfand triple morphism from

(S0,L
2
,S0

′
)(Rd) into (`

1
, `

2
, `

∞
).

The Ron-Shen principle gives more details about the relation between Λ and Λ◦.
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A Discrete Version: Each Point ”is” a Lattice, n = 540

Separable TF−lattices for signal length 540

     commut. latt.

     frame lattices

     all lattices

2 3 4 5 6 910 12 15 1820 2730 36 45 5460 90108135 180 270

2

3

4

5
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9
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20

27
30
36

45
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time−latticeconst. a
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−
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b
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On the continuous dependence of dual atoms on the TF-lattice

−200 −100 0 100 200

0

0.05

0.1

0.15

a =18, b = 18

−200 −100 0 100 200
−0.05

0
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0.1
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−200 −100 0 100 200

0

0.05

0.1

0.15
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−200 −100 0 100 200

−0.05

0

0.05

0.1

0.15
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a =20, b = 20
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Stability of Gabor Frames with respect to Dilation

Recent results (Trans. Amer. Math. Math. Soc.), obtained together with N. Kaiblinger.

For a subspace X ⊆ L2(Rd) define the set

Fg =
�
(g, L) ∈ X ×GL(R2d

) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

	
.

(8)

The set FL2 need not be open (even for good ONBs!). But we have:
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Stability of Gabor Frames with respect to Dilation

Recent results (Trans. Amer. Math. Math. Soc.), obtained together with N. Kaiblinger.

For a subspace X ⊆ L2(Rd) define the set

Fg =
�
(g, L) ∈ X ×GL(R2d

) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

	
.

(8)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 10. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).

(ii) (g, L) 7→ eg is continuous mapping from FS0(Rd) into S0(Rd).
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70

Stability of Gabor Frames with respect to Dilation

Recent results (Trans. Amer. Math. Math. Soc.), obtained together with N. Kaiblinger.

For a subspace X ⊆ L2(Rd) define the set

Fg =
�
(g, L) ∈ X ×GL(R2d

) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

	
.

(8)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 10. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).

(ii) (g, L) 7→ eg is continuous mapping from FS0(Rd) into S0(Rd).

There is an analogous result for the Schwartz space S(Rd).

Corollary 8. (i) The set FS is open in S(Rd)×GL(R2d).
(ii) The mapping (g, L) 7→ eg is continuous from FS into S(Rd).
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Why is it so relevant to know it for the S0(Rd) norm?

Isn’t the description above self-referential? Wouldn’t it be reasonable to look out for
the same results for ”more standard” function spaces? (assuming that we are only
interested in the L2-setting
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Isn’t the description above self-referential? Wouldn’t it be reasonable to look out for
the same results for ”more standard” function spaces? (assuming that we are only
interested in the L2-setting
NO!

Hans G. Feichtinger Banach Gelfand Triples for Harmonic Analysis



71

Why is it so relevant to know it for the S0(Rd) norm?

Isn’t the description above self-referential? Wouldn’t it be reasonable to look out for
the same results for ”more standard” function spaces? (assuming that we are only
interested in the L2-setting
NO!

• Simply because the continuous dependence is not valid in the ordinary L2-setting!

• Even if it was true for some other norm it would not imply, that the overall system, i.e.

the mapping

f 7→
X
λ∈Λ

Vh(f)gλ

would not be close to the Identity operator in the operator norm on L2(Rd), for all

functions h which arise as dual windows for a pair (g′,Λ′), with g′ close to g and Λ′

close to Λ (in the sense of having very similar generator!).
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A result of this type is of course the basis for many results about Gabor multipliers, arising

by multiplying the Gabor coefficients with some sequence, to be called upper symbol. So

every bounded sequence m ∈ `∞(Z2d) defines a bounded linear operator. Even more is

true:

Theorem 11. For a fixed pair of S0(Rd)-functions g, γ, the mapping from the upper
symbol m ∈ (`1, `2, `∞) to the Gabor multiplier

f 7→ GMm(f) :=
X
λ∈Λ

Vγf(λ)mλgλ

is a GT-morphism into
�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
.

There is an alternative description of Gabor multipliers GMm is to express it as a sum of

rank-one operators Pλ : f 7→ 〈f, gλ〉gλ:

GMm =
X
λ∈Λ

mλPλ.
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Riesz Projection bases for Spline-type spaces

Think of a translation invariant (say wavelet) closed subspace V with a Riesz (or even

orthonormal) basis of the form (Tλϕ)λ∈Λ. If ϕ is of some mild quality, namely

ϕ ∈ W (L2, `1) then we have ϕ ∗ ϕ∗ ∈ W (FL1, `1) = S0(Rd), hence the sampled

autocorrelation function is in `1.
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Riesz Projection bases for Spline-type spaces

Think of a translation invariant (say wavelet) closed subspace V with a Riesz (or even

orthonormal) basis of the form (Tλϕ)λ∈Λ. If ϕ is of some mild quality, namely

ϕ ∈ W (L2, `1) then we have ϕ ∗ ϕ∗ ∈ W (FL1, `1) = S0(Rd), hence the sampled

autocorrelation function is in `1.

The orthonormal projection from the Hilbert space L2(Rd): f 7→ PV onto the spline-type

space is obtained by the mapping

f 7→
X
λ∈Λ

(eϕ ∗ f)(λ)Tλϕ.
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Riesz Projection bases for Spline-type spaces

Think of a translation invariant (say wavelet) closed subspace V with a Riesz (or even

orthonormal) basis of the form (Tλϕ)λ∈Λ. If ϕ is of some mild quality, namely

ϕ ∈ W (L2, `1) then we have ϕ ∗ ϕ∗ ∈ W (FL1, `1) = S0(Rd), hence the sampled

autocorrelation function is in `1.

The orthonormal projection from the Hilbert space L2(Rd): f 7→ PV onto the spline-type

space is obtained by the mapping

f 7→
X
λ∈Λ

(eϕ ∗ f)(λ)Tλϕ.

But this mapping is not only well defined on L2, but also on a Lp, for the full range

of 1 ≤ p ≤ ∞ and - again due to the properties of Wiener amalgams brings us for

f ∈ (L1,L2,L∞) coefficients which are in (`1, `2, `∞), which in turn implies that the

function
P

λ∈Λ(eϕ ∗ f)(λ)Tλϕ is a well defined element of W (C0, (`1, `2, `∞)), hence

in particular (L1,L2,L∞)(Rd).
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The Gabor Multipliers and Spline Type Spaces

The question, whether a Gabor multiplier GMm is uniquely determined can be recast

into a question about the property of the family of rank 1 operators. Let us assume for

simplicity that γ = g (and perhaps that we have tight Gabor atoms, so that the constant

multiplier m(λ) ≡ 1 gives the Id-operator.

Theorem 12. The family of rank-1 operators Pλ, f 7→ 〈f, gλ〉gλ is a Riesz basis for its
closed linear span in HS if and only if the circulant matrix generated from the “vector”
|Vgg(λ)|2 is invertible.
If this is the case, the family (Pλ)λ∈Λ is in fact a Riesz projection basis for�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
, i.e. the mapping Q : T 7→

best-approximation-toT in the HS sense extends to a retract from�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
into the spaces of Gabor multipliers

with multiplier symbols in (`1, `2, `∞)(Λ) (which is surjective).
There exists a “bi-orthogonal” (in the HS-sense) family (Qλ)λ∈Λ in L(S′0, S0), in the
sense that the best-approximation operator is of the form T 7→

P
λ∈Λ〈T,Qλ〉HSPλ.
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Local properties of STFTs with S0(Rd)- windows

Corollary 9. Let g ∈ S0(Rd). Then |Vgf |2 ∈ S0(R2d) ⊂ W (C0, `
1) for f ∈ L2(Rd).
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Corollary 9. Let g ∈ S0(Rd). Then |Vgf |2 ∈ S0(R2d) ⊂ W (C0, `
1) for f ∈ L2(Rd).

This will be an important fact in the background of the following study: Consider the

rank-one operators Pλ : f 7→ 〈f, gλ〉gλ, for λ ∈ Λ. For g normalized in L2 these are

the projections on the 1D-space generated by gλ, and for g ∈ S0(Rd) they are ”good

quality operators in L(S0
′(Rd),S0(Rd)).
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Local properties of STFTs with S0(Rd)- windows

Corollary 9. Let g ∈ S0(Rd). Then |Vgf |2 ∈ S0(R2d) ⊂ W (C0, `
1) for f ∈ L2(Rd).

This will be an important fact in the background of the following study: Consider the

rank-one operators Pλ : f 7→ 〈f, gλ〉gλ, for λ ∈ Λ. For g normalized in L2 these are

the projections on the 1D-space generated by gλ, and for g ∈ S0(Rd) they are ”good

quality operators in L(S0
′(Rd),S0(Rd)).

We them as elements of HS and want to find out, whether they are a Riesz basis in HS
by checking for the invertibility of their Gram matrix.

〈Pλ, Pλ′〉HS = |〈gλ, gλ′〉|
2

L2 = |Vgg(λ− λ
′
)|2

this in turn is a circulant matrix, and its invertibility is equivalent to the fact that the Λ⊥

periodic version of FΛ(|Vgg|2) is free of zeros (note that we can apply Wiener’s inversion

theorem because FΛ(|Vgg|2) ∈ S0(Rd), hence its periodization has an absolutely

convergent Fourier series (as well as its inverse with respect to convolution).
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Gabor Multipliers: Overview of Questions

Gm(f) =
X
λ∈Λ

mλVgf(λ)gλ =
X
λ∈Λ

mλPλ(f)

where we assume for simplicity that g ∈ S0(Rd) generates a tight Gabor frame, or

equivalently, we assume that m ≡ 1 gives us the identity operator.
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76

Gabor Multipliers: Overview of Questions

Gm(f) =
X
λ∈Λ

mλVgf(λ)gλ =
X
λ∈Λ

mλPλ(f)

where we assume for simplicity that g ∈ S0(Rd) generates a tight Gabor frame, or

equivalently, we assume that m ≡ 1 gives us the identity operator.

• Gabor multiplier results can be obtained from the mapping properties of the

C : f 7→ Vgf |Λ and the synthesis mapping R : c 7→
P
cλgλ.

• in addition one may ask in which sense the quality of the Gabor multipliers depends on

the ingredients;

• what can be said about the linear mapping from sequences (mλ) to operators Gm

(injectivity, etc.);

• best approximation by Gabor multipliers;

• questions of stability (condition numbers);
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Gabor Multipliers: A summary of facts

Theorem 13. The mapping GM from the ”upper symbol” (mλ) to the Gabor multiplier
Gm (for arbitrary g ∈ L2(Rd)) is a Gelfand triple isomorphism from the Gelfand
triple (`1, `2, `∞) to the Gelfand triple of operator spaces on L2(Rd) consisting of
(S1,HS,B(L2)).

For g ∈ S0(Rd) we have something stronger:
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Gabor Multipliers: A summary of facts

Theorem 13. The mapping GM from the ”upper symbol” (mλ) to the Gabor multiplier
Gm (for arbitrary g ∈ L2(Rd)) is a Gelfand triple isomorphism from the Gelfand
triple (`1, `2, `∞) to the Gelfand triple of operator spaces on L2(Rd) consisting of
(S1,HS,B(L2)).

For g ∈ S0(Rd) we have something stronger:

Theorem 14. Assume g ∈ S0(Rd). Then the mapping GM from the ”upper
symbol” (mλ) to the Gabor multiplier Gm is a bounded linear Gelfand triple
mapping from the Gelfand triple (`1, `2, `∞) to the Gelfand triple of operator spaces�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
.

Theorem 15. Assume that g ∈ S0(Rd) and that (Pλ) is a Riesz basis in HS, then the
mapping GM defines a Gelfand Riesz basis for (`1, `2, `∞) into (S0,L

2,S0
′).

In particuar, the orthogonal projection T 7→ P (T ), mapping a given Hilbert Schmidt
operator to its coefficients of the best approximation by Gabor multipliers with respect to
the given Gabor frame generated from (g,Λ) is extending to a Gelfand triple mapping
from

�
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

�
to (`1, `2, `∞).
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Robustness and Approximation

The (S0,L
2,S0

′)-framework also guarantees various types of robustness, such as

• stability with respect to jitter error (positions are changing);

• even irregular Gabor multipliers can be treated (P. Balazs);

• changing the lattice;

• let lattice converge towards each other;

• let the lattice “tend to the full TF-plane” (Anti-Wick calculus);

• function spaces (again Wiener amalgams) in order to describe the “rough” symbols

defining good STFT-multpliers;

• etc. . . . etc. . . .
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Modulation spaces and pseudo-differential operators

As we have seen modulation spaces are also quite interesting objects for the discussion of

pseudo-differential operators. This movement has been started in 1994 with the work of

Tachizawa, considering classical pseudo-differential operators on modulation spaces.

On the other hand Gröchenig/Heil have been able to improve the classical Calderon-

Vaillancourt theorem using modulation spaces arguments. More recently it has been

recognized that e.g. Sjöstrands work makes implicitly use of modulation space descriptions

of kernels or symbols of pseudo-differential operators. The relevant papers (in particular

by Gröchenig) are published under the name of “localization” of frames.
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Coorbit Theory and Atomic Decompositions

In the late 80’s together with K. Gröchenig a joint viewpoint on Besov-Triebel-Lizorkin

spaces (characterized via the continuous wavelet transform) and the modulation spaces

(characterized via the STFT) has been given, using the theory of (integrable) group

representations. Banach spaces of analytic functions on the unit disk invariant under the

Moebius transformation are another instance of this abstract setting.

In that context on can proof that one can recover a generalized wavelet transform

Vgf (for a sufficiently nice “window” g) from a sufficiently dense subset of sampling

points. Equivalently, once can decompose every distribution f with Vgf in some weighted

(mix-norm) Lp-space as a sum of atoms of the form π(λi)g, with `p-coefficients.
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Alpha-modulation Spaces

After discussions with H. Triebel starting with a PhD thesis of Peter Gröbner (1992,

University Vienna) a new family of function spaces has been designed, which intermediates

between modulation spaces and Besov spaces.

They can be characterized by (admissible) partitions of unity on the Fourier transform side

which are in between uniform (= modulation spaces) and dyadic (Besov spaces). Roughly

speaking the length of the support of φj is related to (1 + |sj|)α, for some α ∈ [0, 1), if

sj described the center of the support of φj.

All the basic results about these spaces (norm-equivalence, optimal embedding, etc.) have

been discussed in the PhD thesis of Peter Gröbner, while Banach frame decompositions

(atomic decompositions) have been obtained in recent work of Massimo Fornasier and

Lasse Borup and Morten Nielsen, respectively, very recently.
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Admissible covering in R2 for alpha-modulation spaces

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10
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−6
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0

2

4

6

8

10
 α−covering for α =0.5
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Time-Frequency Concentration via Modulation Spaces

Recall that the Gauss function is given by g0(t) = e−πt
2
, z = (x, ξ) ∈ Rd. The short

time Fourier transform (STFT) with Gaussian window is therefore

Vg0f(z) =

Z
Rd
f(t) g0(t− x) e

2πit·ξ
dt = 〈f,MξTxg0〉

Modulation space Mp
v (”good pulses”) consists of all functions such that

‖f‖M1
v

:= (

Z
Rd
|Vg0f(z)|p vp(z) dz)1/p

<∞

Typical examples for such weight functions v on phase space are either weights depending

on frequency only, such as v(x, ξ) = (1 + |x|)s (leading to the ”classical” modulation

spaces), or more interesting (because they lead to Fourier invariant spaces) weights which

are radial: vs := (1 + |x|2 + |ξ|2)s/2. The intersection of all spaces Mp
vs

is just the

Schwartz space S(Rd). M2
s = Qs = (Shubin Class, having a characterization in terms

of Hermite coefficients).
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A Collection of Fourier Invariant Spaces

It is also possible to make use of radial weights of sub-exponential growth, and obtain in

this way a family of Fourier invariant Banach spaces of test functions and corresponding

spaces of ultra-distributions.

S0

Schw

Tempered Distr.

Ultradistr.

SO’

L2
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